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The motion of a domain wall in a ferromagnet with defects is investigated. It is shown that the presence of 
static defects of any kind not only produces a coercive force (static friction force) but contributes also to the 
dynamic damping forces. The contributions to the damping force from the various interactions between 
magnons and the wall are analyzed. The main contribution comes from the emission of a single magnon 
localized near the wall. It is shown that the interaction between a moving domain wall and the 
inhomogeneities can cause the wall to have a negative differential mobility. The physical consequences of this 
circumstance are analyzed. 

PACS numbers: 75.60.Ch, 61.70.L.e 

Most r ea l  crystals  always contain point defects (im- not depend on the temperature and i s  the main contri- 
purities, vacancies, etc.) a s  well a s  extended de- bution a t  low temperatures.  
fects  - dislocations. Both types of defect can influence 
substantially the dynamic propert ies of the domain 
walls (DW). The influence of the crystal  defects leads 
primarily to the appearance of a coercive force (stat ic  
friction force1). Dynamic dampi~lg (viscous friction), 
due to additional energy transfer  to the moving DW by 
the thermal magnons, is also possible on account of the 
change in the character  of the interaction of the DW 
with the magnons in the presence of static defects that 
have no internal degrees of freedom. 

We consider in this  paper dynamic damping of DW in 
a ferromagnetic (FM) crystal  with randomly disposed 
defects. It is shown that the presence of inhomogenei- 
t ies ,  particularly dislocations, must be taken into ac- 
count not only in the calculation of the coercive force 
but also in the analysis of the dynamic damping of DW 
in FM, by virtue of the following circumstances. F i rs t ,  
if the crystal  contains inhomogeneities, f r ee  magnons 
can be radiated a t  any DW velocity. We recall  that in 
an ideal crystal  the radiation can take place only at 
velocities exceeding the minimum phase velocity of the 
spin waves. The physics of this  phenomenon is the fol- 
lowing: the produced magnon can acquire from the DW 
an energy q - v  only together with a momentum q, and a t  
the same time the magnon can obtain from the defect a 
momentum x. The energy conservation law corre-  
sponding to this  process can be written in the form 
[see Eqs. (10) below] 

where c(k) is the energy of a magnon with momentum k. 
In the absence of defect (without allowance for  x) th is  
process proceeds, naturally, only at  u L min[c(k)/k], 
i.e., at  a DW velocity exceeding the minimum phase 
velocity of the spin waves. Analysis shows, however, 
that at u f O  the radiation condition becomes much l e s s  
stringent, namely, at any value of v there exists  a val- 
ue of x such that this process i s  possible and contri- 
butes to the dynamic damping of the DW. This contri- 
bution is particularly large in radiation of so-called 
surface magnons localized near the DW. The contribu- 
tion of these processes to the DW damping force does 

The presence of inhomogeneities can affect the con- 
tribution of two-magnon processes to the damping force. 
F i r s t ,  two-particle processes with participation of 
surface magnons, which a r e  absent from an ideal crys-  
tal ,  become possible. Second, the nonreflecting char- 
ac ter  of the interaction of the bulk magnons with the 
DW, which i s  inherent in an ideal crystal: is violated 
and leads t o  an additional contribution to the DW mo- 
bility. 

We calculate in this  paper the contribution of one- 
and two-magnon processes t o  the damping of DW and ob- 
tain the dependences of the damping force on the tem- 
perature and on the velocity and the density of the dislo- 
cations. A specific feature of the contribution of defects 
to the dynamic damping force i s  the possible appearance 
of DW velocity intervals in which a negative differential 
mobility B is realized, B = dF(v)/du < 0. We discuss the 
dependence of the velocity of the steady-state motion of 
the DW on the external force in this situation. 

1. INTERACTION OF DW WITH CRYSTAL DEFECTS 

To  describe the interaction of DW with dislocations, 
we represent  the functional of the FM energy in the 
form of a sum of the energy of an ideal F M  and the en- 
ergy of the interaction of the magnetization M with the 
dislocation field: 

where M i s  the FM magnetization; MZ= M:; a i s  the 
exchange constant; @ and p a r e  the anisotropy constants. 
The contribution of the magnetic dipole interaction to 
the FM energy i s  disregarded and it i s  assumed that 
/3,p>> 417. 

