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A method of calculating the diatomic susceptibility A&) that determines the change that occurs in the 
polarizability of atoms as a result of their binary interactions, as well as the corrections to the van der Waals 
forces in an electromagnetic field, is proposed. Simple formulas are derived for approximate calculations in 
the resonance and nonresonance cases. Numerical values of A ,(o ) are determined for specific pairs of atoms in 
electrostatic and pulsed-laser fields. The general properties, the resonance characteristics, the feasibility of an 
experimental measurement of the diatomic susceptibilities, and the practical use of the data obtained are 
discussed. 
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8 1. INTRODUCTION Besides the radiative collisions, the collision-in- 

The theory of the higher-order interactions of high- 
power light beams with individual atoms is fairly well 
developed a t  present, and is quite satisfactorily corro- 
borated by experiments performed, a s  a rule, in very 
tenuous atomic media (see, for example, Refs. 1-3). 
But a collisionless atomic medium is only an approxi- 
mate model for the gaseous media used in practice, and 
the interatomic interaction leads, generally speaking, 
to  quantitative and qualitative discrepancies between the 
results of such a theory and experiment. In particular, 
the presence in an atomic-gas spectrum of lines with 
frequency equal to the sum of, o r  difference between, 
the natural frequencies of the individual atoms4 can only 
e x ~ l a i n  the interaction of the atoms in the course of 
their collision. Another experimental confirmation of 
the dependence of the properties of an atomic medium 
on the interatomic forces is the fluorescence under the 
action of a high-power light wave of alkali-metal va- 
pors of sufficiently high density. The presence in this 
radiation of a number of lines that do not occur in the 
spectrum of the individual atoms and the nonlinear char- 
acter of the dependence of their intensities on the pow- 
e r  of the pump field indicate that this radiation is of 
cooperative origin, which stems from the collisional 
interaction of the atoms in the course of the stimulated 
scattering of the light. 

The enumerated phenomena a re  the subject of inves- 
tigation of a presently well formulated field of science: 
the physics of radiative collisions. Definite advances 
have been made in the theoretical description of these 
processes, a s  in the experimental investigation of 
them. 3*7 But there a r e  still a number of difficulties 
here, due, in particular, to the fact that there is no 
method for a consistent quantum-mechanical computa- 
tion of the microscopic quantities that enter in the 
theory namely the atomic susceptibilities that deter- 
mine both the diatomic-transition cross  sections and 
the change in the interatomic interaction in the pres- 
ence of an electromagnetic wave (below we shall as- 
sume that the interatomic interactions in the gas a re  
determined by the van der Waals dispersion forces). 

duced effects in light-beam scattering by an atomic 
medium, which lead, in particular, to the depolariza- 
tion and broadening of the Rayleigh scattering studied in 
recent years in the inert gases (see Ref. 8 and the 
references cited therein), a s  well a s  to  cooperative 
nonlinear optical phenomena,' a re  of great interest. A 
consistent theoretical description of these processes 
requires the computation of the dynamic susceptibility 
of the diatomic system. This same quantity deter- 
mines the corrections to the van der  Waals forces in 
the field of a light wave, and, consequently, is of par- 
ticular importance in connection with the determination 
of the effect of high-power radiation on the thermody- 
namic properties of an atomic grrs. 

It should be noted that the above-indicated effects a r e  
effects of order higher than that of, and therefore con- 
tain information about, the radiative collisions. In 
particular, the dispersion relation for the diataomic 
susceptibility has resonance poles at the locations of 
the diatomic lines emitted (absorbed) by the atoms in 
the course of their collisions. The residue a t  such a 
pole is equal to the square of the matrix element of the 
corresponding collision-induced radiative transition. 
In view of this, it is essential that we develop a con- 
sistent method of calculating the optical susceptibilities 
of polyatomic systems that can be used in the problem 
of the effect of laser radiation on the van der Waals 
forces, in the problem of the cooperative effects in light 
scattering by atomic gases, and in the theory of radia- 
tive collisions. 

