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It is shown that in disordered atomic structures (glasses) self-localization of pairs of like carriers (electrons or 
holes) should be possible, with a negative effective correlation energy that can be appreciable ( 5 1 eV). The 
effective attraction between the carriers in the pairs is due to the anomalously high local susceptibility of the 
disordered atomic system, i.e., to the existence of a sui-generis critical potential with anomalously small 
quasielastic constants for the atoms of the substance. Besides the usual one-well potentials, there are also two- 
well atomic potentials in the disordered system. The interrelation and microscopic nature of two important 
features of glasses, previously postulated on an empirical basis, are thus explained, namely the existence in 
them of two-well atomic potentials and the presence of localized carrier pairs with negative effective energy. 
Some novel effects are predicted on the basis of the proposed theory. 

PACS numbers: 71.50. + t 

1. INTRODUCTION 

We demonstrate here the possibility of realizing a new 
phenomenon-self-localization of electrons and hole 
pairs (SLEP) in amorphous nonmetallic matter. The 
self-localization of the electron and hole pairs corre- 
sponds to strong local effective attraction between car- 
r i e r s  of like sign. 

The presence of electron pairs in the mobility gap 
(MG) of nonmetallic glasses was postulated in Ref. 5 ' 

on the basis of empirical data. The main focus was on 
the observed coexistence of diamagnetism and pinning 
of the chemical potential 5 by the electron subsystem, 
i.e., the fact that 5 i s  practically insensitive to a change 
in the impurity density (see, e.g., Ref. 6). In the tra- 
ditional models of single-electron state density g ( l ) (E)  
in the MG, the presence of diamagnetism is incompati- 
ble with the pinning of 5. Thus, in the model of Mott 
and of Cohen-Fritzsche-O~shinsky,~ in which g ( l ) ( E )  
is appreciable near the center of the MG [e.g., g(')(E0) - 1019 cm-3 eV'l], one should expect a noticeable para- 
magnetism. In the Mott-Davis model,6 however, in 
which there is a true gap, i.e., g"'(E0) = 0, there i s  no 
paramagnetism, but the pinning of S cannot be ex- 
plained. It was in this connection that Anderson5 postu- 
lated the possibility of formation, on any normal inter- 
atomic bond in glass, of electron pairs with an effec- 
tive correlation energy U < 0 and with a zero  total spin; 
the energy spectrum of the pairs i s  in fact identified 
with the observed spectrum in the MG. The density of 
these pair states i s  assumed to be  high enough for 
pinning of 5 to be realized (see also Refs. 8 and 9). It 
was implied in Ref. 5 that the effective correlation ener- 
gy could be negative because of the reaction of the 
atomic subsystem to the population of any normal 
valence bond of the glass by the electron pair of the 
term, and i t  was necessary to assume that 1 UI i s  large, 
(UI 5 1 eV. At the same time, certain models of quan- 
tum-chemical character were proposed, in which i t  was 
assumed that an electron pair with U < 0 and with large 
IU 1 S 1 eV can be  produced a s  a localized charge carr ier  
only on a specific defect (broken valence bond etc.) 

when the short-range order in the glass i s  disturbed 
(see, e.g., Ref. 6). Further investigations have re- 
vealed, however, a number of problems raised by such 
models (see, e.g., Ref. 10 and 11). 

We note that in the case of ca r r i e r s  in a solid, the 
usual polaron effect, which corresponds to relatively 
small  harmonic displacements of the atoms, is insuffi- 
cient for the production of electron (hole) pairs with 
large binding energy /UI. Indeed, a s  a rule the char- 
acteristic polaron binding energy, with a largest scale 
of the order of 0.1 eV, cannot compete with the energy 
of the Coulomb repulsion of the like ca r r i e r s  on a 
valence bond, U, - 0;3-0.5 eV (see, e.g., Ref. 61, and 
at any ra te  cannot ensure large I U I = - U 2 1 eV. Thus, 
the problem of verifying the very existence of local 
pairing of ca r r i e r s  of like sign with large (UI = - U 5 1 
eV in ideal glass (far from defects) remained open. 

We shall deal below precisely with a new approach to 
the solution of this problem and with the onset of a 
similar phenomenon, namely SLEP. The model de- 
scribed below and the SLEP theory connect the electron 
(hole) pairs in the MG with the specific structure of the 
glass itself, which constitutes a continuous random net- 
work (CRN) of atoms with a definite short-range order 
(see Refs. 6 and 12). This theory, consequently, differs 
radically from the aforementioned "defect" models of 
electron pairs. 

2. QUALITATIVE CONSIDERATIONS AND 
FORMULATION OF THE PROBLEM 

The main idea concerning the natuke of the SLEP is 
the following. A finite density (< 1) of atoms (and/or 
groups of large numbers of atoms) can exist in the sys- 
tem under consideration, and an appreciable displace- 
ment of these atoms (x, - r = x,+ 6x a t  I 6x1 s a)  i s  con- 
nected with an anomalously small  change 6V(x) of the 
CRN potential energy 

6V(x) =V (x) -V(x,) <k(''a2, k(0'=MoD2-10-30 eV/A2. 

These atomic potentials a r e  called critical for reasons 
that will be made clear subsequently. At the same time, 
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in i ts  own characteristic scale (- 1 eV), the correspond- 
ing change bE(x) =E(x) - E(x,) of the energy of the 
single-electron term of the localized "extra" electron 
or  hole (relative to the assembled aggregate of valence 
bonds) i s  generally speaking not small. In the upshot 
there can be realized self-localization of the carrier,  
i.e., population of a term with simultaneous appreciable 
shift of the atom in the critical potential, with a large 
energy gain AE "). The population of the term by a 
second carr ier  of the same sign can be accompanied by 
an appreciable increase in the displacement of the atom 
and by a corresponding energy gain a t  a total energy 
change AE '2'. Self-localization of electron and hole 
pairs i s  realized if the effective correlation energy of 
the localized pair in the region of a structure with a 
given single-electron term is 

where 2AE"' describes the energy gained by self- 
localization of each of the ca r r i e r s  in the spatially 
separated regions with the same single-electron 
terms. 

