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The effect of the scattered field on the passage of an intense light wave through a resonant medium is studied. 
Radiative interaction between the atoms, due to absorption and emission of scattered quanta, alters the 
spectral properties of the atoms and the constant of the interaction with the external field. These 
renormalizations are of nonlocal nature and become significant under conditions of appreciable absorpjion 
and saturation. To describe this group of phenomena in the low density approximation, a closed system of 
equations is obtained for the density matrix, for the correlation function, and for mean field strength. The 
renonnalizations for weak saturation and absorption are found with the aid of the equations. The nonlinear 
susceptibility of the medium, which is nonlinear in the field intensity and density, depends on the size of the 
light beam; this results in a decrease of the absorption coefficient with increase of the beam diameter. 

PACS numbers: 42.65.B~. 42.50. + q 

5 1. INTRODUCTION 

We investigate here the influence of scattered light on 
the propagation of strong electromagnetic radiation 
through a resonant medium. The resonant field is the 
resonant-fluorescence field of individual atoms. In 
view of the large resonant scattering cross  section, the 
mean free path of the quantum may become comparable 
with the dimensions of the system even at low atom 
densities. When the scattered-field intensity becomes 
large enough, account must be taken of i t s  action on the 
atoms of the medium, in addition to  the action of the 
mean field. In other words, the field acting on the at- 
om can differ substantially from the mean field in the 
medium. 

It is  known t k t  in an optically dense medium the dif- 
ference between the effective field and the mean field 
is due to the singularity of the dipole-dipole interaction 
of the atoms at short distances. This effect is de- 
scribed by the Lorentz field,' which usually leads to 
local renormalization of the mean field. As applied to 
a resonant medium, the Lorentz correction becomes 
substantial if nk3 2 1, where n is the density of the at- 
oms and 31 is the resonant ~ a v e l e n ~ t h . ~ ' ~  We consider 
a low-density medium: 

nx3.ci. (1) 

In this case the interaction between the atoms is via 
exchange of rea l  quanta, while the electrostatic inter- 
action is negligible. However, even in this case, a s  
will be shown below, the field acting on the atoms be- 
comes renormalized. This takes place if the photon 
mean free' path is comparable with the dimensions of 
the light beam and the saturation effect is of the order 
of unity. 

The question considered is closely connected with the 
problem of radiation In the radiation-drag- 
ging theory, the energy of the system is determined 
mainly by the number of excited atoms. The excitations 
a re  diffused via emission and absorption of quanta. 
This process, which is of noncoherent character, is 
described by an equation of the Holstein-Biberman type 
for the population of the upper levels. 

In our case, the atoms are  excited both coherently, 
on account of the mean electromagnetic field, and in- 
coherently on account of absorption of the scattered 
quanta. To describe these processes we must use the 
equations for the atom density matrix and the equations 
for the correlation function, together with Maxwell's 
equations for the mean field. These equations a re  de- 
rived for a low-density gas of atoms in §§2,3.  

We study next these equations by perturbation theory 
in the form of an expansion in powers of the density 
(§§5,6). The absorption of the scattered radiation leads 
to renormalization of the atomic characteristics, of the 
mean field, and of the dielectric constant. The effect 
of self-action of the field is nonlocal. Therefore the 
renormalized quantities depend on the shape and size of 
the system. 

52. BASIC EQUATIONS 

The Hamiltonian of the system of two-level atoms in- 
teracting with a resonant electromagnetic field is of the 
form (E=c =l): 

(ok-o.)a.'ak+ Z[O:"(?(~,)+V.(~~, t ) )+  ~ . a d j . ] ,  
k 

VO (rt) =VO (r) eWiAt, Vo (r) =-dE, (r) . 

Here w, and d a re  the frequency and dipole moment of 
the transition, u a re  Pauli matrices, P is the operator 
of the quantized scattered field, Vo is an external class 
classical field with small detuning A = w - we, and 52 is 
the volume of the system. The first term in (2) corre- 
sponds to the free field, the second describes the in- 
teraction of the atoms with the "bare" external field Vo 
and with the scattered field ?. 

We neglect recoil and assume that the particles move 
in linear trajectories r i( t)  =rio +vit. To simplify the 
calculations we disregard likewise the polarization 
properties of the medium and of the radiation. The 
Heisenberg equations of motion a re  most compactly 
written in four-dimensional form. The reason is that 
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the matrices u, = ( I ,  u,, u+, a,) make up a complete set 
of matrices. 

