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The existing theory of hopping conductivity is based on Miller and Abrahams's quivalent-resistor-network 
concept, which is a result of the mean-field approximation. In fact, the forbidding of two electrons to occupy 
the same site leads to the Hubbard current correlations, the description of which falls outside the limits of the 
mean-field method. It is well known that the Hubbard current correlations alter significantly the hopping- 
electricalconduction activation energy for classical periodic systems, e.g., superionic crystals. In the present 
paper the role of the Hubbard current correlations in d i d e r e d  sytems, such as lightly doped crystalline and 
amorphous semiconductors, is investigated. The hopping conductivity of such a system is calculated with the 
aid of a computer in two ways: from first principles by the Monte-Carlo method and with the aid of the 
Miller-Abrahams network in accordance with Kirchhoffs rules. A comparison of the results of these 
calculations reveals the effects of the Hubbard current correlations. But it turns out that these effects are 
relatively weak, and cannot significantly affect the exponential dependences found through the use of the 
Miller-Abrahams network for the hopping conductivity. The weakness of the effects of the Hubbard current 
correlations in a disordered system is explained on the basis of the exact description of the Hubbard current 
correlations for four-impurity chains. 

PACS numbers: 66.30.H~ 

The electrons in lightly doped semiconductors a r e  lo- 
calized on the individual donors (we are ,  for definite- 
ness, discussing n-type semiconductors), and the low- 
temperature conduction has a hopping character. The 
repulsion energy for two electrons on the same donor 
(the Hubbard energy) is usually very high. Therefore, 
if the semiconductor i s  compensated, i. e . ,  if it contains 
a certain number of acceptors and the same number of 
unoccupied donors, then at low temperatures the elec- 
trons largely hop from the occupied to the unoccupied 
donors, and the large Hubbard energy merely forbids 
two electrons to be on the same donor. With allowance 
for this exclusion, the current flowing between the don- 
o r s  i and j has the form 

The occupation number n, has the value 1 if the donor i 
i s  occupied and 0 if it is vacant; the angle brackets de- 
note averaging over the time; f, = b , )  is the mean pop- 
ulation of the i-th donor; yij is the probability for tran- 
sition of an electron from the i-th to the j-th donor in 
unit time (i. e. ,  y,,dt is the probability for transition in 
the time dt); e is  the absolute value of the electron 
charge. For simplicity, we neglect the interaction be- 
tween electrons on different donors. Under such con- 
ditions the electron energies E, and &, on the i-th and 
j-th donors do not depend on the occupation numbers of 
the other donors, and, consequently, y,,  and y,, do not 
depend on the time. A customary approximation made in 
the theory of hopping conductivity, which may be called the 
mean field approximation, consists in the replacement 
of the quantities n, by the f,, i. e. , the neglect of the OC- 

cupation-number correlations. Then the current is  
given by the formula (2). Within the framework of this 
approximation, we can, as  i s  well known,' associate 

with the pair of donors i and j the resistance 

Here 

(y';, is  the i - j transition probability in the absence of an 
electric field and f is the equilibrium Fermi population 
function) is  the equilibrium rate  of i - j and j - i transi- 
tions. After this, the problem reduces to the problem 
of computing the conductivity of an equivalent resistance 
(R,,) network, which was first  introduced by Miller and 
Abrahams (MA). This is  done either by percolation- 
theory methods,' or  by a direct computer calculation 
with the Kirchhoff laws.' 

But what is the effect of the correlation correction to 
the current I,: on the hopping conductivity? At equili- 
brium n, and nt fluctuate independently (binj)= f i f J ) ,  
and the correlation correction to the current is  equal to 
zero. But if there is  an external electric field, and a 
current flows through the pair (i, j ), then the correlator 
bin,) should not, generally speaking, split up. The dif- 
ference (rr,n,) - f i  f j  may turn out to be proportional to 
the external field, and then the term I: may not be less 
important than l G F .  The presence of the current I$ i s  
clearly due to the fact that the motion of each electron 
is correlated with the motion of the others owing to the 
fact that it is forbidden for two electrons to be on the 
same  donor. Therefore, we call such correlations the 
Hubbard current correlations (HCC ). It follows from 
the expressions (1)-(3) that the HCC a r e  unimportant in 
the presence of strong or  weak compensation, when the 
overwhelming majority of the numbers n, a r e  each equal 
to zero or  unity. Finally, it i s  clear that, when the 
temperature is so high that we have, on the basis of the 
detailed-balance relation 
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FIG. 1. Richards' AB model (e is an "electron"; h, a 66holb'). 

y i p  y,,, the correction I: is  equal to zero, and the HCC 
are  unimportant. But they can play an important role a t  
intermediate levels of compensation and at sufficiently 
low temperatures. 

