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A phenomenological theory of reorientation transitions in a plate of thickness d is constructed. The &t of 
the surface is described by introducing a surface energy containing the surface-anisotropy constant k:. The 
character of the phase diagrams is determined by the quantity u -k: (uM,,/@) (k'/k,), where k ,  is the second 
anisotropy constant, p is the Bohr magneton, M, is the magnetic moment per unit volume., and O is the Curie 
temperature. It is shown that in plate. of finite thickness the phase diagrams differ substantially from the bulk 
diagrams. In particular, increasing the plate thickness can eliminate the phase transitions. The 
thermodynamic characteristics for second-order phase transitions and the fluctuation level are calculated. A 
criterion for the applicability of the Landau theory is obtained. 

PACS numbers: 75.30.Kz, 75.40.D~ 

INTRODUCTION 
F - W  j[ c (s) '-k, sin2 0-kisin9 &+Maak, sina(O.-q) (4) 

Magnetic orientational transitions, frequently called I 
spin-reorientation transitions, a r e  typical examples of and the Lagrange-Euler equation for the functional (4) 
transitions of the order-order type. These transitions takes the form 
manifest themselves most strongly in rare-earth mag- 
nets.' Owing to the substantial difference between the 

cbB/&'+ (k,+2kr sin' 0) sin 0 cos 0=0. 

anisotropy energy and the exchange energy, spin-orien- The boundary condition is obtained from the require- 
tation transitions a r e  well described phenomenologically. ment that the variation with respect to 8, 
The purpose of the present study is to investigate the k. 
role of surface energy in the construction of the phase 1 - -sin2(9-@,) 

& & 2c (6) 

diagram of the magnet. 
vanish. 

We s tar t  from a description that is valid far  from the Using (3), we can reduce the first  integral of (5) to the 
Curie point and presupposes that the problem can be form 
rediced to a study of the anisotrop'y energy: 

Substitution of (7) in (4) transforms the functional F into 
where is the magnetic moment per unit is a function of go and 6,. Introducing the notation 
the angle between the direction of the magnetic mo- 
ment and the chosen axis of the crystal, k ,  and k, a r e  sin' OO=u, sin20.=v, k.Yc-E., 

the first  and second anisotropy constants, with kl = ar,  
r =  (T - T,)/T,<< 1 (we se t  a! > O  for the sake of argu- 
ment); k, can be regarded a s  constant in the considered 
temperature region. The inhomogeneous exchange in- 
teraction is taken into account in natural fashion in the 
thermodynamic potential by the term c(dO/dx)', where 
c -a?O/pMO(a is the distance between the atoms, p is 
the Bohr magneton, and 8 is the Curie temperature). 

The problem was solved e a r l i e p  for a half-space. 
We consider here a plate of finite thickness (I x 1 d). In 
analogy with Ref. 2 we introduce the surface energy1 

Mo-Y,,,-A. sin2(0.--cp), (2 

where k ,  is the surface anisotropy constant (measured 
in centimeters), 8, is the value of the angle O on the 
sample surface, and the angle cp specifies the direction 
of the easy-magnetization axis on the surface. We as- 
sume that the surface-anisotropy constants a r e  the 
same on both sides of the plate, in which case a sym- 
metrical distribution of the magnetization (O(x) = 0(-x) )  
is the most convenient. This allows us to restrict  our- 
selves to a "half-plate ," putting 

we obtain 

~(sin'cp+v cos 2cp-[v(l-v) ]"'sin 2cp) (8) 
[it is seen directly from (7) that k, + k,(u + v) G 01. Al- 
though the extremum conditions a r e  unwieldy, 

2dc-"= {x(1-z) (2-u) [-k,-k,(s+u) 1)-'dx, (10) 

they lend themselves to  qualitative and quantitative 
analysis. For  the solution to be stable we must have 

The problem has essentially been reduced to finding 
the stable minimum of the function (8) of the two 
variables u and v. 

1. PHASE TRANSITIONS IN A PLATE FOR A FIRST- 
ORDER PHASE TRANSITION IN A BULK SAMPLE 
(kz > 0 )  

d0Idx l,,o=O. (3) We consider f i rs t  the case (p=n/2. From (3), (5) 
The total free energy of the half-plate is thus and (6) it follows directly that the extremum conditions 
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a r e  satisfied for the homogeneous states 8 = 0  (we call 
such a state phase I) and 8=n/2 (phase II). If k, >0, the 
absolute minimum of the potential corresponds to phase 
II ithis is  seen from (I)], s o  that in this case the phase 
transitions can be observed only a t  k, <O. 