Of greatest practical interest for a system of two 
spherically symmetric atoms i s  the dipolar suscepti- 
bility A,, which determines the long-range correction 
to the polarizability of the diatomic quas im~lecu le ,~  a s  
well a s  the change that occurs in the van der Waals 
forces under the action of the external field. lo At 
present, the components of this tensor have been cal- 
culated only for the case of electrostatic fields. The 
exact solution of the problem of the corrections to the 
van der  Waals forces has been obtained for hydrogen'' 
and an approximate computation of the quantity A, has 
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been carried out with the use of the stochastic-dipole 
model for the inert gasesg in this case. For  variable 
fields, these data can be used only in the low-frequency 
limit w <<w,, where the w, a r e  the natural frequencies 
of the atoms. Such a situation obtains for  the inert 
gases in the optical region af electromagnetic-wave 
frequencies w. But for other gaseous media, in parti- 
cular for metal vapors, which a re  the most interesting 
objects of modern nonlinear s p e c t r o ~ c o p y , ~  a t  optical 
frequencies w = w,, and the use of the static values of 
A,(w)=A,(O) is not justified here. Therefore, a con- 
sistent quantum-mechanical computation of the suscep- 
tibilities A6(w) for arbitrary external-field frequencies 
is necessary. 

In the present paper we propose a calculation method 
based on the application of the perturbation theory for 
quasienergy states1' to a system of two interacting 
atoms in a monochromatic-radiation field. The gene- 
ra l  expressions determining the susceptibility A6(w) 
(902 and 3) a r e  reduced to a form suitable for approxi- 
mate calculations in situations that a re  of greatest 
interest from the practical standpoint (94). The reso- 
nance characteristics of the quantities A,(@) a re  
studied, and the feasibility of their experimental ob- 
servation in specific situations is discussed (55). 
Among these characteristics must be noted the reso- 
nances at the combination diatomic lines w =w, + w,,, 
which do not occur in the frequency dependences of the 
monatomic susceptibilities. Numerical calculations 
a re  carried out for specific pairs of atoms A and B 
(Tables I and 11). The model-potential method is used 
to find the numerical values of the composite matrix 
elements of the higher-order perturbation theory that 
determine A6(w). 

52. THE QUASIENERGY OF A DIATOMIC SYSTEM 
IN THE FIELD OF A LIGHT WAVE 

In a sufficiently rarefied gas of density n <<ai3, where 
a,= lo-' cm i s  the linear dimension of the atom, the 
major role in the collision processes i s  played by the 
long-range forces, which make the dominant contribu- 
tion to the characteristics of the processes occurring 
at large interatomic distances R >>ao. In this case we 
can retain in the multipole expansion of the A-B inter- 
action operator CAB only the dipole-dipole term deter- 
mining the van der  Waals interaction1': 

Here C,,(B, cp) is a modified spherical function, n=R/R 
i s  the unit vector along the line joining the atoms, and 

is the dipole moment operator. 

The operator representing the interaction of the di- 
atomic system AB with an electromagnetic wave of in- 
tensity 

? ( t ) = ~ ~ e { e e x ~ [ i ( k z - a t ) ] } ,  

where F is the amplitude and e i s  the unit polarization 
vector (the wave propagates along the z axis), has, in 
the dipole approximation, the form 

Z ~ = - F  ~e ((e(d^*+@) ) e-'*l). (2) 

Assuming that the atoms a re  in spherically-symmetric 
S states, we can represent the correction, arising from 
the interactions (1) and (2), to the quasienergy of the 
diatomic system AB up to terms of the order of F2/R6 
(in the atomic system of units, R >> 1 and F << 1)  in the 
form1' 

In the case of unpolarized radiation we must se t  here 

The first  two terms in (3) are  the second-order cor- 
rection due to the separate interactions of the atoms A 
and B with the electromagnetic-wave field, and deter- 
mined by the total polarizability aA(w) + aB(w) of the 
atoms and their dispersion interaction with each other 
with the van der  Waals constant C,. The third term, 
which corresponds to the third-order correction (second 
in CF and first  in 3AB), determines the interaction en- 
ergy for the atomic dipoles induced by the external 
field. This term vanishes on being averaged over the 
mutual orientations of the atoms (i. e . ,  over the direc- 
tions of the vector n), so that the third-order correc- 
tion makes no contribution to the energy of the atomic 
medium. 

In view of this, the last term in (3), which is the 
fourth-order (second-order in SF and second-order in 
CAB) perturbation-theory correction in the approximation 
being considered by us  (we neglect the corrections of 
order F4 and 1/R12, which ar ise  respectively in the 
fourth-order perturbation theories in terms of 2F and 
CAB) acquire especial significance. This quantity is de- 
termined by two linearly independent-the longitudinal 
A:(w) and transverse At(w)-components of the diatomic 
susceptibility tensor: 

which, like the van der Waals constant C,, is a charac- 
teristic of the entire diatomic system AB. It is easy to 
verify that this quantity averaged over the orientations 
has the nonzero value: 

Let us note that i t  is sometimes convenient to use the 
averaged value (5) and the anisotropy AA,(w) =A: - At 
a s  the linearly independent components of the tensor 
A ,(w, n) , instead of the longitudinal and transverse 
components. As can hence be seen, the correction 
in question, which describes the interaction of the - 
virtual atomic dipoles with the external field and with? 
each other simultaneously, makes a nonzero contribu- 
tion to the change in the energy of the entire atomic 
medium in the external field g(t). Using (3), we can 
represent the expression for the collision-induced pol- 
arizability of the diatomic system in the form 
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Similarly, for the van der Wads  constant in the exter- tion ? (we have, for simplicity, dropped the sign - 
nal field we obtain the expression above the operators in the matrix elements). 