The HCC problem for ordered systems has been con- 
sidered before in connection with the question of the 
ionic-electrical-conduction activation energy for super- 
ionic The problem i s  especially clearly 
formulated by Richards. He considers a chain of two 
sublattices, A and B (Fig. 1 ), differing in their si te 
energies: E, + cB + c (we shall assume that c>> kT). A 
charged classical particle can hop from one site of the 
chain to the next one, the hopping probabilities y, and 
yBA being connected by the relation y ,  =yB,exp (c/kT). 
The interparticle interaction is taken into account only 
in terms of the exclusion of two particles from simul- 
taneously occupying the same site. For this problem, 
the self-consistent field approximation, which i s  equi- 
valent to the use of the formulas (2) and (4), clearly 
yields u=exp(-c/kT). Richards, however, shows that, 
when allowance i s  made for the HCC, and the number of 
particles i s  equal to half the number of si tes,  s o  that all 
the type-B s i tes  a r e  occupied in the ground state, the 
electrical conductivity of the chain is much lower, it 
having the form 

Physically, the decrease in the electrical conductivity 
i s  due to the fact that, at low temperatures, a particle 
that has moved, say to the right, from a B site to an 
A site cannot, a s  a rule, move further to the right be- 
cause the next B site is  occupied, and should return to 
the original B s i te  (a "traffic-jam" effect). Let us give 
a simple explanation of the result @)-one very close 
to Richards'. The simplest charged excitations of 
Richards' AB chain a r e  the "electron" and the "hole" 
(Fig. 1). Let us  consider the contribution of the elec- 
trons to the conductivity o=nep,, where n i s  the con- 
centration of the electrons and p, i s  their mobility. It 
is  clear that naexp(-c/2kT) in the intrinsic semicon- 
ductor. On the other hand, for the electron to move to 
the right, the particle 1 should r i se  from the B site to 
the A site and the particle 2 should drop into its place. 
Therefore, p,aexp(-c/kT), and we arrive a t  the for- 
mula (5). From these same arguments it appears that 
the result (5) is  valid also for two- and three-dimen- 
sional lattices. 

The formula (5) demonstrates that the effect of the 
HCC on the electrical conductivity can be very strong. 
The object of the present paper is  to investigate this 
effect for donors randomly disposed in space in the 
case of some prescribed distribution of their energies 
c,, i. e. , for the hopping conductivity of lightly-doped 
and amorphous semiconductors. In this case the quan- 
tities y,, have the form 

while the resistance R,, for kT<< cij is ,  according to 
(4), equal to 

R,,-Ro exp E,,; 
E,=2r,)a+~,,/kT, R,=kT/r,e2, (7) 

E,,='/,( 1 E,-P / + 1 El-p 1 f 1 &,-E, 1 ). 
Herer , ,  i s  the distance between the i-th and j-th don- 
ors ;  a i s  the Bohr radius, which i s  much smaller than 
the characteristic rij values; N ( x )  = (ex - I)-' is  the 
Planck distribution function; E,=  ci + e E  -r, i s  the ener- 
gy of the i-th si te in the electric field E; and p is the 
Fermi level at T=O. According to (6) and (7), the quan- 
tities y,, and R,, fluctuate strongly from donor pair to 
donor pair. The HCC problem for such systems was 
first formulated by one of the present authors (B.I.S.) 
and Efros.' But the results obtained by Richards4 could 
not be generalized to the case  of disordered systems, 
since the method proposed by him is very complicated. 
To find the stationary current in a constant electric 
field, we must write down the stationarity conditions for 
the multinode distribution function F b , } ,  which is the 
probability for realizing a given set  {n,} of occupation 
numbers. 