We determine now the stability regions of the homo- 
geneous state. We s tar t  with the case 8 10. For  a 
small deviation 68(r) the linearized Lagrange-Euler 
equation 

must be supplemented by the boundary conditions 

Representing 68(r) in the form f ( x )  exp(ix. p), where 
x = (x,, H,) and p = (p,, p,) a r e  two-dimensional vectors, 
we have from (12) and (13) 

and from the boundary conditions we obtain an equation 
for I xi: 

The condition for the stability of phase I consists in the 
absence of real  solutions of Eq. (15), for otherwise the 
solution 8 = O  is not a state of local minimum of the 
function (8). This condition, a s  follows from (15), is 
satisfied only if 

6>P, arth p1=600(kl),  Pi=(k,lkl)"'<l. (16) 

The subscripts c600" indicate that u = v = 0. 

For  phase 11, a similar analysis leads to a stability 
region 

6<$2 arctg P2~611(k1), 

Pz=[E./( I kl I -2kz)I ", 1 kl  122k2. 
(17) 

In Figs. 1-5 these a r e  the regions located respectively 
above the line 1 (region of stability of the state 8 10)  
and below the line 2 (stability region of the state 8 1 n/2). 
The locations of the lines 1 and 2 on the (k,, 6) plane 
depend, a s  will be shown below, on the ratio /ckZ =u, 
which is in fact the measure of the surface anisotropy. 
We emphasize the following: since k ,  = k:a, and k: is 
a dimensionless quantity of the same nature a s  k,, i t  

FIG. 1 .  Phase diagram in the variables k, and 1/6 for the 
case a <  1. Thick line-first-order transition between phases 
I and 11, 1, 2) lability boundaries of these phases; oblique 
shading-stability region of phase I; vertical shading-sta- 
bility region of phase 11. 

follows that 

can have in essence any positive value, since the sur-  
face-anisotropy constant depends on the surface finish 
and can vary in a wide range. 

To determine the character of the transitions we must 
find the stability region of the inhomogeneous state 
(phase 111), i. e. , solve Eqs. (9) and (lo), which take a t  
cp = n/2 the somewhat simpler forms 

2)  (x-u)  [Ikl l -k , (z+u) I}-"dz. (19) 
I 

With allowance for (18) and (19), the conditions (11) 
lead to the following inequalities: 

where 

The integrals in (22) cannot be expressed in terms of 
elementary functions, s o  that a direct determination of 
the stability region of the inhomogeneous solutions is 
difficult. 

If i t  is assumed, however, that a t  least one of the 
lability boundaries of the inhomogeneous state coincides 
with the lability boundary of the corresponding homo- 
geneous phase,2) the character of the transition upon 
intersections of curves 1 and 2 can be determined by 
investigating the stability of the inhomogeneous states 
u, v << 1 and 1 - u, 1 - v << 1, of which a t  least one must, 
a s  shown above, of necessity determine the phase 111 
near i ts  lability boundary. If any one of these states is 
stable, then passage through curve 1 o r  2 is accom- 
panied by a second-order phase transition. Thus, sub- 
stituting in (20) and (21) the solution of the system of 
equations (18) and (19) with u ,  v ,  << 1 we obtain the con- 
dition for the stability of the inhomogeneous state 

At u < l  the inequality (23) has no solutions, i. e. , 
there a r e  no stable states u, v << 1. In this case line 1 
is therefore the boundary of the lability region of phase 
I relative to a transition into phase II (see Fig. 1). 

If l < u < 3 ,  thenline 1 onthe section (k,l<Ik,,~, 
where 

is a second-order phase-transition line. The corre- 
sponding phase diagrams a r e  shown in Figs. 2 and 3. 
It is seen that a second-order transition is possible for 
plates of thickness d>c6,,(k1,)/k, [see (16)]. 
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FIG. 2. Phase diagram in the variables kt and 1 / 6  for the 
case 1 <a< 2. Thin line-second-order phase transition; 3) 
lability boundary of phase 111; horizontal shading-stability 
region of phase 111; the thick line in the region 6  > d corre- 
sponds to equality of the potentials of phases I1 and In; 6  = 6 ,  
s600(k10) determines the tricri t ical  point of the phase transi- 
tioq (the point K). The remainder i s  the same as in Fig. 1. 