Cs (F) =C,+'l,F2As (o, n) . (7) The expressions obtained a r e  similar to the formulas 

Thus, the interaction of the atoms induces an anisotrop- 
ic correction to the polarizability of the spherically 
symmetric atoms, which causes depolarization in the 
scattering of the light by the monatomic gas,' while the 
action of the light field leads to a change in the van der  
Waals constant, which also becomes anisotropic. In 
this case, in the region of frequencies f a r  from the 
atomic lines the polarizability anisotropy 

AaCO'(o, R )  = a l ' ( o ,  R )  - a L ( o ,  R )  =6aA  ( o )  a B ( o ) / R 3 + A A , ( o )  l R 6  (Ba) 

-is characterized largely by the term -l/RS, which is 
determined by the polarizabilities of the individual 
atoms. But in a number of situations the role of the 
second term in (8a) can be significantly more impor- 
tant. In particular, there exist frequencies a t  which 
ct(w)= 0 (Ref. 1): the contribution of the term -l/RS is 
then small, and the collision-induced polarizability, 
like the change in the van de r  Waals interaction of the 
atoms in the field, is determined by the susceptibility 
A,(w, n). 

In the nonresonance region for rarefied gases the 
isotropic part 

plays an unimportant role in comparison with the aniso- 
tropic part (8a). This explains, in particular, the fact 
that the Rayleigh line wing (RLW) for light scattered in 
inert gases is virtually completely depolarized. ' In the 
vicinity of a resonance, where the anisotropy Actco1, 
like cllco', is determined by the terms -1/R6, the degree 
of depolarization of the RLW should be significantly 
lower (see 95). The shape of the RLW in this case 
practically does not differ from the shape in the non- 
resonance region. l3 

$3. GENERAL FORMULAS FOR THE SUSCEPTIBILITY 
A6 ( w )  

Using the expression for the correction that is of 
fourth order in the perturbation V = Cp + C A B ,  we can 
represent the components of the tensor A, in the form 
of a linear combination of composite matrix elements: 

where. 

qr'=(O( (dzA+ dzB) (G,+.+G,-.) (d.A+d.B)Gs,drAdtBG~IdrAdtB1 0 ) ;  

qta=(O 1 (dzA+dz') (GE,+mdrAdt'G~++w 

+G, ..d,AdrBGE.-m) (dzA+dzB)  GE.diAdtBI 0 ) ;  

qr3=(01 (dzA+dZB) (Gs.+,dtAdtBG~+.dt~'dtBG~B+~ 

+G&-,d,Ad,BG ,.-. d,Ad,BGEII") (dZA+dZB) 10); 

qr'=<OldtAd,BGE.(d,A+d,B) (GEo+.+GEa-W) (dzA+dzB)GEedtAdrB1O): 
B,=6(0~d,Ad,BGs.Gs.d,Ad,B10); 

B (a) '(0 ldz(Gn+YGE,+u+GE,-mGEo-m) dd 10). 

Here t = x  or  z ,  p 1 = 4 ,  K L = l ,  and E o = E ,  +EoB is the 
energy of the system in the absence of the perturba- 

for the fourth-order susceptibilities (i. e .  , the hyper- 
polarizabilities) of isolated atoms. '-" B U ~  there is an 
important difference, namely, the composite matrix 
elements in (9) contain the diatomic Green function, 
which is determined by a double ser ies  and a double in- 
tegral over the states of the discrete and continuous 
spectrum of the system: 

Here En is the energy and ( r ln)  is a state vector for the 
isolated atom. The quantities q, in (9) correspond to 
Feynman diagrams of the type 

with all possible permutations of the photon and inter- 
atomic lines. The terms with C, and B, a re  the stand- 
ard normalization terms that ar ise  in higher-order 
perturbation theory. The object in these expressions 
that is  most complicated from the computational point 
of view is the diatomic Green function standing between 
two interatomic lines. 