We introduce the four-component operator &,of the 
medium: 

k ( r v t )  =x di'6 (r-r.) 6 (v-v , ) ,  a=0 ,1 ,2 ,3 ,  (3) 

where Jo is the density operator in phase space, Rira 
a r e  the positive- and negative-frequency parts of the 
dipole moment, and l?, is the population-difference op- 
erator. The equation for & is of the form 

idR/d t=(V++Yo' )Bf i+A~(9+Vo) ,  44) 
Aoo=Ao,=Ai,=O, A,=a,>, 

Boo=Bo,=B.o=O, B,,=b,j (i, j=1, 2, 3 ) ,  
0 0 - i  0 0 0  

- 2  0 0 

d/dt = a / a t  + vV denotes here the total derivative with 
respect to  time. The Hermitian-adjoint vector R* is 
obtained from by permuting" the components 1 and 
2: 

A+=TB,  T,s=Gu~(a, b=0,3) = ( a l ) , ~  ( a ,  8=4, 2 ) .  

Equation (4) i s  self-adjoint, since the _m,a,tricef a and 
8 satisfy the condition fAf =-g and TBT =-A.  The 
matrix adjoint to will hereafter be taken to  mean the 
matrix -fSf 

S +  adj =s-PS!F 

The quantized-field operator satisfies the abbreviated 
Maxwell's equation 

( 2 i o o d / d t + o o 2 + V ~  )=4noo2dz J d v i ,  ( rv t ) ,  (5) 

whose solution can be represented in the form 

~, - . .  
t (5') 

-2nio,d2 Sdr' j" dt' exp[ik (r-r') - i (ak-mO) (t-t') ]iif (r'v't'), 
k -m 

where q0(r t )  i s  the operator of the free field (of the 
z e r ~ - ~ o i n t  oscillations), and dl?' =dr'dvr is the phase- 
space element. Using the resonance approximation, we 
can simplify the Green's function of the electromagnetic 
field. Indeed, the main contribution to  the sum over k 
in (5') is made by wave numbers those modulus i s  close 
to the resonant wave number ko =wo. Assuming where: 
ever possible k =ko, we integrate with respect to k -  ko 
between infinite limits. The contribution made to the 
radiation field at a given point by atoms located at a 
finite distance from this point is determined by the re- 
tarded Green's function. On the other hand, the field 
produced by the atom at the location of the atom itself 
is determined, a s  is known, by the arithmetic mean of 
the retarded and advanced solutions of the wave equa- 
tion. This i s  how the relaxation of an isolated atom in 
the course of radiation is described. 

Under real  conditions it is frequently possible to neg- 
lect the relativistic retardation and the slow dependence 
of the radiation period of the time: 1<< C T ,  where 1 is 
the linear dimension of the system and T is a charac- 
teristic time of the order of the atom lifetime o r  of the 
order of the reciprocal Doppler width. As a result of 
these simplifications, Eq. (5') takes the form 

7 exp (ik,r) / k g ,  r+O, 
D( . )=- - {  2 i, r=O, 7=2k,"dz, 

where y is the width of the upper working level of the 
isolated atom.2' 

Thus, the slay dependence of the electromagnetic- 
field operator V(rt) is determined by the state of the 
medium at the same instant of time. Equations (4) and 
(6) a r e  the initial operator equations for the "atoms 
+ radiation" system in the presence of an external field 
VQ. 

$3. EQUATION FOR ATOMIC CORRELATORS 

In the quantum and statistical averaging of (4) and (6) 
there appears a chain of equations that relate distribu- 
tion functions of different order. We consider hereafter 
the case of strong inhomogeneous broadening (Vo is the 
characteristic thermal velocity) 

We can then confine ourselves to  calculation of only 
single-time c ~ r r e l a t o r s . ~ '  The condition (1) allows us 
t o  close the resultant chain of equations in the second 
step, neglecting the irreducible part of the third-order 
correlator. 