This infinite set  of equations becomes greatly sim- 
plified when we go over to the case of the AB chain. 
This simplification is due not only to the periodicity 
of the chain, but also to the invariance of the chain under 
reversal  of the external field. Disordered systems, 
which a r e  of interest to us  here, do not possess this 
symmetry, and we could not make way in the investiga- 
tion of the infinite chain of equations. Therefore, we 
undertook to study analytically the HCC in very short 
chains, specifically, in four-donor chains, where the 
investigation of the system of stationarity equations can 
easily be carried out to the end. The study shows that, 
because of the disordered state of the system, the HCC 
should have a slight effect on the electrical conductivity. 
Since the investigation of short chains does not have 
a strong demonstrative force, we performed, using 
the Monte Carlo method, a computer simulation 
of the hopping conduction of a cube containing 800 
donors. Random donor-to-donor transitions of the 
electrons in the electric field were "tossed" in accord 
with the probabilities (6) and with allowance for the fact 
that two electrons a r e  not allowed to occupy the same 
donor. On the other hand, using the Kirchhoff laws, 
we calculated the electrical conductivity of the MA r e -  
sistor network for exactly the same system with the aid 
of a computer. The difference between the results of 
these calculations is ,  by definition, due to the effect of 
the HCC. We were able to find the effect of the HCC on 
the hopping conductivity, but it turned out that even at 
the lowest temperatures investigated by us the HCC de- 
crease  the electrical conductivity by roughly a factor 
of two, with the argument of the exponential hopping- 
conductivity function changing by only 3%. This means 
that we can, in the theory of the exponential hopping- 
conductivity functions, neglect the HCC and use the MA 
network. 
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2. THE FOUR-DONOR CHAIN 

Let u s  consider a linear chain consisting of four don- 
ors,  1, 2, 3, and 4, in which transitions can occur only 
between neighboring impurities. We shall assume that 
an electrochemical potential difference exists across 
the chain, i. e. , between the end donors 1 and 4. We 
shall also assume that the occupation numbers of the 
end donors 1 and 4 do not fluctuate, and a r e  equal to 
their mean values. This assumption corresponds to the 
fact that these donors very often exchange electrons 
with the metallic contacts. We can also imagine that, 
for example, instead of the donor 1, we have many en- 
tirely identical donors located close to each other. Then 
the mean occupation number of these donors, which de- 
termines the 1 - 2 transition rate, will not fluctuate. 
In both interpretations it i s  clear that the donors 1 and 4 
in the chain under consideration play the role of con- 
tacts. The chain is completely described by the prob- 
abilities F(%,%) for the four combinations of the oc- 
cupation numbers of the impurities 2 and 3: F(0, O),  
F(1,0), F(0,1), and F ( l ,  1). The sum of these probab- 
ilities is equal to unity, so  that there a r e  three indepen- 
dent quantities, a s  which we can choose the single-node 
distribution functions 

and the quantity F(1, l ) .  The stationarity conditions for 
these quantities give three equations for their deter- 
mination: 

I,2"F=I*3HP+z,3C=13,Nq (8) 
dF(f, 1)  - =- 

dt 
[ ~ 2 , ( 1 - f l ) + y 3 ~ ( 1 - f l )  I F ( l , l ) + ~ u . f t [ f r  

- -F(1 ,  i) l + y , , f , [ f ~ - F ( I , l )  1=0. (9) 

Under steady-state conditions F(1 , l )  = 6z2n3), and Eq. 
(9) yields the relation 

where 
~ - y , l " ( i - f l " )  +r31"(1-fL? +y120fI0+ TLSO~L'. 

Substituting (10) into (31, we obtain 

I,,"=-CI,,"', 

where 

C= (ytl0-y31(1) (f3°-f l ( l )Q-L.  (13) 

Since we a r e  interested in the ohmic current, we have 
written the formulas (11) and (13) in the zeroth order in 
E, i. e. , we have replaced the quantities f, and ylj by 
their values f: and y& in zero field. At the same time, 
the expressions for the currents zMFin (81, (lo), and 
(12) contain the values of these quantities in the electric 
field, and, what is  more, the functions f, a r e  not equal 
to the values that they would have in the mean field ap- 
proximation, but a r e  given by the solution to the system 
(8) and (9). It can be seen from (11) and (13) that C 
2 0, so that the HCC can only increase the resistance. 
Substituting (12) into (8), we find that 

Z2,-Z,,"'+Z,,c=Z,,"F=Z23M~(l+C)~t=U21/R~~ (1 +C) , (14) 

where U,, is  the electrochemical potential difference 
between the donors 2 and 3. 