The change of the total energy of the system E,(j,x) 
upon localization of one ( j  = 1) or  two ( j  = 2) ca r r i e r s  of 
like sign and following a displacement .bx of the atom in 
the localization region can be written in the form 

BE(') ( z )  =Et ( j = l ,  z )  -E, ( j = l ,  x,)  = 6 E ( z )  + 6 V ( x ) ,  

AE'Z) ( x )  =E,  ( j=2,  z )  -E, ( j=2,  so) =8E ( x )  +6E1(x)  + 6 V ( x ) .  (2.2) 

Here 

V ( x )  =Et(j=O, x ) ,  E  ( z )  =Et (!=I, x )  -E, (j=O, x ) ,  
E'(x)  =Et( j=2,  x ) - E , ( j = l ,  x ) ,  6E ' (x )=Er (x ) -Ef (x , ) ,  

where 6E'(x) = 5E(x) + U, (X) ,  where U,(x)  i s  defined a s  
the energy of the effective repulsion between the car- 
riers. The energy gained upon self-localization of one 
carrier or a pair of carr iers  is described now by the 
relations 

Here xj a re  the equilibrium values of x, which mini- 
mize AE "'(x); AE 'j'(xj) = m i n { ~ ~  (j)(x,)), j = 1, 2. It 
will be shown that SLEP criterion (2.1) can be real- 
ized at sufficiently large values of x, - x, = bx, - bx,, 
when V(x) corresponds to the critical potential. 

The res t  of the problem consists of determining the 
forms of 6V(x) and 6E(x), and finding subsequently the 
conditions for the realization of the criterion (2.1). To 
this end we consider in greater detail the situation for 
covalent glass, in which an appreciable fraction of all 
the CRN atoms have the lowest coordination number z 
= 2. The model of such a glass is a s  system of atoms 
coupled by covalent bonds in disordered chains (rings) 
and with weak van der Waals bonds between the chains 
and the rings. 

3. CRITICAL ATOMIC POTENTIALS 

The simplest model for 6V(x) can be obtained by 
separating in a chain (ring) an atom whose neighbors 

FIG. 1. Fragment of atomic chain and two-well potential. 

in the considered structure can actually be regarded a s  
having physical positions that a re  fixed [see (3.11) be- 
lowl. What i s  kept in mind in this connection i s  that in 
amorphous semiconductors a considerable majority of 
the atoms, a s  usual, oscillate harmonically in single- 
well potentials.' Actually, the atom and its  two neigh- 
bors can form either a linear fragment or a non-one- 
dimensional fragment with a finite angle between the 
bonds a t  the "site" of the considered atom. The qualita- 
tive character of 6V(x) i s  the same in both cases, and 
for simplicity we shall refer hereafter to the linear 
fragment (-1,0,1) of Fig. 1. 

We take V(x) to be the effective potential of the inner 
atom 0, i.e., the change of the potential energy of the 
system caused by i ts  linear displacements x. It turns 
out that this potential has the following distinguishing 
features. First, there exists a critical length 2R = 2R, 
of the fragment such that a t  R < R, the potential V(x) i s  
mainly single-well, and i s  two-well at R > R,. Second, 
in a certain range of the parameters that determine the 
form of V(x), the quasi-elastic constants ki =@V/dX21,, 
a t  the minimum points xi of the potential a re  anomalous- 
ly small, k ,  << k (,'; in this sense, such a potential i s  
critical. 

To verify the foregoing, we represent V(x) in the form 

v ( r01  = u - ~ , ~ ( T - ~ , ~ )  +vo,* (To,,) +Vmt ( r , )  - v o ( z )  +v,., ( z ) ,  r,,=r'-r,, (3- 1) 

where v-,,,, u , , ,  and vex, a re  respectively the potential 
energies of the atom 0 in the field of the two nearest 
atoms -1 and 1 and in the random field of the re- 
maining atoms; ri a re  the independent linear coordi- 
nates of the atoms (i = - 1,0,1; yo = x). The energy 
Ve,,(x) i s  determined by the relatively weaker bonds 
(van der Waals, etc.) so  that I V,,,I << IV,I in the con- 
sidered region of lengths y,,. We choose the origin of 
x a t  the minimum of the single-well potential d ~ / d x  
= 0 at x = x, = 0. Then, a t  a given fragment length 2R 
= r-,,, i t  i s  convenient to introduce the parameters 

The first  of them characterizes the asymmetry of the 
''arms" Y-,,, = Y-I and r,, = r, of the fragment (at x =  0), 
and the second the difference of i ts  length from criti- 
cal. The critical length i s  determined from the condi- 
tion d2v/dx2 = 0 at x = 0, q = 0. Taking this definition into 
account, the potential 

can be represented a t  small I xl and (q1 by the expan- 
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sion 

V ( X )  -v(o)  = = ~ v ( z ) ~ A ~ + A , x J + A , ~ ~ ,  

1 
Az-411, A = - [ V $ ! ~ R . + T )  +v:': ( R C - ~ )  1, 

21 (3.4) 
1 

A , = -  1 d" 
31 V(=' ( 0 )  A1 = - V"' (01, V("' (0 )  = - V ( I )  I,,, 41 &" 

a t  
(1 )  (21 ( 2 )  

V-r,o(Rc+~) +vo,i (Re-T) +V,a =O, 
d" d" 

v:;' ( R ) -  - vc,,(R), Vj:: V,r(z) 1-0. 
dR" (3.5) 