The energy of the interaction of the DW with an in- 
homogeneous strain i s  determined by the magnetostric- 
tion energy, which we write in a form typical of a uni- 
axial ~ r y s t a l ~ + ~ :  
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Here  A, a r e  the magnetostriction constants and n i s  a 
unit vector along the z axis. If we neglect the change of 
the  elastic s t r a in s  due to the motion of the DW 
( a  "pinned" system of defects  - "external" force for  the 
magnetic system),  we can substitute for  the s t ra in  ten- 
s o r  in (2) i t s  value produced by a specified defect con- 
figuration. We consider hereafter  DW motion with vel- 
ocity much lower than the known Walker limit v,, v 
<< v, (Ref. 5). 

The magnetization in the DW is described by the 
angles 0 and cp, 

Mz=Mo cos 0, -M,+iM.=Mo sin Be*. 

To calculate the coefficient of v2 in the damping force 
[see (10) below] we must take into account the depend- 
ence of the DW structure on the velocity. We assume 
p / ~ < <  1; it suffices then to take 0 and cp in  the form 

cos 0=th [(z-vt)/z,], cp=-v/2vw B (3) 

where xo= ( ( r / ~ ) ' / ~  is the thickness of the DW a t  r e s t .  

We consider smal l  fluctuations of the magnetization 
in the F M  with the DW, and exp re s s  them in t e r m s  of 
the  Holstein-Primakoff  operator^.^ The Hamiltonian of 
the  spin waves in FM with moving DW can be  represent-  
ed by the s e r i e s  

where Ho does not contain the Holstein-Primakoff oper- 
a t o r s  a' and a; HI i s  linear and Hz is quadratic in these 
operators ,  etc.; the opera tors  Hi depend on the form of 
e ( r )  and dr). Substitution of the solution (3), which de- 
s c r i be s  the motion of a DW in an ideal c rys ta l ,  yields 
Hl = 0 (Ref. 2); consequently, in our case  Hl i s  deter-  
mined only by the inhomogeneities, i.e., H, descr ibes  
single-magnon processes  determined by the inhomoge- 
neities; H2 can be represented in the form Ho+ Hz,,, 
where Ho i s  the Hamiltonian of the magnons in an ideal 
crystal ,  and Hz,,, descr ibes  the defect-induced scat ter-  
ing of magnons by the DW and the emission of a pair  of 
magnons by a moving DW. 

We shall use the Hamiltonian (4) to describe the in- 
teract ion of the DW with magnons in the presence of a 
sys tem of randomly displaced defects. This  Hamiltoni- 
an  depends explicitly on the t ime because of the motion 
of the DW, leading to  inelastic processes  in the magnon 
subsystem and a s  a consequence to the t ransfer  of the 
DW energy to the magnons, i.e., to the damping of the 
DW. 

We calculate the damping force by perturbation theo- 
ry .  In this  case ,  naturally, there  are two possibilities. 
We can use a s  the zeroth approximation the state  (31, 
which descr ibes  the DW motion without allowance for  
dislocations. In the second approach we can s t a r t  from 
the  exact solution of the Landau-Lifshitz equation for 
the  DW motion with the defects taken into account. This  
motion i s  in principle not uniform, i.e., it includes the 
deviation of the shape of the DW from planar and the 
non-uniform DW motion. If we s t a r t  from the exact 
solution, then Hl = O.z Analysis shows, however, that 
t h i s  solution contains deviations of the magnetization 
f rom the equilibrium value, and these deviations do not 

decrease  f a r  from the DW ( a s  x -P). These  deviations 
can be represented a s  s u m s  of two t e rms ,  one inde- 
pendent of t ime and determined only by the defects, and 
the  other  determined by the interaction of the DW with 
defect and dependent on the time. The lat ter  t e r m  leads 
t o  a nonzero energy flux f a r  from the DW and hence to 
dissipation of the energy of the moving DW. 