If u1- 3, inequality (23) is satisfied for arbitrary 8, 
(but 8, -' 1 a s  before), i. e. , a second-order phase 
transition must take place between phases I and 111 (Fig. 
4). 

For  the stability of the state 1 - u, 1 - v << 1 we have 
similarly 

A solution of inequality (15) exists only a t  a > 3, i. e. , 
line 2 on the segment I k, I > I k,, 1, where 

is a second-order phase-transition line. This corre- 
sponds to the fact that a t  a > 3  second-order phase 
transitions take place for plates of thickness 
d<c~,,(k,,)/k, [see (IT)]. 

We consider now the phase diagrams plotted in the 
variables 1/6 and k, (Figs. 1-4). If u < 1, a second- 
order phase transition takes place between the homo- 
geneous phases I and 11; the transition line is given by 
the equation 

and the distance between lines 1 and 2 determines the 
width of the hysteresis loop (Fig. 1). At a >1, besides 
the instability regions of phases I and 11, there exists 
a region where the inhomogeneous phase 111 is stable. 
The lability boundary of this state is the line 6 = 6,(k,) 
[it corresponds in Figs. 2-4 to line 3, which is de- 
fined by Eqs. (18) and (19) and by the inequality (21), if 

FIG. 3. Case 2 <u<3. The notation is the same a s  in Figs. 1 
and 2. 6=d* i s  defined by Eq. (28). 

FIG. 4. Case u>3. Notation same a s  in Figs. 1 and 2; 
6 ,  = 61, ( k l l )  (point K'); two second-order phase transitions a r e  
realized a t  6 < 6,. 

the latter is replaced by an equality]. Analytic expres- 
sions for  the function b2(kl) can be obtained only in 
limiting cases: 

o"lnl (lk,I-kt) ( a - l ) / k , l ,  k l k  a> l ,  
hO0 ( k i )  -A (kI-klo)a,  krmklo, I<ac3 ,  (27) 
6,s (k,)-B(kt-ki,)' ,  kiwkit,  0>3. 

The coefficients A and B a re  of the order of unity (we 
do not present the expressions for them). 

We note that a t  3 >a >2 (Fig. 3) the phase I1 becomes 
unstable in the region 6 >6* with respect to a transition 
into phase III, and in the region 6 < 6* with respect to a 
transition into phase I; in this case 6* = 6*(o) is defined 
by the condition 

Particular interest attaches to the case a > 3  (Fig. 4). 
At 6 <6, the boundary of the lability of phase III coin- 
cides here with the line 6 = 6,,(k,,), i. e. , a t  small plate 
thicknesses the reorientation proceeds a s  two second- 
order phase transitions via an intermediate inhomo- 
geneous phase. 

We consider now the case when the easy magnetiza- 
tion axes make some angle p with each other, and n/4 
< p  <n/2 (if p <r /4  the substitutions 

bring us  back to the considered case). As seen from 
(4) the surface energy contains a term linear in the or- 
der  parameter, i. e . ,  i ts  action is somehow similar to 
the action of an external magnetic field. Only first-or- 
de r  phase transitions a r e  therefore possible in the sys- 
tem. An investigation of Eqs. (9) and (10) [with allow- 
ance for ( l l ) ]  shows that when the plate thickness is de- 
creased the hysteresis loop becomes narrower, s o  that 
a t  a certain 6 = 6,,(p, a )  the loop ucollapses" and the 
phase transition vanishes: u and v become single- 
valued functions of temperature having no singularities, 
and go simultaneously through the value u = v = sin2rp 
a t  the point I k, 1 = 2k2 sin2p. For  6,(rp, a )  we then obtain 
the following results: a t  u < 3 

O=fjer ( ~ 1 2 ,  a )  <6,, ( c p ,  o )  <6,, (n /4 ,  o )  =a" arctg a", 

and in the limiting cases 
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8 ,68 , ,  (s o) <bcr (n14, a )  =a" arctg a", 

where 6 = 6,(o) corresponds to the tricritical phase- 
transition point in the case q =n/2 (see Fig. 4). 