Actually, the variables of the atoms A and B in (10) 
a re  separated, but the common energy denominator 
does not allow us to write the expansion of G ,  in a 
form similar to the Sturm expansion for the monatomic 
Green function, in which there would be no integration 
over the continuous spectrum.' Nevertheless, the 
computations of the composite matrix elements can be 
significantly simplified by factorizing the denominator 
of the expression (10) with the aid of the identity 

1 2 "  a b d x  -=-J 
a+b n (az+x2) (bz+xz)  ' 

which leads, in particular, to the representation of C, 
in terms of an integral of imaginary-frequency-de- 
pendent polarizabilities (see, for example, Ref. 12) of 
the interacting atoms. In this case 

where C,,,,, i s  the Green function of the isolated A(B) 
atom, and the diatomic composite matrix elements in 
(9) a re  represented in the form of integrals of products 
of monatomic matrix elements with complex energies 
in the intermediate states. A method of computing 
such quantities with the use of a model potential for the 
description of the states of a valence electron i s  de- 
veloped in Ref. 14, but the representation of the quan- 
tities q, with the aid of (11) is inexpedient, since i t  then 
becomes necessary to evaluate a double integral for 
q; and a triple integral for q:. Nevertheless, we can 
propose on the basis of the expression (11) a fairly 
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simple approximate method of determining the nu- 
merical values of the composite matrix elements in 
(9), as  shown in the following section. 

The most convenient representation for the numerical 
computations,of the susceptibilities A, with the aid of 
(9) is a representation of the form 

We can derive with the aid of this expression a repre- 
sentation of the diatomic quantities q, in the form of 
spectral sums of products of the simple p, =(0 1 rl n) and 
composite 

monatomic (radial) matrix elements, the procedure for 
numerically computing which is described in detail in 
Ref. 15. In particular, 

Analysis of these sums in the static (i. e . ,  w =0)  case 
shows that the ser ies  over the discrete states In) con- 
verges like Cnn-3, and to find i ts  numerical value to 
within we must take about 100 terms into account. 
To evaluate the integral over the continuous spectrum 
with the same degree of accuracy, i t  is sufficient to 
use, for example, the Gaussian quadrature of the 
twelfth order. The values A: = 2556 and A; = 1270 a. u. 
obtained in this way for hydrogen atoms in the ground 
states coincide within the limits of the indicated e r r o r  
with the results of the variational calculations. 9110 

54. SIMPLIFIED FORMULAS FOR APPROXIMATE 
CALCULATIONS 

The slow convergence of the ser ies  (13) leads to e r -  
ro r  accumulation, and, consequently, to the necessity 
of a very exact computation of the monatomic matrix 
elements, which complicates significantly with increas- 
ing w,,. Therefore, the computation of q, with the aid 
of expressions of the type (13) is a s  laborious and the 
result a s  unstable a s  when the representation (11) is 
used. There ar ises  the need for the derivation of fair- 
ly simple approximate formulas for determining the 
quantities A,. Below we obtain such formulas, i. e .  , 
formulas suitable for approximate calculations in va- 
rious situations encountered in practice. 

1. In a low-frequency ( 2 .  e . ,  w << w,) field we can use 
the representation (11) and the following approximate 
relation for the monatomic Green functions: 

where w is an energy parameter that can be deter- 
mined, using the wall-known values of the oscillator- 
strength (f,) sums 

TABLE I. Numerical values of the static parameters of AG(0) 
in a.u.; (n )= lOn .  

which a r e  connected with each other by the relation 

A-B 

It can be verified, in particular, that for hydrogen and 
alkali-metal atoms in the ground states E , < ~ < E , ,  
where El( , ,  is the energy of the f i rs t  (second) P state of 
the atom. For the inert gases 3 roughly coincides with 
the ionization potential I E , ] .  In this case w practically 
does not depend on the order k of the S-, sums (the rela- 
tive difference between the sums for k = 1 and k = 2 i s  
about 5-7%). Using (14) and (111, we can express the 
quantity q, in terms of the monatomic matrix elements 
and the effective excitation energy 3. In particular, 

H-He 
-Li 
-Na 
-K 
-Rb 
-Cs 
-AF 
-Kr 
-Xe 

He-He 
-Li 
-Na 
-K 
-Rb 
-Cs 
-Ar 
-Kr 
-Xe 

ti-Li 
-Na 
-K 
-Rb 
-Cs 
-Ar 

Here 

is the composite fourth-order matrix element, which 
determines, for example, the hyperpolarizability tensor 
for an isolated atom. ' 1 "  