We assume further that A,>O in accordance with the 
limited character of the displacements of the atom 0, 
and assume for the sake of argument A,> 0. Then the 
extrema 

9 A,' 
- 0 ,  x l , 1 - 3 d . [ - l * ( l - ~ ) " ' ]  , qo--- 

8.4, 32AA4 ' (3.6) 

correspond either to a single minimum of the potential 
(3.4) a t  q>qO, or  to two minima separated by a barrier 
a t  q <  q,, i.e., the potential V(x) can be either single- 
well or  two-well 

As follows from general considerations and is seen 
, directly from Fig. 1, at  sufficiently large 7) = R, - R >qo 

the potential V(x) has a single minimum at  the point x, 
10 (this allows us to conclude that A >O). With in- 
creasing R, a second well i s  produced a t  0 < q < q,,, with 
a minimum at  the point x2 (to the left of x,), and a bar- 
r i e r  with a vertex i s  produced a t  the point x,. The 
depth of the new well increases with increasing q and 
exceeds the depth of the previous well a t  a certain 
q(> 0); a t  the same time, the barrier shifts to the right. 
At q <  0 the point x, represents the vertex of the bar- 
r ier ,  and the point x,(> x,) i s  the bottom of the shallow- 
e r  right-hand well. With further decrease of q<  0 the 
arrangement of the extrema remains unchanged. The 
foregoing critical properties of V(x) a re  determined by 
the following relations: 

It i s  seen from (3.7) that, generally speaking, the criti- 
cal properties a r e  possessed by the shallower well of 
the two-well potential a t  the instant of the well appear- 
ance, or by the well of the single-well potential a s  q 
-0. However, if qO i s  small enough, the critical prop- 
erties a re  possessed by both wells of the two-well po- 
tential. 

It is convenient next to use the characteristic atomic 
radius y-I (5 1 A) to make all the lengths dimensionless, 
s o  that A, A,, and A, a re  energy parameters, and re- 
place the kt in (3.7) by k,y-'. 

We turn now to the important case of small q, << 1. 
The smallness of q,<< 1 i s  due to the smallness of ( 7  1 
<< 1 and of I v,,,/v,~ << 1. Indeed, the equilibrium value 
To= 7,(R, Vest) of the parameter 7 i s  determined by the 
equation 

d" 
A:"' ( R )  -- -10-I , ,  ( R )  *vo,i ( R )  1, 

dR" 

which follows from the relation that determines the 
origin of x (V "'(x) (,., = 0) when expanded in terms of 7. 

It is seen from (3.8) that 1 ?,I << 1 when I Vext/Vo( << 1 and 
when v-,,, and v,,, (i.e., the atoms -1 and 1) a re  equal 
or  differ little. At 1 7,1 << 1 we have 

1 1 1 
As--Bt A - [A;' (R)+A?' ( R ) . c , ] z  -B, B = -A:'' ( R ) ,  '-zi 2 12 

(3.9) 
t = 2 ( ~ ~ + t ' ) ,  t'= [A!) ( R )  + V ~ ] / A : " ( R ) ,  

s o  that A, and q, a re  small a t  small ( ~ ~ 1 ,  whereas B and 
A, do not contain such a small quantity. The functions 
R, = Rc(Vext) and rO(R, Vest) a r e  then defined by the rela- 
tions Re= R p ) +  6R,, R~)=Rc(Vex ,  = 0) a s  well a s  by the 
equations that follow for R p '  and 6Rc from the condi- 
tions 

V'"(x=O, R, Vest) =O E V"(z=O, R=R,, V- , )  =O. 

As a result we have 

s o  that R,=R:'. The critical length of an isolated di- 
atomic molecule is R:)=Y,+ p,y-', p ,s  1, where the 
equilibrium length of such a molecule i s  r, = a with 
I r, - a1 << a (e.g., in the case of paired Morse potentials 

Po = ln2). 

In accord with the foregoing, expression (3.4) takes a t  
1q(<<1  and (7,(<<1 the form 

where the quantities A(>O) and C(>O) fluctuate rela- 
tively little and can be regarded a s  constants of the ma- 
terial. As is easily seen, A -~w;y""lO-30 eV and C 
s A. 

Within the framework of the described model, the 
existence of two-well and critical atomic potentials and 
of characteristic parameters R, and q in glass i s  due 
to the fluctuations of the lengths R and of the fields 
Vext(x).  h he contribution of the polaron-like local re- 
laxation of the configuration near the atom in a critical 
potential well to the parameters q, R,, V,(x) etc., 6*12, 
determined by the shift 6 of the potential well, i s  small 
a t  the usually small ( 6/A I << and a t  the actual q, 
1 >> (91 >> 1 6/A 1 .] Actually, in an equilibrium isolated 
triatomic molecule of the type considered, the central 
atom would be characterized usually by an effective 
single-well potential V,(x). In a nonequilibrium (meta- 
stable) system, however, such a s  an amorphous struc- 
ture, a qualitatively different situation arises,  inas- 
much a s  R and VeXt(x) a re  random quantities. The 
probability distribution of R for individual atoms (with 
z = 2) can apparently be characterized, on an empirical 
basis (see, e.g., Ref. 6), by a noticeable albeit rela- 
tively small width 

the mean value being R =  a with I R - a (  << W .  Here R, 
i s  close to RL*' with 1 6R,I << W. From the foregoing 
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relations between R,, x, and AR we can conclude that i t  
is possible to have both R, - X < ( 1 / 2 ) A ~  and ( 1 / 2 ) A ~  
< R, - R (  < X). Two-well and critical potentials corre- 
spond to a noticeable fraction (< 1) of all  the R (i.e., 
q and t) for the considered atoms precisely in the case 
when R, lies within the width AR of the distribution den- 
sity for R, i.e., R,-X s ~ / 2 .  The same can take place 
for atomic groups of a definite type both in the cases 
noted above and in the alternate cases. 