The expressions for 6,,(q, o) in the limiting cases 
(p =n/2 and q =a/4 a r e  unwieldy and will not be given 
here. 

2. PHASE TRANSITIONS I N  A PLATE FOR A 
SECOND-ORDER PHASE TRANSITION I N  A BULKY 
SAMPLE (k2 <0) 

In this case the anisotropy energy is 

f.(0) =-k, sina 0+ 1 k, 1 sin' 0 .  (30) 

We shall assume that n/4 < q <n/2 (if cp <r/4, we can 
arrive a t  the considered case in the same manner a s  in 
Sec. 1). 

We turn f i rs t  to  the case q = n/2 and consider the sta- 
bility regions of phases I and II. For  phase I we obtain, 
naturally, the same result a s  in the case k2 <O [see 
(16)J, and for phase 11 the stability region is 

The investigation is carried out next in full analogy with 
Sec. 1 and shows that in this case the situation does not 
differ from that in the bulk, i. e . ,  a t  any plate thickness 
the reorientation proceeds a s  two second-order phase 
transitions via an intermediate inhomogeneous phase 111 
(Fig. 5). 

If q #n/2, an investigation of expressions (9)-(11) 
causes u and v a t  any finite plate thickness to  be single 
valued functions of k,, having no singularities and pass- 
ing simultaneously through the value u = v = sin2q a t  the 
point k, = 2 1 k, I sin2q, i. e. , no phase transition what- 
ever takes place in the plate. 

Actually, of course, in thick plates there should be 
anomalies on the plots of u and v vs kl, inasmuch a s  
abrupt changes of the values of u and v take place in the 
narrow temperature interval 2 1 k2 I >kl > 0. 

3. THERMODYNAMIC CHARACTERISTICS 

We write down the analytic expressions for the ther- 
modynamic characteristics in the regions adjacent to 
the second-order phase transition lines. The condi- 

FIG. 5. Phase diagram in the variables k, and 1 / 6  for the 
case k2 > 0. The transition from the state 0 = O  to the state 
0-n/ 2  proceeds a t  any plate thickness in the form of two 
second-order phase transitions. The notation i s  the same 
a s  in Figs. 1 and 2 .  

tions (23) and (25), which a r e  needed for the existence 
of such transitions, will be assumed satisfied. In the 
region directly adjacent to the line 6 = 6,,(k1) (which 
determines the transition temperature T = Ted a s  a func- 
tion of the plate thickness), we have 

where a is defined in (1); X+ and X' a r e  the magnetic 
susceptibilities to the right and the left of the transi- 
tion point; AC, is the heat-capacity jump a t  the transi- 
tion point (all the quantities a re  given per unit area); 
the angle 0 is reckoned from the z axis, and the averag- 
ing is over the plate thickness. The quantities M, N, 
and P a re  functions of A and take the form 

N ( A ) = L ( A )  [1+$(2A) I" th A, M(A)=N'(A) [1+$(2A) ] ,  

P ( A )  = L ( A ) l ( A  th A)", $ ( x )  =x-I sh x, 
(33) 

L ( A )  ={$(4A) -1 -6 '  tha A  [3+4$(2A) + $ ( 4 A ) ]  sign ka)-". 

The parameter A depends on the plate thickness: 
A tanhA = 6. In the limiting cases 6 >> 1 and 6 << 1 these 
expressions become much simpler. Thus, for the 
quantity N(A) used in Sec. 5 we have 

40 

N ( A )  = 

6 B 1 ,  

where the upper and lower signs pertain to the cases 
k2 >O and k, < 0, respectively. 