We introduce the atom-density matrix: 

where the angle brackets denote quantum-statistical 
averaging over the initial stage of the system with zero 
photon occupation numbers. With the aid of (6) we can 
exclude the electromagnetic field from Eq. (4). Al- 
though f and fi cummute at the same instant of time, 
is useful to employ fhe sequence adopted in (?) for these 
operators, so  that V is to the right of R and P to the 
left. This allows us to exclude the constribution from 
the zero-point oscillations of the field.1'"2 

The mean value of the product of two operators 8 can 
be represented in the form4' 

Here Raiaz(l ,  2) i s  an irreducible two-particle corre- 
lation function that is symmetrical with respect to  
simultaneous permutation of the indices and the argu- 
ments: Raia2(l ,  2) =Ra,,,(2, 1). The irreducible part is 
small  compared with the reducible R ( 1 ) ~ , ~ ( 2 )  in 

a 1. t e r m s  of the parameter (1). The coefficients Cajap3 
a r e  determined by the algebra of the Pauli matrices. 
We shall present below the explicit form of those coef- 
ficients which enter in the final equations. The equa- 
tion for the Bloch vector R(1) takes the form 

V (r t )  = V ,  (rt) + J dr'D (r-r') R, (r'v't) . (1 0) 
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The Bloch operator k describes transitions in the at- 
om on account of the coherent field V and the relaxation 
on account of the spontaneous emission. The mean field 
V i s  the sum of the bare (external incident field) and 
scattered fields. The integral term with the correlation 
function in (9) takes into account the interaction of the 
atoms via the scattered field and leads, a s  we shall 
show, to  a renormalization of the quantities that enter 
in the Bloch operator. 

The symbolic form of the tensor quantities R*,(1,2) 
and R*,(l, 2) used in (9) a s  well a s  some equations that 
follow means that the first index is abritrary and the 
second is fixed. Thus, for example, (A(l)R*l(l, 21, 
=A,$t',(l, 2). 

The equation for the correlation function R(1,2) con- 
tains the mean value of three operators k,  which can 
be written in the form 

< A a t ( l )  Rms(2) Rus(3) )=6(1-2)6(1-3)Carmz, avCur=s, aR=(1) 

+Ra,(1)%,(2)%,(3) +(6 (1-2)Ca,mZ, a[Rm(1)Ra,(3) +Rua,(1, 3)1 

+R=ta2(1, 2)R=,(3)+(123)  + (231) (312))+Ra,as,(1, 293). 

The fully irreducible part R(123) contains a higher pow- 
e r  of the small parameter ng3 compared with the re- 
maining functions, and will therefore be disregarded 
hereafter. As a result R(1,2) satisfies the equation 

i (a /a t+v ,v ,+v ,v , )R( i ,  2 )  =(%(1)+&(2) ) R ( I ,  2 )  

+([D(i-2)A(1)e0(2)+0'(1-2)B(i)Ca(2)]R(1)R(2) 

+Sdr~[D(1-3)&(1)R(1)R.,(2, 3 ) + 0 ' ( 1 - 3 ) B ( 1 ) R ( i ) R 2 ( 2 ,  3)]+1*2) ,  

The matrices 6, and 6,  are  mutually adjoint: fe,,f 
= -c. The notation 1 = 2 corresponds to  permutation 
of the arguments and indices of particles 1 and 2. The 
indices of the third particle, which a re  written out in 
explicit form, are  not affected by this. Averaging (5), 
we obtain Maxwell's equation for V(rt): 

Equations (10) and (12) for the mean field a re  equiva- 
lent apart from small terms connected with the rela- 
tivistic retardation. It is more convenient, however, to  
use Eq. (121, since it does not contain the bare field ex- 
plicitly. 

Thus, Eqs. (9), ( l l ) ,  and (12) constitute a closed sys- 
tem that describes the self-consistent interaction of the 
mean field with the resonant medium. The effect of the 
scattered field on the system is taken into account with 
the aid of the correlator R (1,2). We emphasize that the 
closure of the system of equations is with respect to the 
parameter ni3. As for the amplitude of the external 
field and the dimensions of the system, they can be ar- 
bitrary. 

54. DRAGGING OF THE RADIATION 

By way of illustration we consider the known problem 
of the diffusion of excitations in a medium of resonant 
atoms under radiation dragging  condition^.^-^ 

Thus, assume that there is no coherent field, V = 0. 
The atom density matrix is  diagonal (R, =R2 =0) and 
the density of the excited atoms N = (R, + ~ , ) / 2  i s  as- 
sumed small: N<< f = (Ro- ~ ~ ) / 2 .  The problem con- 
s i s t s  of obtaining for N(R0vt) an equation that describes 
the process of diffusion of excitations in the medium. 
We can assume an equilibrium distribution of the atoms 
in the ground state: 

Only two of all the components of the correlation func- 
tion differ from zero, namely Ri2(l ,  2) = cp(1,2) and 
~ ~ , ( 1 , 2 )  =rp(2,1). We then obtain from (9) and (11) 

