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The effect of a magnetic field on the spontaneous polarization, the soft-mode frequency, and the Curie 
temperature of a ferroelectric phase transition is considered within the framework of the vibronic theory of 
ferroelectricity, in which the structural phase transitions are attributed to the cooperative Jahn-Teller 
pseudoeffect (the mixing of the electronic bands by the transverse optical vibrations). In contrast to previous 
investigations, the dispersion of the vibronic constants and the mixing of the electronic states by the magnetic 
field are taken here into account; the influence of these effects on antiferroelectric phase transitions is also 
analyzed. Estimates in the two-band model show that the Curie-point shift can attain a value of several 
degrees in 10-T fields, and may have opposite signs in ferro- and antiferroelectrics. 

PACS numbers: 77.80.Bh 

5 1. INTRODUCTION netic field on antiferroelectric phase transitions is  also 

The electronic-vibrational character of the structural considered. 

phase transitions that occur in certain classes of 
crystals has now been reliably established (see, for 

52. CALCULATION OF THE QUADRATIC-IN THE 

example, Refs. 1 and 2). These phase transitions have 
MAGNETIC FIELD-CORRECTIONS TO THE 

characteristic features due to the important role played 
POLAR IZATION OPERATOR 

by the electron subsystem. In particular, such phase We cannot, in considering the effect of a uniform 
transitions a r e  significantly affected by external fields, magnetic field H on the electron subsystem of a crys- 
which act directly on only the electron subsystem. tal, use the standard perturbation theory. This is due 

Of special interest is the change in the properties of 
vibronic ferro- and antiferroelectrics in strong mag- 
netic fields. In these crystals the symmetric-lattice- 
configuration instability that induces the soft mode and 
the ferroelectric phase transition is due to the strong 
interband electron-phonon (vibronic) interaction. The 
possibility of using a magnetic field a s  a test for the 
verification of the actuality of the vibronic mechanism 
of lattice instability in specific compounds was f i rs t  
pointed out in Ref. 3 (see also Ref. 4 for a review). A 
magnetic-field-induced ferroelectric-phase-transition- 
temperature shift was f i rs t  observed indirectly in the 
compound Pb,-,Ge,Te by Murase et al.' The systema- 

to the fact that the operator representing the interaction 
between the uniform magnetic field and the electron sub- 
system contains explicitly the vector potential, which 
diverges at large distances. To obviate the complica- 
tions connected with the occurrence of singular pertur- 
bation matrix elements, let us use a method that has 
been used to analyze the diamagnetic susceptibility 
of  solid^.'^.'^ Let us consider the behavior of ferro- 
electrics in an inhomogeneous magnetic field (H 11 z )  
described by the periodic vector potential A = (-HP-' 
sin py , 0,O); by passing in the final expressions to the 
limit p- 0, we obtain the corrections to the ferroelec- 
tr ic characteristics in a homogeneous magnetic field. 

tic experimental investigation of the effect of a mag- The Hamiltonian of a vibronic ferroelectric located in 
netic field directly on the permittivity, the spontan- an inhomogeneous magnetic field can be represented in 
eous polarization, and the Curie temperature of a num- the following form: 
ber of ferro- and antiferroelectrics has just 

a-Ho+H,+H*, (1) 
Theoretically, the question of the effect of a magnetic 

field on the properties of ferroelectric crystals is con- 
sidered in Refs. 3 and 10- 15. In these papers, how- 
ever, individual particular cases a re  considered; and, 
as  will be shown below, some of the assumptions used 
in these papers, in particular, the neglect of the dis- 
persion of the vibronic constant, a re  not always valid. 