We turn now to the region adjacent to the line 
6 = 6,,(k1), which determines the transition point T = T;,. 
In this case the thermodynamic characteristics take 
the form (i=1r/2-8) 

(2ac)  '" 
O n = -  Ni(A1) (Tcd'-T)"Ia-o0~.t=2Ps(At) (6-6t1)"'l~,-con~t, 

k.T." - - 
M = M ~ , ( A , ) ,  e,=eo cos A,,  

AC,=M~T.d'az~Y'M, ( A , )  lTcZk.Z, 
(34) 

Then 

Nt(Ai)=tg  Ai[1+$i(2Ai)]"L,(At) ,  M,(Ar)=N?(At)  - [1+$1(2Ai)I ,  - -- .- 

P , ( A , ) = L , ( A , ) / ( A ,  tg Ai)"', A, tg A1=6, $t(A,)=z- 's in  x,  (35) 
L,(A,)  - { [$ , (4A1)  -11 sign k,-o-, tgz A, [3+4$,(2A1) +$, ( 4 A , ) ]  sign k,)-", 

We point out in conclusion the characteristic diver- 
gence of the heat capacity C, near the critical points of 
the second-order phase transition (k, = k,, and k, = k,,). 
Thus, a s  the point K is approached (Figs. 2 and 3) 
along the second-order phase transition line we have 
(k1= kl,) 
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in full accord with the general theory (see Ref. 3, 
5 150). Similar results were obtained when the point K' 
is approached (Fig. 4). 

4. PHASE TRANSITIONS INDUCED BY AN 
EXTERNAL MAGNETIC FIELD 

We shall show that effects perfectly similar to those 
considered above appear when a study is made of re-  
orientation transitions induced by an external magnetic 
field applied to the plate-surface plane. We consider by 
way of example the case when the external field is di- 
rected along the easy magnetization axis. We assume 
that k, < 0 and q =n/2; then 

where Z=H/~M,  (H i s  the external magnetic field). We 
note that two second-order phase transitions take place 
in the volume at  the points f? = 0 and fi = 1 k, 1. 

The functional (37) is investigated in analogy with 
Sec. 1.- The phase diagrams plotted in the variables 
h = 1 - H/ 1 k1 1 and 1/6 for different values of the para- 
meter 8, = (k,/ 1 k, a r e  shown in Fig. 6. The state 
B 10 is stable everywhere a t  h >l (above the line I), and 
the state B =n/2 is stable everywhere a t  

(i. e. , under the line 2). 

Without repeating all the arguments of Secs. 1 and 2, 
we present final expressions for the characteristic 
points on the diagrams of Fig. 6: 

The point 6 = 6; exists only a t  O , > f i .  We note that at 
thicknesses 6 < 6; (or d <cb;/k,) the reorientation pro- 
ceeds a s  one first-order phase transition. 

FIG. 6. Phase diagrams in the variables h and 1/15 for the 
limiting cases  8 ,  < 1 (a) and P ,  < (b). The notation is the 
same a s  in Figs. 1 and 2. 

5. ROLE OF FLUCTUATIONS 

We investigate the regions near the second-order 
phase transitions. Let, say, k, <O. To ascertain the 
role of the fluctilations, we consider them in the phase 
B,=O. Then 6B,,(r)=B(r), and from (4) we have in the 
Gaussian approximation 

A potential of Ulis type was investigated earlier4 in a 
description of a transition in a plate from the paramag- 
netic to the ferromagnetic state. Just as in Ref. 4, we 
expand the fluctuation solution in a Fourier serieswith 
respect to the complete system of functions x:." [which 
a r e  defined in Eqs. (55) and (58) of Ref. 41: 

For  the fluctuation part of the free energy we obtain, 
taking into account only the "dangerousn symmetrical 
fluctuation with n = 1, 

where g: is the coefficient of x;= coshj.k~x[exp(ix. p)] 
( x  and p a re  two-dimensional vectors in the yz plane, 
j.k: is determined from the dispersion equation 
p;d tanhp: d = 6  (see Ref. 4), and 

Then 

and the correlation radius of the dangerous fluctuation 
in the yz plane is 

r ~ -  [ I k l l / c - ( p i ' ) a ]  -Ih (44) 

(if d = .o we have r, = [c/  1 k, 1 - R,]112, cf. Ref. 2). Tak- 
ing (44) into account, we obtain from (43) 

(((. . .)) denotes averaging over the correlation area in 
the yz plane, besides the statistical averaging). 

Below the phase transition point we have 

where B,,(x) is determined by the solution of Eq. (5) 
Lwith account taken of (3) and (6)]: Near the transition 
point we have 

eeq(x)  =go ch Pt'X, 

and in this case 0, is determined from (32). We ex- 
pand B,(x) and 6B,,(r) in a Fourier series in terms of 
the same functions x;+" 

tieq(") = z a,'X,,'+an"~.: 66n. (r) = yn'xn0+ Y-'XX~X 

The condition for the validity of the Landau theory is 
then 

lay I>Ir,""I. 