Thus, with allowance for the HCC, the resistance of 
the entire network i s  equal to 

and not R,, + R,, + R,, as obtains in the mean field ap- 
proximation. To estimate the importance of the HCC, 
let u s  compute the quantity C in some examples. Let us  
first  consider the tetrad, for which 

and, consequently, for kT<< c 

Substituting (17) into (11) and (13), we find that C 
= i exp(c /2k~) .  Thus, the resistance of the chain i s  
equal to ~ ( 3  + +exp c / 2 k ~ ) ,  i.e., for T - 0 it, like (51, 
has an activation energy equal to E .  This coincidence 
i s  not surprising, since we a r e  dealing in this example 
with a portion of the AB chain. 

For hopping conduction in a system of randomly dis- 
posed donors, it is  interesting to consider a tetrad in 
which r,,, r,,, and r, a r e  different. Of special inter- 
est in this case is  the investigation of tetrads in which 
the resistance R,,>>R,,,R,,. The point is  that in the 
theory based on the MA network and the percolation 
method the hopping conductivity is determined by the 
percolation-ensuring critical resistor network, whose 
electrical conductivity is ,  in its turn, determined by 
the relatively widely spaced "critical" resistors having 
the highest resistances in the network.' Therefore, of 
greatest interest in connection with the computation of 
the resistivity of the whole network i s  the effect of the 
HCC on the critical resistance. 

Let u s  first consider the case of relatively high temp- 
eratures, when cij /kT<< 2r,,/a for typical pairs, and 
the conductivity possesses an activation energy of c,. 
In this case the length of a critical resistor is close to 
the percolation radius r, = 0. 87N-'I3 (N is the donor con- 
centration), and the resistors on both sides of it have 
smaller lengths r, ,. In order to simulate such a situa- 
tion, we can consider a set  of four donors in which r,, 
> r,,,r,,, with R,, 2 Rl,,R, at the same time. Substitut- 
ing the corresponding y ,, into ( l l ) ,  and using the in- 
equality c,,/kT<< 2rij/a, we easily verify that in this 
case 

Ca esp[- ( 2 l a )  (r ,3-max{r, , ,  r s l ) )  I ti. 

Thus, in such a situation the role of the HCC is very 
minor. The physical cause of this lies in the fact, be- 
cause of the inequalities 

the deviation of the correlator &n3> from f, f3 is active- 
ly disrupted by the transitions 1 = 2 and 3 - 4 .  It can 
be said that in this case the metallic contacts are ,  a s  
it were, drawn out to the donors 2 and 3, and liquidate 
all the correlation effects. 

In the present critical network, there are ,  of course, 
no metallic contacts, i. e. , donors on which the num- 
ber n, does not fluctuate at all. But the critical resis-  

923 Sov. Phys. J E T P  55(5), May 1982 



tors a r e  separated by clusters of relatively highly con- 
ducting resistors,  that contain donors with energies 
close to the Fermi level. The transitions from a cr i -  
tical resistor to such a cluster should destroy the cor- 
relation for this resistor. Thus, the role of the HCC 
can be expected to be minor in the &,-conduction r e -  
gion. 

In the region of lower temperatures where &,,/kT 
>> 2r,,/a for typical neighbors, only the states with en- 
ergy in the band close to the Fermi energies participate 
in the electrical conduction. The temperature depen- 
dence of this electrical conductivity (without allowance 
for the electron-electron interaction on the various don- 
ors)  i s  given by the Mott law: 

where g i s  the density of states at the Fermi level and 
/3 i s  a numerical coefficient. In the region of the Mott 
law a critical resistor can differ from its neighbors by 
having a large Y,, value. Then, as in the E, region, the 
HCC do not change the magnitude of the critical resis-  
tance. There is ,  in principle, another possibility which 
can be simulated on a set  of four impurities. Let, for 
example, 

but R,, >Rl,,Rs4, so  that RZs plays the role of a critical 
resistance. Substituting these parameter values into 
(13) and (151, we find that the resistance of such a chain 
is 

R,,+R3,+R2, exp [ (2 /a )  (min{r,,, r3<) -rz3)] ), 

i.e., in this case the HCC sharply increases the resis-  
tance. This occurs because the correlations a r e  pro- 
duced by the transitions occurring at the ra te  y;,, which 
does not contain an energy factor, and is much higher 
than the ra te  52 uy:, + yil  at  which the correlations a r e  
resolved. It i s  clear that such tetrads appear around 
critical resistors a s  a result of the simultaneous fulfill- 
ment of several requirements, so that the fraction of 
critical resistors for which the HCC a r e  important i s  
apparently small. To estimate the role of the tetrads 
that cause an increase in the resistance, we simulated 
on a computer tetrads having a critical resistance a t  
their center and lower resistances a t  their ends. 