The kernel in the equation for cp is the function D(r), 
which oscillates over distances on the order of the 
wavelength. Therefore in large volumes (much larger 
than k3) we can use a Fourier transformation. In the 
quasistationary approximation, the Fourier transform 
of the correlation function is 

where the function F satisfies an integral equation with 
a Cauchy kernel 

dv9' (p ,  -x ,  v , )  
F(P ,  X ,  v)D-'  ( P  + +, P V )  = N ( x ,  v )  +f ( v )  j p(v,-v) - i y  , 

(1 4) 
-= 

pv-a-iy 

Here 5fq, w )  is the Green's function of the photon in the 
medium, and x o ( w )  is the linear susceptibility of the 
gas. An equation of this type is encountered, for ex- 
ample, when describing the correlation properties of 
the p l a ~ m a ' ~ ' ' ~  and is solved by methods known from 
the theory of singular integral equa t ions . ' h s  a re- 
sult we obtain 

Substituting this solution in (14), we obtain an equation 
of the Holstein-Biberman type: 

(d/dt+y)  N(rvt)  =y j d r f K  (r-r', v ,  v') N(r1v't),  

dxe'"' dn6 (nv-nv') (16) 
K ' " " - ~ ~ ~ ~ ( ~ '  J mJ ixn+4n~c ~ r n  )(/cnv) 

where n is a unit vector. Apart from numerical coeffi- 
cients that take into account the polarization properties 
of the atoms and of the light, Eq. (1 6) coincides with the 
equation obtained by D'yakonov and perel'.' 

55. CASE OF SMALL ABSORPTION 

The solution of integral equations for correlation 
functions in the presence of an external field simplifies 
greatly in the case of small absorption of the radiation. 
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When the dimension of the medium 1 is less  than the 
photon mean free path x-' 

the scattered field is weak and its influence can be tak- 
en into account by perturbation theory. Leaving out of 
(11) the integral terms,  we obtain for the correlation 
functions equations of the Bloch type (of double the di- 
mensionality), with a right-hand side quadratic in 
R, (r-vt). In three-dimensional notation 

Eqs. (11) decay into systems of equations for Roo, g,, 
and R,,. 

For a scalar,  the equation i s  trivial: 

The function Roo is determined by its initial value a s  t - --, when the external field was absent and there was 
no correlation between the atoms. We can therefore put 
Roo = 0. The equations for the vector g,(1,2) and the 
tensor R,,(1,2) are  

The distribution function of the atoms remains un- 
changed in the assumed approximation: 

and coincides with the equilibrium spatially homogen- 
eous distribution f ( v ) .  The Bloch equation in three- 
dimensional form is written in the following manner: 

idH.0 = , ~ , , ( I ) R , ( I )  -iT8,,f ( I )  + j  d~,[D(1-2)a, ,R, , ( l ,  2) + ad3.1. 
dt 

(20) 
We consider further the case of a traveling wave: 

After go in^ over into a rotating coordinate frame, the 
operator ~ ( r t )  ceases to depend explicitly on the coor- 
dinate and the time: 

\ - 2 ~ '  zv - ir /  

A, = A -  k*vi, and the Green's function (7) of the photon 
acquires an additional phase factor 

D (r) -+D (r) -U (r) e-lkr. (22) 

We obtain now the stationary solution for the corre- 
lation functions. The coordinate dependence is de- 
termined by the function n ( r ) .  In the action of the 
operator vV on b it suffices to  differentiate only the 
exponential exp[l (kor - kwr)]. The remaining functions 
vary little over the wavelength, and they need not be 
differentiated. Then Eqs. (18) and (19) reduce to  alge- 
braic Bloch equations with a certain right-hand side 
that describes the radiative interaction of the atoms. 

Substituting the solutions of these equations in the inte- 
gral  term of Eq. (201, we retain only the nonoscillating 
t e r m s  with la(r ,  - r2)I2,  which make a contribution 
proportional to  the linear dimension of the system. 
The integral term in Eqs. (20) is now expressed in 
t e r m s  of the product of the vectors R1(1)R,(2) and adds 
a correction to  the operator k(1). If we use for R1(2) 
the lowest-order approximation in the density: 

R, (2) -tyR,J-1(2) f (2) , 

Eq. (20) reduces to a Bloch equation with a renormal- 
ized interaction 

~ t 2 = ( r l - r z ) / ~ r , - r z ~ .  