As an example, in Table I we give the numerical 
values obtained by means of the proposed method for 
the quantities 3, and AA, in the static (w =0)  case. For 
comparison we give the values 4 = 1812 and AA,= 1214 
computed by the above-expounded method for hydrogen 
atoms. These values differ from the exact values A, 
= 1698 and AA,=  1290 (Refs. 9 and 10) by less than 8%. 
This accuracy is not worse than the accuracy of the 
method used here in the calculations of the monatomic 
quantities. l 

Li-Kr 
-Xe 

Na-Na 
-K 
-Rb 
-0 
-Ar 
-Kr 
-Xe 

K-K 
-Rb 
-Cs 
- AI 
-Kr 
-iYe 

Rb-Rb 
-Cs 
-Ar 
-Kr 
-Xe 

Cs-Cs 
-Ar 
-Kr 
-Xe 

3.4(2) 
3.6(5) 
4.37(5) 
1.45 (6) 
1.92(6) 
3.13(6) 
4.29(3) 
6.38 (3) 
1.07(4) 
5.69(2) 
1.23 (5) 
1.49(5) 
491(5) 
6.51 (5) 
1.06 (6) 
8.94(2) 
1.37(3) 
2.78(3) 
1.11(7) 
i.26(7) 
3.58(7) 
4.6(7) 
7.44 (7) 
1.06(6) 

1.54(6) 
2.11 (6) 
1.4(7) 
3.86(7) 
4.92(7) 
7.88(7) 
1.28(6) 
1.87 (6) 
2.55(6) 
7.41 (7) 
9.11 (7) 
1.4(8) 
4.25 (6) 
6.2 (6) 
8.47 (6) 
1.05 (8) 
1.56(8) 
5.63 (6) 
8.22(6) 
1.12(7) 
2.04(8) 
9.2 (6) 
1.34(7) 
1.84(7) 

He-Li 2.71 (5) 2.81 (5) 2.30(7) 2.67(7) 
-Na Z.O!J (5) 1.45(6) 

-Rb 
-Cs 5.11 (6) 5 20((i) 2.96 (6) 3.32(6) 

4.1 (2) 
1.61 (5) 
1.54(5) 
3.75 (5) 
4.0(5) 
3.52(5) 
3.04(3) 
6 5 2  (3) 
7.08(3) 
3.75 (2) 
4.86 (4) 
4 37(4) 
1.@3(5) 
1.03 (5) 
6.8 (5) 
4.18(2) 
6.75(2) 
1.21 (3) 
i.04(7) 
i.12(7) 
2.33(7) 
2.7(7) 
3.54(7) 
4.42(5) 

6.69 (5) 
9.53(5) 
1.26(7) 
249(7) 
287 (7) 
3.71 (7) 
4.08(5) 
6.3(5) 
9.12(5) 
6.35(7) 
7.15(7) 
9.09 (7) 
9.69 (5) 
1.51 (6) 
2.2(6) 
8.81 (7) 
1.11 (8) 
9.96 (5) 
1.59(6) 
2,33(6) 
1.88(8) 
7.5 (5) 
1.3(6) 
2.03(6) 

TABLE 11. Susceptibilities Ag(w)  (in a. u.) for atoms with 
greatly differing ionization potentials. 
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H-Li 
-R'a 
-K 
- Rb 
- Cs 

8.47 (5) 
7.16(5) 
4.4516) 
5.96 (6) 
1.54(7) 

8.07 (7) 
4.42(6) 
2.42(7) 
2.33(7) 
1.01 (7) 

8.80 (5) 
6.64(5) 
4.56(6) 
6.01 (6) 
1.58(7) 

6.94 (7) 
4.46(6) 
2.21 (7) 
2.18(7) 
9.2 l(6) 



2. F o r  atoms with greatly differing ionization poten- 
tials (i. e . ,  for ( E ,  I>> I E ,  1) the dominant contribution 
to the diatomic composite matrix elements is made by 
those terms of the ser ies  (10) for which the inequality 
w, >> w,,, which allows us to neglect the quantities w,, 
in comparison with w, and w, i w ,  is fulfilled. Then 

Using this expression, we find, in particular, that 

Similarly, 

Similar expressions with the composite matrix elements 
factorized into monatomic matrix elements can be de- 
rived for the remaining quantities q, in (9). 

In Table I1 we present numerical $(w) and AA,(w) 
values obtained by the present method. These values 
determine the interaction of hydrogen and helium atoms 
with alkali-metal atoms in the fields of neodymium 
(w, = 9440 em") and rubidium (w, = 14400 cm'l) lasers.  