We shall need later [see (4.13)l the density c,(G) of the 
regions of the critical potentials a t  1q( G =  const << 1, 
which i s  determined by the probability distributions for 
the random quantity q. The distribution for q i s  deter- 
mined directly by the distribution for R, and, a s  can 
be seen, the mean value 77 of q can be small (IF1 < Aq) 
while the width Aq = q,,. - q,,, can be comparable with 
unity, lq,,, 1 < 1 and Aq 2 1. The distribution density 
N(q) for q in the region of i ts  width, I q - 7j Is (1/2)~q,  
can be approximated in the usual manner by the prac- 
tically uniform N'O'(~), 

N(q) SN''' ( q )  = ( A q )  -10 (Rc-Rmin-qy-') e ( q ~ - ' f  Rmw-Rc) 

[e(x) i s  the step function]. In the region of importance 
to us subsequently, ij >> qO(t) = (9/16)~t'/A, we can esti- 
mate ca(G) in the form 

Generaly speaking, the distribution density for t can 
also be estimated by recognizing that the energy dif- 
ference A between the minima of the two-well potential 
a re  described a t  1 q1> q0 within the framework of Eqs. 
(3.4)-(3.7) by the expression (1 q(<< 1, 1 t 1 << 1) 

The possibility of estimating the distribution of A from 
the empirical data is established in this case by the fol- 
lowing considerations. It i s  known, (see, e.g., Refs. 
13 and 6) that an experimental investigation of the low- 
temperature anomalies of the thermal and ultrasonic 
properties of glasses has led to the hypothesis that of 
two-well potentials exist for an appreciable fraction of 
the atoms of a medium with almost uniform distribution 
for A in a certain interval 0 5 A 5 A=, A, 5 0.1 eV. We 
assume that the model developed above reveals the es- 
sential factor of the nature of the two-well potentials 
postulated in Ref. 13, and establishes the presence of 
critical potentials in glasses. Expressions (3.4) and 
(3.11) for V(x) and the characteristic parameters such 
a s  R, R,, and q, a s  well a s  relations of the type (3.6) 
and (3.7), can have a more general character than the 
concrete model considered above. When so  general- 
ized, the meaning and the dimensionality of the variable 
x and of the parameters R, R,, q, and t a r e  determined 
by the concrete form of the system and by the type of 
i ts  motion (both translations and rotations); the role of 
the atom can be played by an individual atom or by a 
non-macroscopic atomic group. At the same time, the 
concrete model of V(x) in linear or nonlinear quasi- 
molecules can be adequate for a large class of glasses 
of the type a-Se, a-As,Se,, a-SiQ, etc. (These ques- 
tions will be discussed elsewhere.) We note also that 

since A S  A, << C for phenomenological two-well poten- 
tials13 i t  follows that an important role in (3.4) i s  
played by small 1r01 << 1 and I tl<< 1, so  that we can use 
expression (3.13) hereafter for 6V(x) a t  I ql<< 1. 

4. SELF-LOCALIZATION OF ELECTRON AND 
HOLE PAIRS 

The assembly of the bonds in an ideal covalent glass 
constitutes a statistical distribution (over the energies, 
lengths, angles, etc.) of ordinary two-electron valence 
bonds between the CRN atoms (these bonds can have a 
certain asymmetry). The electron (or hole) that is 
"external" with respect to this assembly of bonds can 
be se t  in correspondence in the MG with the term E 
in the tail of the conduction or valence band. These 
terms correspond to states that a r e  localized on v- 
atomic regions (v-center bonds, quasimolecules) a t  a 
suitable v a v,,, 3 2. In the simplest considered CRN 
model these states a r e  localized mainly on v-atom 
quasimolecules in individual chains, and the value of 
v,,, i s  determined by the type of the quasimolecular 
state. Thus, v,,, = 2 for the states of the binding (B) 
o r  antibinding (AB) types, but v,,, = 3 for states of the 
nonbinding type, etc. The dependence of the term E(x) 
on the position x of one of the boundary atoms of the 
quasimolecule (the atom 0 in Fig. 1) can be described 
by a relation of the form 

E ( x )  --Eva ( x )  =Q.,f,,(x, A) .  (4.1) 

Here Q,,(>O) i s  the energy parameter of the bond be- 
tween the indicated atom of the v-atom quasimolecule 
and the carr ier  with the term E = E(O), so that f,,(x, A) 
Z 0 a t  I f,,(x, A ) l s  1 for the essential values I XIS 1; 
the index a corresponds to the type of the quasimolecu- 
lar  state. The parameter A(#O) in a disordered system 
describes the fluctuations of the term energies a t  dif- 
ferent quasimolecules for given v and a. The expected 
scale of these fluctuations is of the order of the scale 
w, of the fall-off of the state density in the tail of the 
corresponding a- th  band (for example, w,-0.1 eV in 
covalent glasses). The energy E(x) increases o r  de- 
creases, depending on the type (a )  of the state and on 
the sign of x(S 0). Thus, for AB or B states we can 
write approximately a t  v = 2 (Ref. 14) 

fm (5 )  = ~ z ( A B .  B )  ( x )  2.*[A+e-k] ", 
Q==Qz(*n.n)=fi exp (--r:!!,), r!;:,-r-,,, (X=O). 

Here /3 i s  of the order of the atomic energy, 6 2  10 eV, 
and usually Q, = Q (a) 2 1 eV at  Y !:!,,z fly. In this case 
the term E,,(x) increases and E,(x) decreases with in- 
creasing x >  0. The parameter A may be  determined, 
in particular, by the influence of the neighboring atoms 
of the chain and by the corresponding fluctuations of 
parameters of the type exp(- r-,,-,) (see Fig. 1). 