The correction 6I2 t o  the Bloch operator is linear in the 
atom density. 

The interaction of the atoms via the scattered field is 
incoherent and is determined by the sum of the inten- 
s i t ies  of the fields scattered by the different atoms. 
This  manifest itself in the fact that the integration in 
$ ( l )  is carried out with the kernel lq2, which describes 
the law that governs the decrease of the scattered-field 
intensity. The structure of the operator 6f i  coincides 
with the structure of fi. Therefore allowance for the 
interaction of the atoms via the scattered field reduces 
to a renormalization of the Bloch operator 

The transition frequency and the longitudinal and trans- 
verse relaxation t imes a re  renormalized, and in addi- 
tion two constants of the interaction with the average 
field appear, which can be naturally called longitudinal 
and transverse. The renormalized quantities depend on 
the size and shape of the volume occupied by the atom 
and by the field, and vary slowly with the coordinate. 

We note that the operator (25) is T-self-adjoint. 

$6. RENORMALIZATION IN A WEAK FIELD 

In an arbitrary field V, to  find the renormalizations 
one must find the inverse Bloch operators l?' and a". 
T o  simplify (24), we consider a weak field, when the 
saturation parameter is small: 

W(A) =21 VlZ/(A'+r'/4) <I .  (26) 

The expansion, in t e rms  of the field, in the operators 
contained in (24) begins with v2. Retaining terms up to 
V3, we obtain 

irl+A=zr12+A-( W(A,) (E+ir)-'), (27) 
r, ,=r[ l+(W(A,)  ( (~ -Ar)Z+yZ/4 ) - ' ) l ,  

'A= } [ i+<W(A2)  ('g+iy)-i(E-A,+iy,2) - I > ] .  v,; I" 
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The renormalizations in (27) a re  proportional to  the in- 
tensity of the average field. This is perfectly natural, 
since the intensity of the scattered field is determined 
by the density of the excited atoms, which increases 
with increasing pump field in the case of weak satura- 
tion. 

We see that the longitudinal and transverse compon- 
ents of the BloCh operator a re  generally speaking dif- 
ferently renormalized. The renormalization depends 
on the correlation between the position of the given at- 
om and the Doppler frequency shift of the radiation 
scattered by other atoms. 

Expressions (27) take the simplest form for slow at- 
oms (vc< v,):  

~ , = 2 ~ = y [ l + W ( O ) x l , q I 4 n n r ~ A 0 ] ,  

V,=V,=V[ l -W(0)  xl,(y/2Ao)'],  

A=A-n-'W(0) (r/2Ao)'xl(kv-Aklk), (28) 

{ l , ,  la, 18, I ) =  dr' (r-r')-'{l/nL, i/n,', l / ( l+n,z) 'r*,  (n+k/k ) /nLz] .  

~ e r e n = ( r - r f ) / l r - r l I ,  n , = I n ~ k / k I .  The param- 
e te r s  1, a r e  proportional to  the linear dimension of the 
system and depend on the shape and size of the volume 
of the scattering medium, a s  well a s  on the position of 
the atom. In particular, for an atom located near the 
center of a spherical volume of diameter L, we have 
1, = n 2 ~ .  The parameter 1, diverges logarithmically at 
small  angles, owing to the low-velocity approximation. 
The cutoff at the angles - lA/A,l, (/A12 y) ,  leads to the 
appearance of an additional logarithmic factor, s o  that 
Z , = n ~ l n  [ A & \ .  

In the low-velocity approximation, the renormaliza- 
tions of the longitudinal and transverse quantities are  
equal and do not depend on the atom velocity (with the 
exception of h). As a result of the interaction with the 
scattered radiation, the atomic widths increase, and 
the constant of t h e  interaction with the external field 
decreases. 

We note that for atoms moving along a light beam and 
at resonance with the field (v =hk/k2), the effective 
detuning is not renormalized (h =A). The renormali- 
zations are proportional to the fraction of the absorbed 
energy of the scattered field Wxl. The appearance of 
the parameter y/Ao is due to the fact that the only at- 
oms that interact resonantly with one another are  those 
having close velocities along the direction of the line 
joining them. 

The interaction of the atoms leads also to a renorm- 
alization of the dielectric constant of the medium. 
Substituting in Maxwell's equation (12) the stationary 
solution of the equations (231, obtained accurate to  V3, 
we obtain the nonlinear (in the field and in the density) 
susceptibility of the medium 

It follows from this expression that the contribution to  
the susceptibility from the reradiation processes leads 

to an effective increase of the saturation parameters, 
making the medium more transparent. 