In order to simulate the situation obtaining in the re-  
gion of action of the law (19), we generated the energies 
of each of the four donors in such a way that they were 
uniformly distributed in the interval from -C;,$T to 
53T;  and the distances r,,, r,,, and r,,, in such a way 
that they were uniformly distributed in the range from 0 
to &zh, (Ref. I),  where f ,  is  the index of the exponential 
function (7) for the critical resistance. Then out of 
these tetrads were chosen only those for  which 5,, is  
close to f ,  and f  ,,, C;,, < C;,, (there were 5000 of them). 
Using (131, we computed the quantity C for them, and 
averaged the quantity In (1 + C) with the weight (~,,r,,r,,)~ 
on the lines of the percolation theory of perturbations.' 
It turned out that 

i. e . ,  on the basis of the analysis of the tetrads, the ef- 

fect of the HCC should be weak. But, bearing in mind 
the importance, in principle, of the question of the HCC, 
we could not be satisfied with the tetrad simulation, 
and performed hopping-conductivity calculations for a 
large block of donors, using the Monte Carlo method 
and Kirchhoff's laws. 

3. HOPPING-CONDUCTION SIMULATION BY THE 
MONTE CARL0 METHOD 

The idea of the simulation of hopping conduction by the 
Monte Carlo method i s  this: Taking a specific realiza- 
tion of the randomly distributed donors, and prescribing 
a value for the field E, we "toss," during a certain per- 
iod of time, random electron transitions between the 
donors in accordance with the probabilities (6). Then 
the current density j(t), averaged over a time interval 
(t, t + 6t) covering many transitions, can be computed 
from the formula j = bP/6t, where 6P i s  the change that 
occurs in the dipole moment of a unit volume of the sys- 
tem during this time. As for the electrical conductivity 
of the system, it i s  found a s  the ratio of the time-aver- 
aged value of j(t) to E in the limit E - 0. 

The simulation of the hopping conduction in a system 
of randomly disposed donors by the Monte Carlo method 
has been performed by Marshall6 and Imgrund and Over- 
hof7 for the situation in which the electrons a r e  so few 
that each electron moves independently of the others. 
In our previous paper8 we proposed a simulation pro- 
cedure for a system in which the fact that two electrons 
cannot simultaneously occupy one donor i s  important. 
In the present investigation we used the same formula- 
tion of the problem and the same model used in Ref. 8, 
but we considered lower temperatures and used a dif- 
ferent random-tossing algorithm for the electron tran- 
sitions. 

The program ran as follows. First ,  with the aid of 
a random-number generator we assigned the coordin- 
ates of M = 800 donors uniformly distributed in a cube 
of volume V =  MN-' (N is the donor density). Then we 
generated random energies E ,  lying in the interval from 
-A/2 to A12 (A is the impurity-band width). The in- 
itial occupation numbers n, were randomly chosen such 
that the number of donors occupied by electrons was 
equal to (1 - K)M (K is the degree of compensation), 
while the probability for realization of the set kt} was 
proportional to exp {-( l /k~)~n,&,}.  We assumed the 
presence of an electric field E applied perpendicularly 
to one of the cube faces along the x axis, and computed 
the energies of the donor levels in the field from the 
formula ?, = E ,  + eEx,. We assumed periodic boundary 
conditions along the x axis, i. e. ,  we assumed that the 
cube has through the gluing together of the faces x=O 
and x = L (L is the length of the cube edge) been trans- 
formed into a torus in which an eddy electric field and, 
consequently, an eddy electric current exist (for details 
s e e  Ref. 8). 