The value of v determines the characteristic radius 7, 
of the electronic states, i.e., Q,, = Q,,(r,). It i s  natural 
to assume that 

and therefore one can expect appreciable values of 
1 ~ E ( x )  I for localized states with r, r: a a t  large I xl s 1. 
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When one ( j =  1) or two ( j  = 2) carr iers  ("extra" elec- 
trons or holes) become localized on a definite quasi- 
molecule, the energy of the system, depending on the 
configuration variable x, can be written, just a s  in the 
absence of carr iers  ( j  = 0), in the form [see (2.3)] 

QJ(x)  =6V (X+SJ) +j6E (x+sj) +U. (x+sj) 6), 

zap'+ b#+ hp+U. ( x )  6j, ,+ const; (4.2) 

here and elsewhere, unless otherwise stipulated, the in- 
dices v and a of the parameters a re  left out for brevity. 
The coefficients a,, b,, and h j  a re  obtained by expanding 
the total energy jsE(x)+ 6V(x) in powers of x, including 
terms proportional to x4, a s  well a s  by changing the 
origin x - x +  s,, s o  a s  to exclude the cubic terms 

and usually I Q '"'1 s; Q and I s, 1 < 1. Indeed, the follow- 
ing inequalities hold 

Q-Q(rt)GQ ( a )  < A  (4.4) 
and i t  is really possible to have Q (a) < C, since C s; A 
and the usual scales a re  Q(a) 2 1 eV and A 210 eV. At 
191 << 1 and at  (4.4) the atomic potential remains critical 
also if one or two carr iers  a r e  trapped in a given re- 
gion of the system, since b,, a,, and h, ( j = 1 , 2 )  differ 
from b,, a,, and h, by values of the order of Q <<A, 
and consequently 1 bj ( <<A. Next, we approximate U,(x) 
for simplicity by the x-independent characteristic quan- 
tity U, 5 U,(r,), which decreases with increasing r,, 
U,(r,) << U,(a) a t  r, >> a, inasmuch a s  in the SLEP re- 
gion (4.9) (see below) the influence of the U,(x) depen- 
dence on the results of minimization of the functional 
AE ( 2 ) ( ~ )  is small to the extent that U,(x2)/2& << 1 i s  
small, where x2 i s  determined at U,(x) a U,. 

Taking (4.2) and the foregoing into account, the SLEP 
criterion (2.1) becomes 

where xj  i s  that value of x which minimizes @,(x). The 
expression for b ,(x) is transformed into 

4' 
@,(I,) = - cp?' ( I , ) ,  cp:f) ( x )  -x4* 2 2 ' - ~ ,  

4% 

where the sign in front of the term 2x2 coincides with 
the sign of b,. In the upshot i t  turns out to be sufficient 
to obtain the general single-parameter function 
'p:"min{cp,(*'(x, x)}. The results of i ts  numerical cal- 
culation (accurate to - 10%) can be approximated by the 
relations 

A quantitative analysis of the criterion (4.5), based on 
expressions (4.6), and an estimate of the correlation 
energy U encounter no difficulties in principle, but a re  
quite cumbersome. The main result, however, can be 
obtained also on the basis of the qualitative considera- 
tions that follow. 

We note first that in the considered cases the real  
asymmetry of the initial potential $,(x) i s  small to the 
extent that / ti<< 1 i s  small, and i s  characterized by an 
energy A(2 0) that i s  actually small in the sense of the 
inequalities 

since Acs;O.l eV (A,sIV,,,I-0.1 eV; cf. Ref. 13, 
where A, - T, s; 0.1 eV and T, is the vitrification tem- 
perature). 

We consider f i rs t  the case 6hj = I hj - h,l << I h,I, i.e., 
jQ << I h,l , which corresponds to a considerable asym- 
metry of the initial potential @,(x), or to a relatively 
weak interaction of the ca r r i e r s  with the CRN. Re- 
garding this interaction as a small perturbation, 1 6hjl 
<< I h, 1 , we obtain 

for the usual I $o(xo)l - A  < U,. Thus, the SLEP cri- 
terion i s  not satisfied in this case. 

In the other limiting case, Q >> I h,l , corresponding 
to a real  small asymmetry of the initial potential $,(x), 
the quantity b,(x,) in (4.5) can be neglected. The poten- 
tial @,(x) turns out to be biharmonic a s  b, - 0 in the es- 
sential region of x, and minimization of the expression 
a , ( ~ ) = a , ~ ~ - j Q x ( j =  1,2) a t  a, =a, transforms the cri- 
terion (4.5) into a relation of the form 

i.e., into the inequality 

Thus, in the region of a biharmonic potential the ener- 
gy U = U-, and the equilibrium displacements xj  do not 
depend on the random quantity b,(q, t) at 

(accurate to a small correction of the order of 171 << 1); 
the values of )x , (b , -~) I=x , (~)and  I u ' I  a r e  appreciable 
in the sense that I U-1 5 Q  -s Q(a) and x:O)s 1, i.e., I U-I 
r; 1 eV and x :~)~ ' l  S. 1 A. However, the condition (4.9) 
can hold also in the region of large b, satisfying the in- 
equalities 

which agree with (4.9). The inequalities (4.10) mean 
the SLEP can be realized also in a certain correspond- 
ing part of the region of the harmonic displacements: 
the right-hand side of the inequality (4.9) is the condition 
that the harmonic displacements I x, ( - I hj/bol do not go 
outside the region x,- I b,l /a,; i t s  left-hand side, on the 
other hand, expresses the SLEP criterion in the har- 
monic approximation. Indeed, in the region of harmonic 
displacements I b,I = i b,> b: the contribution 6bj , 