In the present paper we derive on the basis of pertur- 
bation theory expressions for the quadratic-in the mag- 
netic field-corrections to the ferroelectric character- 
istics under certain quite general assumptions about 
the structure of the electronic spectrum and the dis- 
persion of the vibronic constant. These general ex- 
pressions a re  analyzed within the framework of the 
two-band model of the vibronic ferroelectric for a num- 
ber of actual particular cases. The ef fec t  of a mag- 

where Ho is the Hamiltonian in the absence of external 
fields and H, and H, describe the linear and quadratic- 
in the vector potential-interactions of the electron sub- 
system with the inhomogeneous magnetic field. The 
Hamiltonian Ho is given in the second-quantization rep- 
resentation by the following expression3: 

where the f i rs t  two terms describe the energies of the 
noninteracting electron and phonon subsystem; c: and 
Rw, respectively denote the electronic and phonon spec- 
t ra ;  a," and 4 are  respectively the creation and an- 
nihilation operators for the electrons in the v-th band 
with wave vector k; b,+ and b, are  the creation and 
annihilation operators for the transverse optical pho- 
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nons with wave vector q. The last term in (2) des- 
cribes the interband electron-phonon interaction, 

being the vibronic constant, which, in the 
general case, depends on the incoming and outgoing 
momenta of the scattered electron. 

The operator representing the interaction between the 
electron subsystem and the inhomogeneous magnetic 
field has, in the second-quantization representation, 
the form 

where a, = e ~ / m c  and m is the mass of the free elec- 
tron. The parameters G''', and ST', in (3) and (4) a re  
defined by the relations 

where v, is the volume of the unit cell and the U,V are  
the Bloch amplitudes. 

Let us consider the renormalization by the magnetic 
field of the soft-optical-mode frequency, which is given 
by the expression 

The polarization operator ll, can, under the assumption 
that the electronic bands a re  nondegenerate and a re  
separated by a gap that significantly exceeds the Debye 
phonon frequency and the cyclotron quantum, be repre- 
sented in the form of an expansion in powers of the 
vibronic constantls: 

where llA2), I I ~ ~ ) ,  etc. a re  respectively the polarization 
operators of second, fourth, etc. orders in the elec- 
tron-phonon interaction constant. In the absence of a 
magnetic field, the second-order polarization operator 
for a vibronic ferroelectric described by the Hamilton- 
ian H, is negative. If we limit ourselves in the expan- 
sion (9) to the consideration of the f i rs t  term, then the 
symmetric configuration of the system becomes un- 
stable upon the fulfillment of the condition I 1. 
The temperature dependence of 1162) is determined by 
the temperature dependence of the electronic occupa- 
tion numbers. Therefore, in systems with wide for- 
bidden bands, i.e., for E,>> kT,, the second-order 
polarization operator practically does not depend on 
temparature. The fourth-order polarization operator 
is positive. Its temperature dependence, in contrast 
to the temperature dependence of I I ~ ~ ) ,  is determined 
by the phonon occupation numbers, a fact which allows 
us to explain the observed temperature dependence of 
the phonon spectra of ferroelectrics. As the tempera- 
ture rises,  the stabilizing contribution from 11:) in- 
creases. If ~ 6 ~ )  turns out to be equal to 11 +H?)(O)( a t  
some temperature T =T,, then the symmetric configura- 
tion of the system will be stable a t  T >  T,, i.e., the 

FIG. 1. The diagrams determining the corrections, quadratic 
in the field and the vibronic interaction, to the polarization 
operator (the solid circles denote the electron-phonon vertex; 
the crosses and the crossed open circles, the interactions 
linear and quadratic in the magnetic field). 

system will undergo a phase transition from the ferro- 
into the paraelectric phase. 

The polarization operator changes by an amount 
All, in a magnetic field. Let us assume that the fourth- 
order polarization operator depends linearly on the tem- 
perature in the high-temperature region (k~>Rw,) ,  and 
determine the phase transition temperature T, in a 
magnetic field from the condition that the soft-mode 
frequency vanish a t  this temperature. As a result, we 
obtain for the relative phase-transition-temperature 
shift the following expression: 

where AT, = T,(H) - ~ ~ ( 0 ) .  Notice that the quantity 
(1 + ll: )(o) 1 is significantly smaller than unity. This 
circumstance allows us to obtain appreciable shifts 
in the phase transition temperature for relatively small 
changes in the polarization operator. Earlier" we 
showed that the magnetic-field-induced corrections to 
the fourth-order polarization operator contain an addi- 
tional smallness parameter (tiw,/E,) in comparison 
with the corrections to ll$). Therefore, below by All, 
in (10) we shall mean the magnetic-field-induced cor- 
rection to the second-order polarization operator. Fig- 
ure 1 shows the diagrams that determine the quadratic- 
in the magnetic field-corrections to the polarization 
operator. The diagrams 1 and 2 describe the correc- 
tions to the polarization operator that a re  due to the 
renormalization by the linear-in the magnetic field- 
coupling of the electron Green functions. The diagram 3 
corresponds to the renormalization of the electron- 
phonon vertices by this coupling. The diagrams 4 and 
5 describe the corrections due to the quadratic-in the 
magnetic field-interaction H,. The analytic expres- 
sion corresponding to these diagrams have the form 