For the "tossing" of the random donor-to-donor elec- 
tron jumps, the program first  chose pairs of donors, 
the transitions between which were to be considered. 
For this purpose, the resistances (7) of all the donor 
pairs in the cube were computed, and Q=4096 pairs 
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with the lowest resistance were chosen, which corre- 
sponds to roughly 10 bonds per donor. Since percola- 
tion occurs in a three-dimensional random system when 
the average number of bonds per si te is  roughly equal 
to 2.7 (Ref. 11, and the spread in the resistance values 
is very large, the highest resistance computed turned 
out to be two-three orders of magnitude higher than the 
critical resistance. For this reason, a further increase 
in Q should not lead to a change in the electrical con- 
ductivity of the whole system. The probabilities y,, 
and y,, for each selected pair I consisting of the donors 
i and j were computed from the formulas (6) and stored, 
and the quantity 

i 0, n,=n, 

~ r ( t ) =  y,,, n,=l, q=0, 
y,~, n,=O, nj=l ,  

(20) 

- --- 
which has the meaning of the probability per unit time 
for transition in the 2-th pair of donors with occupation 
numbers corresponding to the given moment of time t ,  
was introduced. The quantity 

which has the meaning of the probability for the occur- 
rence in unit time of some transition in the whole sys- 
tem, was also computed. 

Further, the program repeated many times the follow- 
ing operations which we call the "program step:" 1) one 
of the Q pairs was selected in such a way that the prob- 
ability of "hitting" the pair I was equal to y,(t)W-'ft); 
2) an electron was transferred from the unoccupied to 
the occupied donor in the pair I [according to (201, the 
situation in which n ,=nj  is  excluded]; 3) the change 6P, 
occurring in the dipole moment of the cube a s  a result 
of the electron transfer was computed and stored (see 
Ref. 8); 4) the time spent by the system in making this 
transition was computed from the formula b t=  W-'(t), 
and the time that had passed since the beginning of the 
calculation was increased by 6t1'; 5) the se t  of y,(t) 
values and the quantity W(t) were recalculated with al- 
lowance for the changed occupation numbers, and the 
program proceeded to the next step. 

This i s  a standard scheme for the simulation of a 
Markov process with continuous time, and is widely 
used in the simulation of hot-electron kinetics: the 
passage of radiation through matter ,'O and in other 
problems. Let us  note that the realization of this al- 
gorithm as applied to our problem meets with serious 
computational difficulties connected with the large val- 
ue of Q. 

The simulation of the current should be sufficiently 
prolonged in order,  on the one hand, for the transient 
process following the switching on of the field to ends 
and, on the other, for the effect of the thermal noise on 
the computed mean-current strength to be slight. For 
the lowest of the fields used in this investigation, the 
second requirement was significantly stricter. It can be 
shown that, in order for the error  due to the noise in 
these fields to be less than 5%, the simulation time T 

should be of the order of 1000I',', where rc is the 
equilibrium transition ra te  in the critical resistors.  

The time required for the execution of one step of the 
program on the computer was roughly equal to 1.5 
msec; therefore, during a reasonable time of about one 
hour the program was able to carry  out m =  3x lo6 steps, 
which corresponds to a physical time of T =  m(W4(t)). 
We can, by estimating the ratio T/T, show that for ty- 
pical data of our problem T i s  significantly shorter than 
T. This i s  due to the fact that there exist in the cube 
fast pairs with an a r m  of the order of a and energies 
of the order of kT. For such pairs y,, - yj, -yo>> I?,, and 
it is  precisely these pairs that make the dominant con- 
tribution to the sum (21). Thus, the direct application 
of the above-expounded algorithm does not yet allow us  
to study the static conductivity of the system. 

We found that a way out of this situation was to sharp- 
ly "slow down" all the fast pairs. We chose some fre- 
quency rsup, such that yo> r,,, >> re, and reduced the 
probabilities y,, and y,, for all the pairs in which the 
equilibrium transition ra te  r,, was higher than J?,, by 
the same factor, chosen such that rij became equal to 
r,,. The resistance of the pairs that had been sub- 
jected to this procedure increased to kT/e2r,,, i. e., 
by several orders of magnitude, but this increase should 
not, on account of the inequality r,, >> r,, affect the 
value of the resistance of the system a s  a whole. On 
the other hand, the sharp decrease of the transition 
ra te  in the fast pairs, which earlier made the dominant 
contribution to (21), enabled us  to increase (W"(t)) very 
significantly, and thus achieve a satisfactorily fast run 
of the program. This method of cutting off the fast 
pairs relative to the equilibrium transition ra te  or, in 
other words, with the resistances, is  a generalization of 
the cutoff used in Ref. 8 in the high-temperature case, 
relative to the pair arm. As for the reduction of the 
e r ro r  in the result, it i s  advantageous to choose the 
smallest possible values for rsu,, but a further decrease 
of rsup when i t  is  close to rc leads to an increase in the 
resistance of the system a s  a whole, i. e., to a distor- 
tion of the physical results. We regarded a s  optimum 
that value of I?,, I I'ofl at which the resistance of the 
system a s  computed within the framework of the MA 
equivalent network model (see Sec. 4) differed from 
its value in the limit I?,, - roughly by 5%. 