It i s  much simpler ,  however, to describe dissipation 
by star t ing from the f i r s t  approach. In th i s  case Hl # 0, 
and hence (a(r,t)) # 0, i.e., the vacuum s ta te  for  the op- 
e r a t o r s  a(r,t) i s  not the t r ue  vacuum of the system: a 
peculiar dynamic condensate i s  produced in the system. 
Th i s  resu l t  descr ibes  an obvious fact: we a r e  s tar t ing 
not f rom the exact ground state  of the system, and the 
produced "condensate" descr ibes  the correct ions to the 
magnetization distribution (3) in the DW, due to the in- 
homogeneities. At low deformation density it can be as-  
sumed that the condensate amplitude is small ,  and the 
physical charac ter i s t ics  of the system can be described 
by star t ing f rom (4) with Hl # 0. It i s  simplest,  in par- 
t icular ,  to  calculate in th i s  manner the r a t e  of dissipa- 
tion of the DW energy, and the r e su l t s  obtained by both 
methods ag ree  in f i r s t  o rder  in the smal l  parameter  
(aui/axk) << 1. 

In addition, the presence of (a(r, t)) # 0, o r  more  ac- 
curately of a part  of (a(r , t ))  localized near  the DW, de- 
s c r i be s  exactly the above-noted non-uniformity of the 
DW motion. Consequently, both approaches a r e  equiva- 
lent both for  the calculation of the damping force and for  
the  description of the non-uniform motion of the DW. 
The  method chosen by us, however, i s  much s impler  
and leads  m o r e  readily to a result  for  the DW damping 
force.  

We choose below, a s  the zeroth approximation, the 
known abbreviated equation that descr ibes  the DW mo- 
tion in an ideal crystal .  We expand the opera tors  
a+(r , t )  and a(r,t) in the total orthonormalized se t  of 
Winter s ta tes  ak and akl (Ref. 6) 

where = (x - vt)/xo, k, i s  the wave vector in the DW 
plane, S i s  the DW area ,  and R is the volume of the sys-  
tem. The  operator  a,, corresponds to a magnon local- 
ized near  the DW (surface magnon). 

Substituting (5) in (4),  we obtain 

where 
Ak=eo(l+p/2~+x,zk2), Ah,=eo(p/2~+z,2k,Z), Bk=BL=eop/2fi, 

eo=2poBMo, 
po i s  the Bohr magneton, po> 0 .  The Hamiltonian (6) 
can  be diagonalized by the standard Bogolyubov uv 
transformation ( s ee  Ref. 4), ck  = upah+ ~ ~ * a - ~ + .  In t e r m s  
of ck  and c,, the Hamiltonian Ho takes the form 
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where c,= ( A t  - B,~)"~,  i.e., 

e r = e o [ ( I f  so%') (l+p/fi+xo'kz)] '", 

e,,=hu0l k,l (l+fiso2k,.'/p) ", v,=2poMo (ap)'"lfi. 

Here ck  and c, a r e  the operators of the volume and sur- 
face magnons. 

In terms of c, and c,,, H, takes the  form of two t e rms  
that describe the creation and annihilation of one sur- 
face (s) and one volume (v) magnon: 

(8) 
where 

X 
~3 ( X I =  -{uZxhx (u-v) +up[ -hl (u+v) sin 2cp 

+(ht-h1 sin2cp)x (u-v)  ]+u.,[h, (u+v)sin 2q+(hs-A, cosZq)x (u-v)  ] 
1% 

+ 2 k h , [  (u+v)cos 2cp+x(u-v)sin a]]- (%,+ha) - 
ch (nx /2)  

~ { u ~ . [ ( u + v ) s i n  cp-x (u-v)cos cp]+&,[ (u+v)cos cp+x ( u - v ) s i n q ] } .  

Here x = x,xo; u and v a r e  the coefficients of the uv 
transformation: u,= u,,(x) a r e  the Fourier components 
of the tensor of the strain produced by the defects: 

The radiation amplitude U,(x,q) of the volume magnon 
i s  similar in structure 

The Hamiltonian H, leads to the appearance of inelastic 
transitions in the magnon system, s o  that the energy of 
the moving DW is transferred to the magnon thermo- 
stat. The damping force F(v) per unit a rea  of the DW 
is determined by the energy dissipation rate 9, namely 
F(v) = (!/sv, where S is the DW area. In second-order 
perturbation theory in Hl we have Q = Q,+ Q,, and these 
t e rms  a r e  governed by processes in which one surface 
and volume magnon take part, respectively. For  F(v) 
= F,(v) + F,(v) we easily obtain 

The superior bar in Eqs. (10) denotes averaging over 
the system of defects. An important property of the 
single-magnon radiation processes i s  that their contri- 
bution to the damping force does not contain the magnon 
occupation numbers, and i s  therefore independent of 
temperature and can assume a leading role at low tem- 
peratures. 