where 

-- - 

I," ( p )  = Sp[Ba,a-q(q) Gi-qra-q.a-q-pGa-q-pBh-q-p,k-P(-9)  GI-P~I -P , ) IG*I~  
k . r  

(14) 
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In the expressions (12)-(16) the trace is evaluated with 
respect to the band indices. The electron Green func- 
tion G, is a diagonal matrix with elements G,VU=[iw 
- &;I-', and the elements of the matrices B, ,,-,(q) and 
rkc,  are  defined in (2) and (5) respectively. 

The corrections to the polarization operator in a 
homogeneous field are  obtained from the relations 
(11)-(16) by going over to the limit p-  0. To determine 
these corrections, let us expand the right members of 
(12)-(14) in powers of p, limiting ourselves to the 
terms quadratic in P. Then the sum over i in the 
formula (11) does not contain zeroth-order terms, 
since 

I,' (0) +I: (0) +1,3 (0) -1," ( 0 )  +I," (0) 

This can most easily be verified by going over in the 
zeroth-order terms from the Bloch representation to 
the Luttinger-Kohn representation in the same way as 
was done in the analysis of the diamagnetic suscep- 
tibility of solids.17 There a r e  no terms linear in p be- 
cause ~ i ( p )  +I:(+) is an even function of p. The 
quadratic-in p-terms in the expansion of I;(P) 
+I:(+) give a correction in a homogeneous field: 

where 

The expression for AIT,- is obtained from (17a) by 
making the substitution x- y. 

To carry out further calculations with this formula 
without any assumptions about the structure of the elec- 
tronic spectrum is not quite simple. But it is possible 
to  draw certain conclusions about the mechanisms 
underlying the effect of a magnetic field on the dielec- 
tric properties of polar crystals on the basis of the 
relations (17). It can be seen from the expressions 
(10) and (17) that the magnetic-field-induced phase- 
transition-temperature shift is greatest in compounds 
whose electronic spectrum, vibronic constant, and 
r k c ,  matrix (or at least one of these quantities) have 
large electron-wave-vector derivatives. Notice that it 
has thus fa r  been assumed2 that the effect of a 
magnetic field on the ferroelectric characteristics is 
strongest in compounds with small effective masses,  
i.e., in compounds with large derivatives of the elec- 
tronic spectrum. In compounds with narrow allowed 
and wide forbidden bands, the corrections due to the 
dispersion of the electronic spectrum a re  small, since 
each differentiation of the electron Green functions 
yields an additional smallness parameter, a/h, where 
a, is  the allowed-band width and A is the mean band 
spacing. Of greater importance in the case of these 
compounds is the occurrence in them of the dispersion 
of the vibronic constant and the r,,,, matrices (if ,  
of course, the derivatives of these quantities are  not, 
for some reasons, equal to zero), since the electron- 

wave-vector derivatives of these quantities do not pro- 
vide additional smallness parameters of this type Q/A. 

Let us note another circumstance connected with the 
fact that the r,,,, matrix has, generally speaking, off 
diagonal-in the band indices-elements, which des- 
cribe the mixing of states from different bands by the 
magnetic field. Thus, besides the intraband interaction 
with the field, which is considered in detail in Refs. 2 
and 10-15, the interband interaction, which has not 
been considered before, makes a contribution to the 
expression (17). If the contribution from the intraband 
interaction is proportional to the allowed-band width and 
tends to zero a s  cu - 0, the contribution of the inter- 
band mixing does not contain this parameter. In princi- 
ple, the contribution of this interaction can be nonzero 
even in compounds with extremely narrow allowed 
bands. Below we shall show that in a number of cases 
the interband interaction with the field makes the dom- 
inant contribution to the correction to the polarization 
operator. 