Substituting B(r) = tJ,,(x) + btJ,,(r) in (4), we can readily 
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show that although the fluctuations in the inhomogeneous 
phase differ from those in the homogeneous one, the 
dangerous fluctuation is a s  before the symmetrical one 
with n= 1, and the mean square of this fluctuation sat- 
isfies the classical "rule of two," i. e. ,  

s o  that after averaging over the correlation area  we 
obtain 

c~y:la2J-u~,,:~z>. 
- - 

Taking into account the anomalous increase of only the 
dangerous fluctuation and the fact that ( c ( ; ) ~  = I  kl l/c a t  
the transition point, we find that this condition for the 
applicability of the Landau theory is equivalent to the 
inequality 

At 6 >> 1, taking 0, from (32) and (33), we find that the 
fluctuations a r e  dangerous a t  

[cf. Ref. 2, Eq. (36)]. If 6 << 1, the fluctuations a r e  
dangerous a t  

It is seen that the fluctuation region expands with 
decreasing 6, a natural result, since with decreasing 
thickness d the behavior of the plate becomes more and 
more similar to that of a two-dimensional magnet. A 
similar result i s  arrived at by examination of the fluc- 
tuations in a second-order phase transition from the 
state 6 =r/2. 

It follows from (45) that the critical plates for the 
model a r e  those with thickness dsd, ,  =aT,/k: .  It is 
clear therefore that the condition d >>d,, is equivalent 
in essence to the condition that the description be mac- 
roscopically noncontradictory. It is important, how- 
ever, that even for plates with d>>d,, the fluctuation 
region is much wider than for transitions in the bulk, 

when the Levanyuk-Ginzburg criterion takes the form 

We note in conclusion the following: It is known that 
allowance for the magnetoelastic interaction can cause 
the transition to involve the elastic subsystem of the 
crystal. This, however, leads to renormalization of 
the constants in the expression for the free energy (see 
Ref. 5), but does not change the character of the transi- 
tion. Although this question was not investigated for 
the case of samples with finite dimensions, i t  is clear 
nevertheless that no substantial changes can occur (es- 
pecially if the magnetoelastic coupling is small). In 
addition, an estimate of the fluctuations in the case of 
an inhomogeneous order parameter is of independent 
interest, since i t  can be used to consider entirely dif- 
ferent objects (e. g. , to study superfluid transitions of 
helium in capillaries6). 

"1t i s  assumed that the magnetic moment is parallel to the 
sample plane both on the plate surface and in i t s  interior 
(cf. Ref. 2). 

''We disregard the improbable existence of a stability region 
of a phase I11 such that uand vhave values different from 
0 and 1 in a l l  of its points. The impossibility of the existence 
of an inhomogeneous phase of this kind can be rigorously 
proved for thin plates. 

'K. P. Belov, A. M. Kadomtseva, A. K. Zvezdin, and R. Z. 
Levitin, Orientatsionnye perekhody v redkozemel'nykh mag- 
netikakh (Orientational Transitions in Rare-Earth Magnets), 
Nauka, 1979. 

'M. I. Kaganov. Zh. Eksp. Teor. Fiz. 79, 1554 (1980) [Sov. 
Phys. J E T P  52, 779 (1980)l. 

3 ~ .  D. Landau and E. M. Lifshitz. Statistical Physics, P a r t l ,  
Pergamon, 1980 [%I50 of Russian original]. 

4 ~ .  I. Kaganov and I. S. Karpinskaya. Zh. Eksp. Teor. Fiz. 
76, 2143 (1979) [Sov. Phys. J E T P  49, 1083 (1979)l. 

5 ~ .  A. Turov and V. G. Shavrov, Fiz. Tverd. Tela (Lenin- 
grad) 7, 217 (1965) [Sov. Phys. Solid State 7, 166 (1965)l. 

%. L. Ginzburg and A. A.  Sobyanin. Usp. Fiz. Nauk 120. 
153 (1976) [Sov. Phys. Usp. 19, 773 (1976)l. 

Translated by J. G. Adashko 

942 Sov. Phys. JETP 55(5), May 1982 M. 1 .  Kaganov and A. V. Chubukov 942 