= I bj - bol to the coefficient of x2 in &,(x) i s  relatively 
small, 15bj/boI < ( ~ / A ) l f =  < 1, and can be neglected in a 
qualitative analysis. In the region b: < (bol = i b, < b: the 
effective correlation energy is 

U=U(bo) =Uc-Q I~z(bo)  I =Uc-4QZIp* I bo I (0, (4.11) 

so  that I U(bo)l < I U-I, and I U 1 decreases monotonically 
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(at a given r,), with increasing I b,l < bl. Thus, the 
correlation energy U(b,) < 0 describes the SLEP due to 
an effect of the polaron type in the case of harmonic 
displacements of the atom (atom group) in the corre- 
sponding well of the critical potential, whereas U- de- 
scribes the SLEP for essentially anharmonic displace- 
ments. The interpolation formulas for U(6,) and x,(b,) 
a t  all 1 b,I = i b, can be  obtained by replacing * b, in (4.11) 
by & b,+ 2b:/p1. In particular, a t  /b,l << b:, this replace- 
ment is equivalent to taking into account, by perturba- 
tion theory, the harmonic component of the potential a s  
a small increment to the biharmonic component. 

The inequality (4.9) plays the role of the necessary 
condition of the realizability of a SLEP in a given sub- 
stance, and the parameters of the critical potentials 
capable of taking part in the SLEP should, in accord 
with the foregoing, satisfy the relations 

I boI =* boG4p2QIIptUC 

and I hol GpsQ; p z G l ,  p 6 1 .  

A more detailed quantitative analysis based on the ap- 
proximations (4.6) leads to the same results and refines 
somewhat the values of the dimensionless numerical 
constants p,, p,, and p,. 

The conditions (4.12) determine implicitly the restric-  
tions imposed on the basic parameters q and t of the 
critical potentials that generate the SLEP. To make 
this determination explicit, i t  i s  necessary to use ex- 
pressions (4.3) for b, and h,. The spectrum of the 
permissible values of the parameters i s  then repre- 
sented by certain region in the (q, t) plane, shown sche- 
matically in Fig. 2, which must in addition be  bounded 
on the right by the condition I t l <  t,. The existence of an 
effective boundary t, of the distribution of the random 
quantity t corresponds to the parameter A, mentioned in 
Sec. 3 and to the correlated small  quantities AcC-' << 1 
and t << 1. If, a s  should apparently be the case, the re- 
lations between the parameters of the systems a r e  such 
that 

t.<ti=(8pl/p*) UCQ-', 

then the part of the (7, t) plane of interest to us can be 
approximated by the rectangular region 

a t  (4.9) and A(tc, qmlm) - Ac; q: >> t:. Indeed, q: << 1 [say 
q: s 10*-10-1 in covalent glasses a t  (4.9)], in accord 
with the general formulation of the problem which im- 

FIG. 2. Domain of the values of the parameters and t of the 
critical potentials that generate the SLEP. 

plies that the SLEP cannot be realized far from the 
critical potentials, i.e., Q , / ~ A  << U,, in the polaron ef- 
fect. As a result, we a r e  left with the condition 

We note, however, that if we consider only the region 
in which the SLEP i s  determined by anharmonic dis- 
placements and i s  characterized by the largest (at the 
given r,) value I U I = I U-1 I U-(?-,)I, then i t  is necessary 
to satisfy the condition I b,l = i b, < b: , i.e., the condition 

given in Refs. 2 and 3. This stronger restriction agrees 
with (4.14) if (4.9) is valid; in this case we have also 
7i; >> f . 

We note also in connection with the foregoing that in 
the presented relations we have 

Q-Q ( r v )  <Q ( a )  and UP U .  ( r , )  < U ,  ( a )  

for a given r,, 3 a, so  that 

and g =q,(r,) %(a). If SLEP [the criterion (4.9)] takes 
place on a quasimolecule with r, = a, this phenomenon i s  
not realized o r  else can be all the more realized a t  
r, >>a, respectively, when Uc (r,, )/Q(r,) I x,(b,, r,,) l 
increases o r  decreases with increasing r, at a given 
b, =* b, < b i  (r,). However, even in the case when the 
SLEP phenomenon does take place at r, >>a, i t  is char- 
acterized by small  I U-(r,) I<< I U-(a) l a t  rea l  I U-(a) l 
sl eV; in this case,  the fraction of the corresponding 
critical potentials that a r e  suitable for SLEP is small 
to  the extent that ~ ( r , )  is small (see below). 

5. SPECTRAL CHARACTERISTICS OF SLEP 

In this section we deal with the spectral character- 
ist ics of SLEP in the MG of ideal glass. In fact, the 
SLEP alters the spectrum of the electron subsystem 
a s  a whole, inasmuch a s  the terms corresponding to the 
quasimolecules a r e  lowered (2E - 2E + U). We s tar t  from 
the bare  (in the absence of SLEP) single-particle den- 
sity 

g"' ( E )  = 'pi' ( E )  

in the MG, e.g., a t  (see Ref. 6) 

The index o! denotes now the type of the band, namely 
conduction ( a  = 1) or valence ( a  = 2), with the corre- 
sponding mobility thresholds E, = Ec and E, = E,. Since 
the considered bare  terms E a r e  situated in the MG, 
we have for them q , ( ~ )  E - E,) > 0. It can usually 
be assumed, a s  will be done hereafter, that there i s  
practically no correlation between the localization re- 
gions of the bare  terms in the MG and the critical po- 
tentials. 