53. ANALYSIS OF THE CORRECTIONS TO THE 
POLARiZATION OPERATOR I N  THE TWO-BAND 
MODEL 

The subsequent analysis of the effect of a magnetic 
field on ferroelectric phase transitions will be perfor- 
med within the framework of the two-band model. In 
this case the matrices Bk,,-,(q) and G, are  given by the 
expressions 

3.1. Absence of dispersion of the vibronic constant 

A.  The intraband contribution. Let us neglect the 
dependence of the vibronic constant on the incoming and 
outgoing momenta of the electron scattered on the 
B,,,,,(q)= Be, a s  well as the off-diagonal-in the band 
indices-elements of I?, ,, .. The expression (17) con- 
tains, besides the matrices r, $,, the f i rs t  and second 
electron-wave-vector derivatives a 2 r k  ,, ,/a k: and a2 r, ,,./ 
ak: of these matrices. It can be shown that these 
derivatives a re  proportional to a2&i/8k,aky and a3c,V/ 
ak,ak2, respectively. In the case of the dispersion law 
(22) considered below these derivatives are  equal to 
zero. Therefore, only the derivatives of the electron 
Green functions need be taken in the differentiation with 
respect to ky in (17a). Taking account of the fact that 
ti2(k, + c:) =ma &,V/akr, we obtain for the matrix r,., the 
following expression: 

Using the expressions for the electronic functions, the 
vibronic constants, and the matrices r,,,, we compute 
the trace with respect to the band indices in (17), and 
then perform the summation over w. As a result, we 
have for the expression 

where 
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a kUa E:-~-E;~ ----I}. E : - ~ - E ~  ak, ak, (21) 

The expressions (20) and (21) have been derived under 
the assumption that the valence band i s  completely 
filled, while the conduction band is empty. 

To evaluate the sums entering into (20), we must 
make assumptions about the dispersion of the electronic 
spectrum. Let us consider the correction to the polar- 
ization operator in the case when the electronic spec- 
trum is given by the expression 

where ffz is  the effective mass. Performing the summa- 
tion over k in (20), we obtain for Ano the following 
expression: 

where E, =ti2#/fia2, = c t i / ~ e ,  and a is the lattice 
constant. In deriving these relations, we took into 
account the fact that ( lIt'(0) I = 1. The expressions 
(23) coincide with the results of the earlier calcula- 
tions,IO-l5 in which the Landau basis was used in the 
case when Fin,<< E,, E,. 

Generally speaking, the dispersion law (22) is typical 
only in the vicinity of the extrema of &,. The contri- 
bution to the polarization operator is  determined by the 
states in the entire Brillouin zone; therefore, i t  is 
necessary to use the approximation of c, that takes 
account of the main characteristics of the spectrum 
over the entire zone. In particular, it is necessary to 
remember that the derivatives a &,/ak, change sign 
when we go from k = O  to k = n / a  This turns out to be 
especially important in the analysis of the antiferroelec- 
tr ic transitions induced by the vibronic mixing of the 
states whose wave vectors differ by n / a  In view of 
this, let us consider the corrections to the polariza- 
tion operator in the case when the electronic spectrum 
is given by the expression 

E:"'=+ [ '/'A-a (COS k,a+cos k,a+cos k,a) 1. (24) 
The anisotropy of the electronic spectrum (24) gives 

rise to a situation in which the correction to the polar- 
ization operator in a magnetic field depends on the 
orientation of the magnetic field with respect to the 
crystallographic axes of the crystal. For an arbi- 
trary orientation of the field the electron-wave-vector 
derivatives of the matrices I?, ,,, in (17a) a r e  generally 
nonzero, which significantly complicates the final ex- 
pressions for AII,. We shall consider the simpler situ- 
ation in which the field is oriented along one of the prin- 
cipal crystallographic axes. In this case the assump- 
tions within the framework of which the expression (20) 

was derived remain valid. The summation over k in 
(20) with the spectrum (24) can, when a << A, easily be 
performed after expanding f ,(k) in a power series in 
the ratio O/A. As a result, we obtain for AII, the ex- 
pression 

The terms proportional to a re  equal to zero in 
this case because of the fact that they a re  proportional 
to an integral whose integrand is a derivative of a 
function that is periodic over the Brillouin zone. 