3. In the case of resonances a t  the lines of the iso- 
lated atoms, i. e. , at  w = w, - A,  where 1 A I << w, all  
the quantities in (3) that a r e  proportional to F2 increase 
resonantly. Then in the neighborhood of the resonance 
on the P state aA(w) - l / A  and A,(w)-l/A2, SO that for 
nonidentical atoms A and B the last term can, in the 
present situation, predominate over the remaining 
terms. Taking only the resonance terms of the order 
of l / A 2  into account in A,(w), we can write 

where tiA, is the Kronecker symbol and C:"' is the lon- 
gitudinal (transverse) component of'the van der  Waals 
constant, which determines the interaction of the atom 
A resonantly excited into the InPA) state with zero an- 
gular-momentum component with the atom B. Notice 
that the expression (19) is applicable only when there 
is no saturation, i. e. , when the population of the ex- 
cited level can be neglected. A necessary condition 
for this is clearly the condition that A >>y, where y is 
the total width of the resonance levels (with allowance 
for the effect of the external field). Results valid for 
A 5 y a re  obtained in the two-level approximation in 
Ref. 16, and have a form similar to that of (19) for the 
A>> y case, with the difference that in Ref. 16 the in- 
teraction of the atoms is assumed to be isotropic in all 
the states, i. e . ,  it i s  assumed that C:=Ct, which is in- 
correct in the case of atoms in states with nonzero an- 
gular momenta. In the case of resonance with a highly- 
excited nP state C:"' >> C,, and the relative anisotropy 
of the collision-induced susceptibility tends to a fixed 
limit: 

This relation can be uniquely related with the coefficient 
of depolarization of the collision-induced scattering of 
the RLW and, thus, be verified experimentally. It 

should be borne in mind here that experiment in the 
resonance region in atomic gases is substantially facil- 
itated by the fact that the intensity of the RLW in the 
vicinity of a resonance increases rapidly a s  the detuning 
A decreases. 

4. In the vicinity of the resonance with the diatomic 
lines w = w, + w,, - A, I A 1 << w, the components of the 
tensor A,(w) a r e  proportional to 1/A. The susceptibil- 
ities of the isolated atoms in this case remain nonreso- 
nant. Consequently, the contribution of the corrections 
in the expressions (3), (6), and (7), which a re  deter- 
mined by the tensor A,(w), is higher a t  these frequen- 
cies. Furthermore, in contrast to resonance a t  the 1 
lines of the isolated atoms, the parameters of A,(w) 
change sign when the sign of the detuning A i s  changed, 
which allows us to change the sign of the corrections to 
the polarizability (6) and the van der Waals constant (7) 
through the retuning of the frequency of the light radia- 
tion. Notice that, according to the dipole selection 
rules, one of the states, InA) o r  In,), in the case under 
consideration is a P state, while the other is an S or  a 
D state. Taking only the resonance terms in (9) into 
account, we can write the expression for A,(w) in the 
form 

where = %, X: =f for the resonance S state and 
(21) 

xi= g, H.: =g for resonance a t  the D state. Here 

is the radial composite matrix element for the atomic 
transition between the states I a) and I b). 

Let us note that the substitution A - A + iy, where y 
is the total width of the resonance levels, should be 
made in the expression (21) in the immediate neighbor- 
hood of the resonance, i. e., in the region where A s y. 
Then, according to the optical theorem, the imaginary 
part of A, determines the cross  section a for absorp- 
tion of the resonance photons by the diatomic system 
for a fixed distance R between the atoms: 

where a = Tj?. is the fine structure constant. This ex- 
pression can be used to determine the optical charac- 
terist ics of the static wing of the line. For this purpose 
i t  should be averaged over the interatomic distances R, 
bearing in mind that the detuning A also depends on R.  
The correct  formulas giving the connection between the 
atomic parameters and the optical characteristics of the 
medium in broad A and light-field-intensity (F) ranges 
a r e  given in Ref. 5. The quantity B,  used in Ref. 5 is 
connected with A, by the simple relation I B, l2 
= +aA,(w). 

55. RESULTS AND DISCUSSIONS 

As can be seen from the specific calculations carried 
out above, the numerical values of the quantities A,(w) 
a r e  fairly high (see Tables I and 11), so  that even a t  
nonresonance frequencies the corrections determined 
by these parameters can make an appreciable contribu- 
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tion (3) to the quasienergy of the atom. In particular, 
the relative change that occurs in the stat ic  polariza- 
bility of cesium atoms a s  a result  of their  interaction 
with each other is equal t o  20% fo r  R = 10 a. u. The 
same amount of change is induced in the van d e r  Waals 
constant C6 for  these atoms by a field of intensity 
F = 5 x lo6 V/cm. 