The abandonment of the simple algorithm used in Ref. 
8 is due to specific difficulties encountered in the sim- 
ulation of hopping conduction a t  low temperatures. The 
step of the program of the old algorithm consisted in the 
following: one of the Q pairs was chosen randomly and 
with equal probability, after which either a transition 
was produced with probability y,/y,, in this pair, or  
nothing was done with probability equal to (1 -Y,)/Y,, 
and the program proceeded to the next step. Here y,, 
= m a ~ , ~ b , ~ ) .  The overwhelming majority of the steps 
of this program turned out to be empty, since even after 
the cutoff with respect to the resistances the frequency 
y,,, was very high in comparison with the majority of 
the y,. The point is  that at low temperatures the sys- 
tem is in a state close to the ground state, and the ma- 
jority of the y, contain very small activation exponen- 
tials whereas y,,, i s  determined by the fastest down- 
ward transition. As a result, the number of steps 
needed in the old program to transfer one electron in- 
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creased exponentially with decreasing temperature. At 
the same time, the new algorithm transfers one elec- 
tron in each step. Therefore, even though the proces- 
sing time spent on one step in the new algorithm i s  ap- 
proximately 20 times longer than the corresponding time 
for the old algorithm, a t  low temperatures the relative 
effectiveness of the new algorithm increases exponen- 
tially with decreasing temperature. For example, a t  
kT= A/16 (this case was investigated in both programs) 
the new algorithm runs 15 times faster. 

4. COMPUTATION OF THE CONDUCTIVITY OF THE 
SYSTEM WITHIN THE FRAMEWORK OF THE 
MILLER-ABRAHAMS EQUIVALENT-NETWORK 
MODEL 

For comparison with the Monte Carlo calculation, we 
computed the resistance of the MA network for exactly 
the same set  of donor coordinates and energies E , ,  using 
the Kirchhoff laws. The computation was performed 
according to the GaussSeidel iterative scheme, and the 
main difference between our computation and the usual 
computations performed by this method (see, for 
example, Ref. 11) lies in the fact that, to get the sys- 
tem to be entirely identical with the one investigated by 
the Monte Carlo method, we assumed the same periodic 
boundary conditions, i. e. , we introduced resistances 
connecting the donors located near the opposite faces 
of the cube. We assumed, for the same purpose, that 
the current could flow through only the Q = 4096 lowest 
resistances, the higher resistances being broken, and 
that all the resistances Ri,  lower than kT/e2rmP had 
been replaced by resistances equal to kT/e2rsup. Thus, 
the difference between the u values computed by the 
Monte Carlo method and the values computed with the 
aid of the MA network (we shall denote them by a,, ) 
should be related only to the HCC . 

To find the electrical conductivity of the system with 
the aid of the Kirchhoff equations, we usually (see, for 
example, Ref. 11) prescribe the applied voltage in the 
form of boundary conditions on the potential (at one con- 
tact all the potentials a r e  equal to zero; at the other, 
to unity), and solve the Kirchhoff equations only for the 
inner sites. In the case of periodic boundary conditions 
such a formulation of the problem i s  not possible, and 
therefore we solved the Kirchhoff equations for  a closed 
circuit of 4096 resistances, assuming that each resis-  
tance R joining the donors i and j has series-connected 
to it an external-electric-field (E) produced emf 

where g = 0 if the resistor does not intersect the face 
x = L , g = l  if the resistor intersects this face in the 
positive direction, g = -1 if the face i s  intersected in 
the negative direction. In an inhomogeneous system 
there ar ise  additional potentials V, on the donors as a 
reaction to the uniform external field E. Using the ex- 
pression for the current flowing from i to j: 

we find for the V, from Kirchhoff's f irst  law the expres- 
sion 

where the summation is performed over all  the neigh- 
bors of the i-th donor, that a re  connected with it by un- 
broken resistances. The formula (23) served a s  the 
basis of the iterative procedure for finding the poten- 
tials V,, starting from the values V ,  = 0. Otherwise, 
we entirely followed the algorithm of Ref. 11. 