The corrections to the polarization operator in the 
case  of nonzero values of the phonon wave vector (the 
antiferroelectric situation) depend essentially on the 
mutual orientation of the magnetic field H and the wave 
vector q. The correction coincides with the expression 
(25) when the magnetic field is  parallel or antiparallel 
to q. In this case, however, we took into account the 
fact that lIIp)(0) I =  1, where q is the limiting phonon 
momentum. When the components of the wave vector q 
in the plane perpendicular to the field (Hllz) a re  non- 
zero, the corrections to the polarization operator have 
the form 

1) q= (nla, 0 ,  nlla) .or q= (0 ,  n/a, nlla), A n r ~ - ' / z ( a / A ) ( ( a / R ) ' ,  

2) q= (nla, nla, nlla) , AIIq=O. 

The expressions for the corrections to the polarization 
operator a r e  completely determined by specifying the 
component q,, and does not depend on qll. This is be- 
cause the magnetic field does not reconstruct the elec- 
tronic states along the field. 

Thus, the intraband corrections to the polarization 
operator in the absence of dispersion of the vibronic 
constant stabilize the symmetric configuration of the 
ferroelectric, and shift the ferroelectric phase transi- 
tion temperature toward the region of low temperatures. 
The effect of a magnetic field on antiferroelectric phase 
transitions in the presence of intraband interaction 
with the field has a more complicated character. In the 
final analysis, the sign and magnitude of the effect 
a re  determined by the mutual orientation of the mag- 
netic field and the wave vector along which the antifer- 
roelectric ordering occurs. 

B. The interband contribution. Let us now consider 
the question how important the off-diagonal-in the band 
indices-elements of r,,,, a re  in comparison with the 
intraband interaction, for which purpose we retain only 
the off -diagonal-in the band indices-elements in the 
r,,,, matrix. The dispersions of the rkc.  matrices and 
the vibronic constant B,,,-,(q) a re  interrelated, and a re  
determined by the dispersion of the Bloch amplitudes. 
Therefore, we must s e t  the electron-wave-vector deri- 
vatives of the r,,,, matrices in (17) equal to zero, as-  
suming that there is no dispersion of the vibronic con- 
stant. Using the explicit forms of the vibronic constant, 
the electron Green functions, and the r k , k ,  matrix, we 
compute the trace with respect to the band indices and 
perform the summation over w. The expression thus 
obtained for AII, for arbitrary q has quite an unwieldy 
form. The expression for the correction to the polar- 
ization operator is significantly simpler in the case of 
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ferroelectric phase transitions (q =O): 

Let us analyze this expression further, using the f-sum 
rule18: 

The dominant contribution to the sum over p in the 
relation (27) is made by the states close in energy to 
E:. Within the framework of the two-band model, the 
dominant contribution will be connected with the transi- 
tions between the conduction and valence bands, i.e., 
between the bands, the interband electron-phonon mix- 
ing of which leads to the instability of the symmetric 
configuration of the system. Taking account of the 
foregoing, we obtain from the relation (27) for lPi:k(2 
the following expression: 

This relation is fulfilled with a good degree of accuracy 
in compounds with a narrow forbidden band.lg Sub- 
stituting (28) into (26), we obtain for An, the expres- 
s ion 

(29) 
In the case when the electronic spectrum is given by 
the expression (22), it is  easy to obtain the following 
approximate expression for An,: 

It can be seen from this that the dependence of the cor- 
rection An, on the parameters of the spectrum in com- 
pounds with narrow forbidden bands is the same as in 
the case of the intraband interaction, but the numerical 
coefficient is  almost five times greater. In compounds 
with wide forbidden bands, the magnetic-field-induced 
correction to the polarization operator contains the 
square of the small parameter E,/E, ,  whereas in the 
case of the intraband interaction the correction is pro- 
portional to the cube of this parameter. The sign of 
the correction is negative. This means that the inter- 
band interaction with the magnetic field increases the 
instability in the system, and shifts the ferroelectric 
phase transition temperature toward the high-tempera- 
ture region. 