In the considered disordered system, characterized 
by an appropriate parameter A,  the term E in the MG 
corresponds generally speaking to a se t  of quasimolec- 
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ular states that corresponds to a certain se t  v a t  a! = 1 
or a =  2. If it is assumed that the given value E corre- 
sponds to practically one value v= v,, which determines 
the characteristic radius r,=r, of the state (see, e.g., 
Ref. 15), then we can put approximately 

etc. It i s  such cases that we have in mind mainly from 
now on., ) 

In the systems considered, we have U < 0 only on se- 
lected regions (bonds), whose density i s  relatively 
small, c,[q" (a)l<< 1, whereas on the other regions we 
have U >O. The density p,(U, E) of the distribution de- 
termines here the relative density p,(U, E)dUdE of the 
terms with energies in the interval (E, E + dE) of the 
bare  spectrum, and with pair correlation energies in 
the interval (U, U + dU). We can represent p,(U, E )  in 
the usual manner in the form 

where y ,(UI E) i s  the density of the conditional proba- 
bility that the term with the bare energy E changes by 
an amount U / 2 ( 2 ~  - 2E + U, U S  0). The distributions 
p,(U, E) and y ,(U, E)  determines the main spectral 
characteristics of the SLEP. Thus, the SLEP effi- 
ciency 

0 

L(E)- JY~(UIE)~U 
-- (5.2) 

is the probability that a state with bare energy E in the 
tail of the a-th band has a correlation energy U < 0. 
The density of such paired states i s  

The effective density (per carr ier)  of the paired states 
is 

On the whole, the MG spectrum is a superposition of 
the spectra of paired ( j  = 2) and single-particle ( j  = 1) 
states 

g(E) =g'I' (E) +gC2' (E), g"' (E) - Cg:" (E), 
a 

and the total density of the j-particle states in the MG 
is 

cO', C $" 
a 

with - 
cam= g."' (E) dE. 

-- 
The distribution density y,(U I E) can be expressed by 

means of the relation 

in terms of the distribution density N(q) of the param- 

eter 8. Here q = q(U; a!, E, * ) i s  the inverse of the func- 
tion U = U(q; a, E, * ) that connects the correlation ener- 
gy U with the critical parameter q at  given fixed values 
of a and E; the indices plus (for q > 0 )  and minus (for 
q <  O), over which the summation i s  carried out, take 
into account the fact that the expressions U = U(q; a, E)  
a re  somewhat different a t  q > 0 and q < 0 (see Sec. 4). In 
accord with the discussion in Secs. 3 and 4, in the re- 
gion 1 q1<< Aq that i s  essential for the SLEP we can as- 
sume N(q) s (AT)-', so  that the problem reduces to a 
determination of the functions dq(U; a, E, )/dU and to 
calculation of the spectral characteristics (5.1)-(5.5) 
with their aid. We use next the expression 

which can be easily obtained from (5.6) by using the 
aforementioned interpolation relation U = U (7; a ,  E, * ) 
[see the discussion that follows (4.11) and (3.12)]. 

In the calculation of q i ( E )  we note that the function 
p,(U, El) in the integrand decreases rapidly towards 
the interior of the MG, because of the decrease of gA1)E' 
at  I E, - E'( >u~, .  Near the edge of the MG the behavior 
of p,(U, E') i s  determined by the relation 

' IQa(1Ea-Erl)/{~-~~a(lEa-E'~)}~~ 

which for all finite U t 0 vanishes as  E'- E, together 
with Q,(IE' - E, I ). Therefore the function p,(U, E') 
in the integrand of (5.4) has a sharp maximum at a 
certain I E' -Eat = 6,. (The corresponding strip in 
which r,, , >>a has a width close to 5,; see Ref. 6.) In- 
tegrating in (5.4) with respect to U and recognizing that 

I U,I = - U, Iu;], we easily see that for the integral 
in Gz)(E), 

there can be realized in principle two cases: 

In the first  case of (5.9) the influence of the SLEP on 
the properties of the system can be quite substantial, 
whereas in the second case of (5.9) it i s  much weaker 
or completely absent. We therefore discuss here only 
the first  case of (5.9) which, from the described point 
of view, can indeed be realized, e.g., at  

Q.(IEi-E.l)a IE'-EaIn, n=n(lEf-Eal)>O. 

Expression (5.7) corresponds to the presence in the 
MG of asymmetrical bands of paired states with densi- 
ties ,q,',)(E), when the SLEP is  realized for both bands, 
i.e., c:" and c i a )  are  appreciable, or for one such 
band, when the SLEP i s  realized for only one band, 
e.g., c:~'+ 0 and ci2 '= 0 ( ~ i g .  3). The paired bands 
can overlap [at (1/2)( U;+ U;I >El  - E,] or even become 
inverted. We note that if the initial atomic state i s  
identical for the terms E '  of both bands, one can expect 
the quantities Q,(I E, - E'I), U;, etc. to be close or of 
the same order as  the values for IY = 1 and a =  2. If the 

982 Sov. Phys. JETP 55(5), May 1982 M. I .  Klinger and V. G. Karpov 982 



SLEP phenomenon is realized in this case, i t  does so  
for both bands (this i s  possibly the situation in chalco- 
genide glasses). 

The concrete form of the bands g;"(E) might be found 
from (5.7) given the functions gil)(E), Q,(I E, - E'J 1, 
and U,,(I E, - ~ ' 1 ) .  Since, however, these functions 
a r e  still not fully known even for the most investigated 
glasses, we confine ourselves here only to the rough 
approximation 

I&-El Zw,,at E.=min {IE.+(-)*6,1; Em+(-)"Urn-(a)/21), 

(5.10) 
which i s  obtained when account i s  taken of the rela- 
tively weak (in the ul, scale) change of the factor in 
the curly brackets of the integrand of (5.8). More ex- 
plicit expressions for gi2)(E) can be obtained for dif- 
ferent kinds of models, in particular for the model with 

where Ay, takes into account the influence of the SLEP 
in the harmonic region of the displacements, whereas 
in the anharmonic region we have U = U;, a s  was ob- 
tained, e.g., in Refs. 8 and 9 for cases  when Ay a = 0. 