We note that if the field saturates the entire Doppler 
contour with x l -  1, the susceptibility renormalization 
becomes equal to unity. 

$7. DISCUSSION. CONCLUSION 

We see thus that when a strong light wave passes 
through a medium with noticeable absorption, the scat- 
tered field exerts a substantial influence both on the 
atomic characteristics of the medium and on the strong 
field itself. In other words, allowance for the "drag- 
ging" of the radiation in the region of the pump field 
leads to changes in the line width, in the detuning from 
resonance of the transition, and in the amplitude of the 
interaction with the field. 

We shall name the emission and absorption of scat- 
tered-field quanta "radiative interaction of atoms." It 
becomes significant when the size of the system is of 
the order of the absorption length and the saturation ef- 
fect is of the order of unity. In alkali-metal atom vap- 
o r s ,  the Doppler-broadened contour saturates in fields 
10-100 w/cm2, and the absorption length is -1 cm at 
densities n -  10'2-10'3 ~ m - ~ .  Thus, the effects of radia- 
tive interaction can be observed with the aid of both cw 
lasers  and pulsed lasers,  if the pulse duration exceeds 
the spontaneous relaxation time. 

The field acting on the atom is a sum of the coherent 
mean field and of the incoherrent scattered field, which 
is not monochromatic and contains random phases. For 
this reason, the change of the atomic characteristics i s  
determined by the intensity of the scattered field, and 
the kernel of the integral correction t e rms  behaves like 
7-,. 

Inasmuch a s  in a radiation field the momentum flux i s  
equal to the energy flux (divided by the speed of light), 
the radiative correction of the atoms is also a source of 
their ponderomotive interaction (light pressure). There- 
fore the mechanical forces coincide with Coulomb's law 
for a certain effective charge that depends on the pump 
field." 

It is interesting to note that renormalization of atomic 
quantities is determined not by the interaction potential 
of the particles, but by the force. This situation dif- 
f e r s  from the pair-collision theory, in which the change 
of the spectral characteristics is expressed in terms 
of the interaction potential. It is known that the inter- 
action of atoms in the case of short-range forces leads 
to  a local change of the width and shift of the line; in 
this case, owing to  the short particle interaction time 
in the collision, the coupling constant with the external 
field remains unchanged. In our case the interaction of 
the atoms is long-lasting and it must be taken into ac- 
count in a self-consistent manner. As a result the time 
of correlation of the atoms with one another becomes 
long, and this manifests itself, in particular, in a 
change of the coupling constant with changing field. In 
addition, the renormalized quantities a r e  nonlocal. 

In connection with the change of the coupling constant, 
a comparison with the Lorentz correction to  the mean 
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field is of interest. Owing to the singularity of the di- 
pole interaction, the Lorentz correction to  the mean 
field leads to a local change of the coupling constant. 
Accordingly, the dielectric constant becomes also a 
local quantity that is nonlinear in the density. It can be 
stated that (29) is the analog of the Lorenz-Lorentz 
formula, represented in the form of an expansion in the 
atom density. The main difference is that the incre- 
ments nonlinear in the density a re  nonlocal and pro- 
portional to  the mean-field intensity. The dependence 
of the optical properties of the medium on the size of 
the region of interaction with the field can lead to dif- 
ferent physical consequences. The simplest example 
of this kind can be the dependence of the coefficient of 
absorption of a light beam on i t s  diameter. According 
to (39), when the transverse dimension increases (i.e., 
when the diaphragm that limits the beam is increased), 
the transparency of the medium increases and the ab- 
sorption coefficient decreases. 

The authors thank G. A. Askar'yan, V. ~el ichanski i ,  
N.  B. Delone, and M. V. Fedorov for a helpful discus- 
sion. 

"1t i s  understood here that a vector column does not go over 
into a vector row. 

2 ' ~ h e  reason why the numerical coefficient in the formula for 
y differs from 4 / 3  i s  that no account i s  taken of the polari- 
zation and of the angular distribution of the spontaneous 
emission. 

3 ' ~ e  note that for immobile atoms i t  i s  necessary to use two- 
time correlation functions. '.lo 

4 ' ~ m a l l  t e rms  of the order of 1 /N (N i s  the number of parti- 
cles), which ensure conservation of the normalization, l3  

have been left out of the reducible part. 
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