3.2. Allowance for the dispersion of the vibronic constant 

A. The intraband contribution. To analyze this 
situation, let us neglect in the expression (17) the wave- 
vector derivatives of the electron Green functions and 
the constants rkcp and, furthermore, retain only the 
diagonal-in the band indices-elements in the rhct 
matrix. Then for An,  we easily obtain the following 
expression 

The electron-wave-vector derivative of the vibronic 
constant entering into the relation (31) can be estimated, 
using the expressions obtained in Ref. 20 for Bk,,-,(q) in 
the tight-binding approximation. If we limit ourselves 
in the expressions for a,,-,(q) to the consideration of 
the interaction with the immediate surroundings, then 
we obtain for the second derivative of the vibronic con- 
stant the expression 

For the subsequent estimates of the correction to the 
polarization operator, the dispersion of the vibronic 
constant is  no longer s o  important. Therefore, in com- 
puting the sum over k in (31), we replace I ~ , ~ - , ( q )  1' 
by some mean value 4,. Using the electronic spectrum 
given by the expression (24), we obtain for AII* (for 
a << A) the expressions 

Hence it is clear that, in the case of narrow allowed and 
wide forbidden bands, the corrections to the polariza- 
tion operator in the presence of dispersion of the vib- 
ronic constant and intraband interaction with the field 
a re  significantly greater than the intraband corrections 
in the absence of dispersion of B,,,-,(q), since they 
contain only the square of the small parameter a/&. 
The corrections in the case of ferro- and antiferroelec- 
tr ics a re  opposite in sign. This is due to the fact that 
the derivative product (a&:/ak,) (atf&,/ak,) in (31) 
changes sign on going from q =O to q =n/a. 

B. The interband contribution. Let us consider the 
situation in which the allowed-band widths a re  signifi- 
cantly smaller than the energy distance between the 
bands. In this case we can neglect the diagonal-in the 
band indices-r,,, , -matrix elements, which a re  pro- 
portional to the allowed-band widths. Furthermore, 
let us neglect the derivatives of the electron Green func- 
tions in (17), since the differentiation of G,  yields an 
additional smallness parameter (@/A). With allowance 
for the foregoing, we compute the trace with respect to 
the band indices, and perform the summation over w in 
(17a). As a result, we obtain the following expression 
for An,: 

Here we neglected the dispersion of the electronic spec- 
trum, replacing the energy denominators by the mean 
distance A between the bands. 

For further analysis of the expression (33) we need 
to know the dependence of the vibronic constant and the 
r, ,, ,-matrix elements on the electron wave vector. 
These dependences can be established in the tight- 
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binding approximation if we have specified the sym- 
metry of the crystal lattice and the structure of the 
atomic states from which the bands active in the phase 
transition a r e  derived. Such an analysis shows that the 
correction to the polarization operator in the case of 
ferroelectric phase transitions is negative and equal in 
order of magnitude to 

where E, =Ea&/m and P, is the band-averaged value 
of the interband matrix element of the momentum op- 
erator p2. Notice that the parameter E,E,/A~ can be 
greater than unity. 

$4. CONCLUSION 

It follows from the above-performed analysis that a 
magnetic field should be expected to have an appreciable 
effect on ferro- and antiferroelectric phase transitions 
when there is strong dispersion of the electronic spec- 
trum and (or) the vibronic constants and the matrix 
elements of the momentum operator, which dispersion 
is determined by the dispersion of the Bloch ampli- 
tudes. In compounds with narrow forbidden and wide 
allowed bands, the dominant contribution to the second- 
order polarization operator is made by the states close 
to the forbidden band. The dispersion of the spectrum 
in this interval is strong, whereas that of the Bloch 
amplitudes is weak. In compounds with wide forbidden 
and narrow allowed bands, the contribution to the polar- 
ization operator is made by the states in the entire 
Brillouin zone. The dispersion of the electronic spec- 
trum in this case is weak, while that of the Bloch ampli- 
tudes is strong. Thus, in compounds with Eo >> E,, the 
dominant mechanism underlying the effect of a magnetic 
field on the dielectric properties of polar crystals is 
connected with the interband interaction with the field 
and the strong dispersion of the electronic spectrum 
(Subsec. 3.1B). In compunds with E,<< E,, the dominant 
contribution to the correction to the polarization opera- 
tor is determined by the interband interaction with the 
field and the dispersion of the vibronic constant of the 
matrix elements of the momentum operator (Subsec. 
3.2B). 