It can be seen from Table 11 that the indicated effects 
a r e  even more  important in variable fields, the most  
significant changes in the polarizability and the van d e r  
Waals forces being attainable in the vinicity of reso- 
nances. The substantial increase that occurs in the 
corrections to the polarizability of the atoms in this 
neighborhood can simplify the experimental observa- 
tion of the collision-induced scat tering of the RLW. 
whose intensity is proportional to the square of 
cuCol(w, R). Fo r  this reason,  in particular, the scat-  
tering of the RLW can be relatively easily detected in 
the vapors of the alkali metals ,  the values of the sus-  
ceptibilities A,(w) in the optical frequency region for  
these metals being five-seven o rde r s  of magnitude 
higher than the susceptibilities of the inert  gases.  

As noted above (§4),  the quantity cuCol(w, R) [ ~ q .  (611 
has poles in the vicinities of the resonances a t  the 
lines of the isolated atoms: the t e r m s  -1/R6 have a 
second-order pole, while the t e rms  -l/R3 have a 
second-order pole fo r  identical atoms and a f irst-order 
pole for  different atoms A and B. As an example, let 
us  give the expression for  the collision-induced correc-  
tion to the polarizability of cesium atoms a t  the f re-  
quency w =we,,- A X J = $ ,  %): 

As can be seen from (22), when R >15 a.  u. the domi- 
nant role is ,  generally speaking, played by the correc-  
tions -l/R3, which a r e  due to the interaction of the ex- 
ternal-field-induced atomic dipoles: the dispersion in- 
teraction of the virtual dipoles (the t e rm -1/R" makes, 
for  R = 15 a. u . ,  a contribution -20-30°/0. Therefore, 
the interatomic interaction leads a t  these frequencies 
largely to the appearance of an anisotropy in the polar- 
izability of the atoms,  and, consequently, a s  in the 
resonance case," the collision-induced RLW will be 
completely depolarized. But the te rm -1/R3 in (22) 
vanishes when Au2 = -0. 5A3,, = -185 cm-' (w = 11363 
cm-'), and the contribution of the isotropic correction, 
which i s  proportional to 1/R6, i s  then appreciably 
greater .  This should lead to  the decrease of the ex- 
perimentally observed degree of depolarization of the 
RLW a s  w approaches the indicated frequency. 

By using the well-known relations connecting the de- 
gree of depolarization of light scattered by an axisym- 
metric molecule to the molecule's polarizability tensor 
components-the anisotropy and the averaged polariza 
bility-given by the expressions (8a) and (8b) (we con- 
sider  only the quantity responsible for  the scattering 
of the RLW),17 we can verify that in the nonresonance 
case,  when the major role in aCol is played by the te rm 
-l/R3 and I A ~ ~ O '  I >> the degree of vertical de- 

polarization D,= i. The coefficient D, is significantly 
smal ler  in the case when the major role is played by 
t e r m s  -1/R6. A s  is easy to verify with the aid of (22), 
for  the example considered D,= 1.36 X when 
w = 11363 cm", i. e. , the RLW a t  the given frequency 
should be practically completely polarized. 

The dependence of the van de r  Waals constant on the 
intensity of the light field fo r  the system under consid- 
eration can be represented in the form 

Here I is in ~ W / c m '  and A is in cm-'. In particular, 
in a neodymium laser  field of intensity I = lo4 MW/cm2 
the correction to Czs-Cs attains a value of 10%. 

Under resonance conditions the role of the corrections 
-1/R6 in aCol is more important in collisions of dif- 
ferent  atoms A and B, since in this case  the correction 
-l/R3 in (6) has  a f irst-order resonance pole, while 
the pole singularity in A6(w) is of second order ,  a s  in 
the case  of identical atoms. In particular, for  the pair  
of atoms Cs-Xe a t  the same frequency a s  the one in the 
above-considered example, 

COI 2 
~ c s - x ~ ( u , R ) = -  : ( ( : ,  -+-) A, [31ne12-I] 

It can be seen from this expression that the role of the 
corrections -1/R6 becomes increasingly important not 
only a s  All, -4. 5A,,, =-I85 cm", but a l so  a s  A,,,, 

A,,, -0. The minimum value of the degree of depolar- 
ization of the RLW (at w = 11 363 cm'l) is D,= 4.46 
X i. e . ,  a s  in pure cesium vapor, the RLW a t  the 
frequency in question is practically completely polari- 
zed. 