2. INHOMOGENEITY PRODUCED BY DISLOCATION 
SYSTEM 

We assume that dislocation loops a r e  randomly dis- 
tributed in the crystal, with average radius R and at a 
distance d. The averaging is carried out a s  in Ref. 7, 
and it i s  assumed that d>> R and d>>x,. 
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The functions I U I a r e  quite complicated, including 

powers of n, and Bessel functions of argument uR. 
Noting, however, that only small n, contribute to (10a) 
a t  low velocities, and that the main contribution is al- 
ways made by n .; l /~, ,  we replace the Bessel functions 
in the calculation of F,(v) by their asymptotic forms, 
assuming that nR  << 1 a t  R << x, and ).cR >> 1 at R >> x,. In 
the upshot we get1) 

where in the case  when R >>x, 

and at R << x, 

Here b i s  the mean value of the Burgers vector, c = (N/ 
52)213 i s  the dislocation density, N is the number of dis- 
location loops, ya= G/(2ji + q), f l  and 3 a r e  Lam6 coef- 
ficients, and s is the spin of the atom. The calculated 
values of F(v) a r e  presented in the first-order approxi- 
mation in the parameter p/p. 

The first  te rm of (11) determines the static friction 
force, i.e., o,= F0Sv determines the ra te  of energy dis- 
sipation in the case  of infinitely slow motion of the DW. 
It is not clear from general consideration how 4 varies 
with increasing velocity; it can only be stated that 0 
> O  at  al l  values of the velocity, but there a r e  no pre- 
mises  that would yield the sign of D, which can be 
either positive o r  negative, depending on the values and 
signs of A,. It is seen from (12) and (13) that a s  a rule 
D < 0 (e.g., at AL >> A, to AJ. This leads to a decrease of 
FJV) with increasing v, a result whose consequences 
will be discussed below. 

We proceed to the calculation of the DW dragging 
force  that results  from emission of a volume magnon. 
It follows from the conservation law in (lob) that a con- 
tribution to the dragging is made only by q - w,/v >> l/x,, 
but at the same time lull << l/x,. If x,<<R we must use 
f o r  the Bessel function only i t s  asymptotic value at 
n R  >> 1. If, however, x,>>R, two velocity regions ap- 
pear: the asymptotic nR  >> 1 i s  valid a s  before at 
v<<Rw,, but at w& <<v<<x,o, the asymptotic xR << 1 i s  
valid. 

Changing from summation over the wave vectors to 
integration, and calculating F, with allowance for the 
inequalities indicated above, we obtain 

2n (pobMo) 'sRc" 
F. = 

eoa3 

A,', U==COO max (R ,  so) 
(14) 

X( A : ( R / i . ) ' ( w m / ~ ) ~ ,  R w l ~ u ~ w ~ i ~  ' 

The effective constants A: a r e  of the order of A Z  and 
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a r e  too unwieldy to write out here. The function F,(v) 
is not analytic a s  v -0, with F,/v-O a s  u-0,  i.e., 
emission of a volume magnon does not contribute to 
either the static friction force o r  the mobility of the 
DW. It will be shown below that this  property (nonana- 
lytic behavior of the damping force a s  a function of vel- 
ocity) is typical of the emission of any number of quasi- 
particles, provided that several  (n) of them have acti- 
vation; in this case 

F- ( O ~ X ~ / V ) ~ ~  exp {-no,x,lv).  

The contribution of the emission of several magnons 
to  the damping force increases with temperature, but 
is less  than FJV) at al l  values of the temperature 
T<T,. 

It can thus be concluded that in the entire range of 
temperatures T < T, and velocities v 5; v, the effect of 
the dislocations on the dynamic damping of DW i s  due 
to the contribution made to the damping force by the 
emission of one surface magnon. 

3. POINT DEFECTS 

The contributions of defects of other types can be 
analogously investigated if their role reduces to the 
production of an inhomogeneous strain by virtue of the 
damping. The main regularities remain the same a s  
before, namely, the damping force that i s  determined 
by the emission of one surface magnon can be repre- 
sented in the form ( l l ) ,  in which it i s  necessary to 
make the substitution 

where c,,, is the number of inhomogeneities per unit 
volume, v, i s  the average volume of the inhomogeneity 
(we have assumed that v, <<x:), i2 - Xi2 > 0, 1 -A:, and 
the sign of the constant 1 can be arbitrary. I s  the in- 
homogeneity is produced by impurities, we have v,- 2,  
where a i s  the lattice constant. 