The conclusion concerning the relative actuality of the 
interband interactions with the field can be drawn on 
the basis of the following arguments. Since the stability 
of the symmetric configuration of the system is due 
to the interband electron-phonon coupling, irrespective 
of the intraband and interband interactions with the 
field, the correction to the polarization operator con- 
tains one and the same power of the energy gap in the 
denominator (the cases 3.1A, 3.1B and 3.2A,3.2B). In 
this situation the question which interaction makes the 
dominant contribution to the correction All, reduces to 
the question of the relative magnitude of the intraband 
and interband matrix elements of the perturbation. In 
compounds with narrow forbidden and wide allowed 
bands this relation is most easily understood within the 
framework of the k. p method, in which the dispersion 
of the electronic spectrum is determined by the inter- 
band matrix element P,, of the momentum operator. 

In this case i t  turns out that both the intraband and 
interband interactions with the field a r e  proportional 
to P,, but the intraband matrix elements of the pertur- 
bation contain a coefficient of the type 

I t  can be shown that the interband interaction predomin- 
ates over the intraband interaction in compounds with 
narrow allowed bands a s  well because of the smallness 
of the allowed-band width. Indeed, as a comparison of 
the expressions obtained above for An, shows, the 
greatest T, shifts occur in the situations 3.1B and 
3.2B. It follows from the formulas (30) and (34) that 
All, is of the order of ( u / R ) ~  in these cases. It follows 
from this that, in fields of intensity 10 T ,  the relative 
phase transition temperature shifts range from 0.1 to 
1% (a-4 A, 11+11~)1-10-~-10-~). The absolute shifts 
can then attain values of several degrees. 

The general expression (17) for the correction to the 
polarization operator was derived in the quadratic- 
in the magnetic field-approximation. It is clear that 
this does not impose any serious limitations on the 
field strength. Indeed, the expressions obtained a r e  the 
f i rs t  terms of the expansion of the polarization opera- 
tor in a power series in the ratio ( u / R ) ~ ,  and for the 
attainable field intensities 10-102 T this parameter is 
significantly smaller than unity. 

Notice, however, that the electron (hole) gas in 
compounds with a high concentration of free electrons 
(holes) is degenerate in sufficiently high fields. The 
corrections to the polarization operator then have an 
oscillatory component a s  a result of the passage of the 
Landau level through the F e n n i  surface. Experiment- 
ally, this effect has apparently been observed in the 
compount Pb,-,Sn,Te in fields of intensity higher than 
8 T (Ref. 5). The analysis performed allows an ade- 
quate description of the monotonic component (-p) of 
the correction; the analysis of the oscillatory effects 
requires approximations of higher orders in the field. 

Furthermore, we neglected the possibility degeneracy 
and Zeeman splitting of the bands. I t  is not difficult to 
show that allowance for the degeneracy in the determin- 
ation of the integrated-over the electronic spectrum- 
corrections to Ha leads to a change in the final results 
equal to ( k , ~ ) ~ ,  where ko is the dimension of that region 
in k space where the cyclotron quantum is either 
greater than, o r  equal to, the band spacing. Allowance 
for the Zeeman splitting of the bands may turn out to 
be important in the case when the g factors in the 
conduction and valence bands a r e  opposite in sign and 
the spin splitting of the bands is greater than the cyclo- 
tron quantum. This effect is considered in Ref. 15, and 
used to explain the shift, experimentally observed in 
the compount Pb,-,Ge,Te, of the phase transition tem- 
perature toward the region of high temperatures. This 
explanation cannot be considered to be satisfactory, 
since in the lead chalcogenides the observed values of 
the spin splitting of the bands a re  roughly two times 
smaller than the cyclotron quantum." The shift of the 
phase transition temperature toward the high-tempera- 
ture region in these compounds should apparently be 
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interpreted with allowance made for the above-con- 
sidered mixing of states f rom different bands by the 
magnetic field (Subsec. 3.1B). 
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