The approximation (5.10), a s  well a s  the model (5.11), 
shows that in the interior of the MG we have gi2)(E) 
>>g: ' ( E ) ,  since g,"'(Ecv) >> gil '(E) [say, a t  I U;(a) I 
> (3  to 5)u,, and gL1'(E) of the form (5.11)]. Thus, in the 
interior of the MG the total state density g(E) i s  deter- 
mined in the presence of SLEP and a t  sufficiently large 
(~;(a)l  by the paired states. The density of the paired 
states in the MG can be estimated in accord with the 
(5.5) and (5.7) at3 ' 

U.- (6,) =U,- (rE. 1 I El-E. I 16.) 

etc. For tentative estimates we can bear in mind the 
values of the quantites 

Q.( IE'-E,I 26.) i ev, w,-0.1 e v ,  g? (E,) -10-'-lo-' ev-', 
U,,( I E'-E, I 26,)  -0.3-0.5 eV, A-10-30 eV, 

FIG. 3. Electronic state density in GM of an ideal crystal in 
the presence of SLEP for the following models: a) of Mott 
and Davis; b) of Mott and Cohen-Fritzsche-Ovshinsky; the 
dashed lines show the bare densities. 

a s  well a s  

(e.g., for chalcogenide glasses in accordance with the 
results  of Sec. 4). In this case, e.g., 

The other spectral characteristics of the SLEP can be 
treated similarly, using expressions (5.6) and (5.7). 
We note that in this case, since [,(E') varies relatively 
little, i t  can be replaced in the corresponding integral 
a s  follows: Ea(E1) - 1p)  = const; e.g., we can write 
(5.3) in the form cL2)- [g'c,") (cf. Refs. 8 and 9). 

Systems characterized by a significant role of the 
SLEP and by the described spectra reveal substantial 
singularities of the thermodynamic properties. Thus, 
e.g., in an MG of considerable state density g(E) 
= g C 2 ) ( ~ )  fixes (pins) the position of the level of the 
chemical potential 6; in this case, since g '"(~)<<g'~'(C),  
the paramagnetism of the glass i s  on the whole effec- 
tively suppressed, so  that i t s  diamagnetism may appear. 
A detailed analysis of these singularities i s  beyond the 
scope of the present art icle (a brief exposition of some 
of them can be found in Refs. 8 and 9). 

6. CONCLUSION 

Of basic importance for the foregoing analysis i s  the 
conclusion that i t  i s  possible to realize in amorphous 
nonmetallic structures two interrelated phenomena: 1) 
the existence of two-well and critical potentials for the 
atoms of an "ideal" glass, and 2) self-localization of 
the electron (hole) pairs in the mobility gap of "ideal" 
glass in the case of strong attraction between the elec- 
trons s hole^).^) Two-well potentials in glassed3 and a 
strong local attraction between carr iers  in glassy 
semiconductors5 were postulated earl ier  on the basis 
of empirical data. These phenomena were assumed to 
be unrelated, and their microscopic nature (far from 
the glass defects) remained unexplained. 

The described model and theory of the SLEP does not 
connect the pair production with the defect of the glass 
structure (in contrast to the "defect" models of Ref. 6), 
and a t  the same time demonstrate the existence of a 
finite albeit small ( c '~ '<<  1) concentration of intrinsic 
local charged centers - pairs (* 21 el ) in the MG, 
which correspond to a t  least two types (a = 1,2) of 
single,-electron "bare" states. It i s  this which makes 
the SLEP theory substantially different from the Ander- 
son model5 (see Sec. 1). 

The results  of the presented analysis allow us to pre- 
dict certain new effects. Thus, high pressure and fac- 
to r s  contributing to the reiaxation of the glass structure 
could decrease the role of effects of two-well and criti- 
cal potentials, by lowering the density of the self- 
localized ca r r i e r  pairs and the anomalous low-tempera- 
ture heat capacity, but increasing the paramagnetism or 
the Mott hopping conduction and other manifestations of 
single-particle states. At the same time, the penetra- 
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t ion of hydrogen (e.g., i n  a-Si) could genera te  or ampli- 
f y  the effects  connected with the presence  of two-well 
potentials (on account of formation of hydrogen bonds), 
i.e., diamagnetism, anomalies  of t h e  low-temperature 
heat  capacity, SLEP,  and others. 

We note also that  2,-well potentials s i m i l a r  to those 
considered, and SLEP,  can  apparent ly b e  rea l ized  f o r  
sui table  a toms  also in other  s t ruc tures ,  par t icular ly i n  
ce r ta in  defects  (such as off-center defects)  in  non- 
metal l ic  crystals .  T h i s  may  b e  the cause  of the  un- 
usual  p roper t i es  of In and Ga in  Pb,,S%Te c r y s t a l s  
with O <  x c  0.2 (see, e.g., Ref. 16),5) interstitial boron 
in the Si ~ r y s t a l s , ' ~  and hydrogen i n  amorphous Si ( s e e  
Ref. 6). 
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' ) ~ r i e f  expositions of the main idea and of certain results of 
the work were given in Refs. 1 4 .  

')In the alternate cases, if the distribution for v a t  a given E 
is essentially smooth, the qualitative picture can be expected 
to remain the same, but the corresponding relations turn out 
to be more cumbersome. 

')l'his estimate of cg)  is  more adequate than the estimate 
g i v a  in Refs. 2 and 3, although the difference between them 
should actually not be large (it is possible to exclude va 
from Refs. 2 and 3 a s  an inessential restriction). 

4)~nteractions between the pairs a r e  outside the scope of the 
present article. 

5 ) ~ n  interesting model of the anomalous electric properties of 

Pbi$n, Te  (In,Ga) a t  0 < x  S0.2, not connected with electron 
pairing, is given in Ref. 17. 
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