This means that dislocation loops having an average 
radius R and a density c produce the same effect a s  im- 
purities with density c;;,, where the equivalent value 
c f i ,  is defined by 

It follows from the equation for c;;, that the disloca- 
tions make on the whole a larger contribution to the 
damping force than the impurities. For example, if 
R - ~ , - 1 0 - ~  cm, then one dislocation loop is equivalent 
to 1012 impurity atoms. A much larger contribution, a s  
seen from (15), can be made by macroscopic inhomo- 
geneities such as inclusions of another phase. 

FIG. 1. Damping force vs velocity: a) at D > 0, b) at D < 0, F, 
is the coercive force. 

FIG. 2. Induced DW velocity vs external field: a)  at D > 0, 
b) at D < 0. The dashed lines indicate the unstable section of 
vdH), corresponding to a negative differential mobility. 

4. CHARACTER OF INDUCED MOTION OF THE 
WALL IN THE PRESENCE OF INHOMOGENEITIES 

We compare now the contributions of the defects to the 
dynamic damping of DW with the damping force due to 
two- o r  three-magnon terms,  a force present at T #  0 
in an ideal crystal  and having at low velocities the form 
F = B(T)v (Refs. 2 and 8). Since B, a exp(-E,)/T and B, 
a exp(-~E,/T) a s  T - 0, we have F2,, << F, at low tem- 
perature and at finite domain wall velocity, since F, i s  
independent of temperature [see ( l l ) ] .  Let us compare 
the contribution of the inhomogeneities F, with F, at2) 
T >> E,. Using Eq. (43) of Ref. 2 we find that B,(T)v 
<IDlvZ if v<v*(T). Assuming@-p-1,  we obtain 

Putting co- 0.3 K, T,-lo3 K, a -  b - lo-' cm, R - 
cm, and x,- cm we obtain v,(T) < u ,  at T < T, 
c ~ ~ - ~ T , [ c ] ~ / ~ ,  where [c] is the dislocation density in 
cm-'. It is seen that at  c = 10' cm-2 we have v,(T) <v, 
at  all T < T,. If, e.g., c -  lo4 cm-', a value typical of 
very pure samples, then T, -10-2~,-  10 K, i.e., the 
contribution of dislocation to DW damping i s  important 
a t  low temperatures even in pure samples. 

We discuss now the influence of defects on the de- 
pendence of the DW velocity on the driving force (the 
external field Hz). Equating the magnetic pressure on 
the DW to the damping force (see Fig. 1) we get 

It i s  seen that motion takes place at low DW velocities 
if H exceeds the coercive field He= F0/2MO. We consid- 
e r  now the laws of motion at a velocity that i s  not low. 

A graphic solution of Eq. (18) i s  shown in Fig. 2. The 
form of the function v(H) depends on the sign of D. If 
D > 0, allowance for the inhomogeneities leads to a non- 
linear v(@ dependence at v 7 v, [see Fig. 2(a)], and 
then v = ( ~ M , / H / D ) ~ / ~ .  A v- H1I2 dependence was ob- 
served in Ref. 10. As already noted, the situation 
D < 0 id no less  probable. In this case it i s  easy to 
verify that at v >vl(T) = U,(T) /~  the DW motion is char- 
acterized by a negative differential mobility [see Fig. 
l(b)]. The v(H) dependence then becomes non-single- 
valued. [see Fig. 2(b).] The upper branch of v(H) cor- 
responds to stable motion of the DW, and the Walker 
limit w, i s  not reached. The role of the limiting veloc- 
ity of the stationary motion i s  assumed by v,(T), which 
depends strongly on the temperature, has nothing in 
common with v, and i s  determined by the dislocation 
density and by the EW mobility. 
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"Analysis shows that the result  F , = F ~ + D V ~  is general and is 
not connected with the defect model chosen here. An insuf- 
ficiently consistent analysis (e. g., without allowance for the 
change of the DW structure) can yield the formula F , = F o + B u .  

 he DW mobility is determined by B2 o r  B,, depending on the 
crystal parameters? We shall assume B2 < B3; this is typical, 
e. g., of ferrite films with large so-called quality factor Q 
(see Ref. 9). 
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