F o r  the van d e r  Waals constant he re  we obtain, s im-  
i lar ly to (23), the expression 

F rom this i t  follows that the correction to the van de r  
Waals constant in a neodymium l a s e r  field of intensity 
I =  lo4 RiW/cm2 is -3%. 

In the case  of resonance a t  the diatomic lines, the 
individual susceptibilities of the atoms remain non- 
resonant in a l l  o rde r s  and fo r  any multipolarity, s o  
that only the collision-induced effects undergo reso- 
nance amplification. Neglecting the nonresonance cor- 
rections, we can determine with the aid of the expres-  
sion (21) the numerical values for  the depolarization 
coefficient: D,= + in the case  of resonance on the S 
state and D,= & for  resonance with the D level. 

As  an example, let  u s  give the expression for  the 
van de r  Waals constant for  two cesium atom in a field 
of frequency w = w ,,,, + w ,,,,, - A: 

A s  can be seen from this expression, fo r  I = lo4 
MW/cm2 the van d e r  Waals constant increases by 12% 
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when the detuning A = 10 cm-', but decreases by -60% 
when A=-10 cm-'. Thus, in the vicinities of the dia- 
tomic resonances, an external field can cause an in- 
crease o r  a decrease in C,. Notice that in the above- 
considered case the transition matrix element p,,,,,(w) 
has a pole a t  the 82P,12 level, that, in terms of fre- 
quency, lies 31 cm" away from the diatomic resonance 
and produces a second-order pole in the expression 
(24). 

$6. CONCLUSION 

The proposed method is, apparently, the f i rs t  example 
of a consistent quantum-mechanical calculation of the 
diatomic susceptibilities determining the atomic colli- 
sion processes in the field of light radiation. 

The specific susceptibility [i. e., A,(w)] calculations 
performed here allow us to conclude that i t  is neces- 
sary to allow for the effect of the long-range interatom- 
ic forces on the dynamic polarizabilities of the atoms 
in the medium, a s  well a s  for the action of the high- 
power light radiation on the van der  Waals forces. In 
particular, the data obtained show that in the optical 
frequency region the collision-induced depolarized RLW 
scattering effect has the highest cross  sections in the 
case of the alkali elements: therefore, i t  will be ex- 
pedient to use alkali-metal vapors in an effective ex- 
perimental investigation of it. The greatest contribu- 
tion to the collision-induced polarizability from the 
term determined by a parameter of A,(w) can then be 
attained through the fine tuning of the frequency. Thus, 
the direct determination of the higher-order diatomic 
susceptibilities in experiments on RLW scattering in 
atomic gases is possible under resonance conditions. 

The calculations performed also show that light radia- 
tion can, in certain situations, have a significant effect 
on the van der  Waals forces. This fact is quite interes- 
ting from the practical standpoint, since there thus 
ar ises  the possibility of controlling the rate of chemi- 
cal reactions in gases with the aid of intense light 
radiation: This control will be most effective a t  the 
frequencies that a r e  in resonance with the diatomic 
lines, in the vicinity of which we can either increase 
or decrease the van der Waals constant C,, and thereby 
speed up o r  slow down the process in which the atoms 
stick together to form molecules. This effect can be 
detected, in particular, by measuring the change that 
occurs in the concentration of the molecular component 
in an alkali-metal vapor a s  a result of the action of la- 
s e r  radiation. 

Furthermore, the experimental measurement of the 
parameters of A,(w) can also be performed by deter- 
mining the dependence of thermodynamic quantities 
(e. g. ,  the virial coefficients) of an atomic gas on the 
intensity of the light radiation acting on the gas. 

The procedure, proposed here, for carrying out nu- 
merical computations can be generalized to the case of 
atoms in states with nonzero spins. The determination 
of the parameters of A,(w) for such states is important 
in view of the intensive investigation of the physical 
properties of the Rydberg levels of atoms. l8 In parti- 

cular, knowledge of the numerical values of the com- 
ponents of the tensor A,(w) will allow us to elucidate 
the effect of the interatomic forces on the polariza- 
bilities of excited atoms, which have recently been mea- 
sured in a number of experiments (see, for example, 
Ref. 19 and the references cited therein). 

By taking into account the terms of higher multipole 
orders in the interatomic interaction operator GAB 
(Ref. 12), we can also generalize the present method to 
the case of corrections of higher orders in 1/R, cor- 
rections which determine diatomic multipole effects 
similar to those considered here in the dipole approxi- 
mation. 20 
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