After determining all the potentials V,, we found the 
averaged-over the cube-current density j and the con- 
ductivity a=  j/E. Since in the case of highly inhomogen- 
eous systems the iterations converge slowly, we began 
the procedure with small values (a small r,, 
makes the system artificially more homogeneous). 
When the iterations for the given rSuP converged, we 
went over to a higher r,, value, using the already com- 
puted V, values a s  the initial approximation. The value 
of I?,,, was increased until the conductivity ceased to 
depend on it. The thus obtained rsUp dependence of the 
conductivity was used to select the optimal value of 
r,, =rap, for the simulation program using the Monte 
Carlo method (see Sec. 3). A comparison of the cal- 
culation by the Monte Carlo method and the calculation 
with the aid of the Kirchhoff laws was carried out for 
rsup =rapt . 
5. RESULTS OF THE CALCULATIONS AND 
DISCUSSION 

The calculations were performed largely for one ran- 
dom set of coordinates and energies of the 800 donors 
with the parameter values K = 0.5 and 0.05 and 2rJa 
= 8 and 15. Several values of the temperature in the 
region A kT > A/50 were investigated. After deter- 
mining by the Monte Carlo method the mean value of the 
current for fixed T and E, we computed U(T, E) = j ( ~ ,  E)/  
E. To find the dc value of o(T) 2 o(T, 0), we computed 
u(T,E) for several E values satisfying the condition 
e IE IN-'I3 kT. In an infinite block o(E) =o(-E), and it 

FIG.  2.  Dependence of the conductivity (in units of 5 )  on the 
parameter  EN''/^/ kT for different values of T, K, and 2rc/a:  
a)  2rc/a  = 8, K =  0.5; b) 2rc/a  = 8, K =  0.05; c)  2rc/a  = 15, 
K =  0.5; d) 2rc/a = 15, K =  0.05. The points represent the data 
obtained by the Monte Carlo method; the crosses represent 
the extrapolations of the data to E =  0; the horizontal dashes at 
E =  0 indicate the values of gM,. The value of the parameter 
A/ kT is  indicated on the graph near each set of points. The 
scale marked on the left pertains to the graphs a) and b); the 
scale on the right, to c) and d). 
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would not have been necessary to perform calculations 
for negative E values. A finite sufficiently small block 
does not possess such a symmetry, and the calculations 
for negative E values enable us to find the dc value of 
the electrical conductivity more accurately. Figure 2 
shows the dependence of U(T, E)/; on the parameter 
eEN"I3/kT for different temperatures. The dashes on 
the ordinate axis, i. e. , at E = 0, indicate the values of 
U~,(T)/;, where uMA(T) i s  the value of the electrical 
conductivity for the same temperature in exactly the 
same object, but computed with the Kirchhoff laws for 
the MA network. Here 

i s  the characteristic electrical conductivity and ~ ~ 0 . 9  
is the critical exponent of the correlation length. The 
use of the quantity 5 to normalize the electrical conduc- 
tivities u(T,E) and uhtA(T) i s  convenient because, ac- 
cording to percolation theory (see Refs. 1 and 8), for 
the hopping conductivity with the probabilities (6) the 
electrical conductivity a t  kT>> A i s  equal to 4.480, 
where A is a number of the order of unity. 

The error  in the data shown in Fig. 2 does not, ac- 
cording to our estimates, exceed 10%. We could not 
advance into the region of low fields with the aid of the 
Monte Carlo method, since the e r ro r  increased in the 
process on account of the thermal noise. To find u(T) 
= u(T,O), we must interpolate u(T, E )  between the avail- 
able values of E .  In Fig. 2 the most probable-from our 
point of view-values of u(T) a re  indicated by crosses 
at E =O. The ratio uMA/u(T) a s  a function of A/kT i s  
shown in Fig. 3. 

Let us first consider the data for K = 0 . 5  Figs.  2(a) 
and 2(c)]. At high temperatures the HCC are ,  a s  they 
should be, entirely insignificant. When the temperature 
i s  lowered, the HCC decrease the conductivity, but not 
more than 2.3 times. Against the background of the 
exponential decrease of the electrical conductivity, 
this, of course, is very small, so that it can be stated 
that no significant changes similar to the results for the 
Richards A33 model occur in the index of the exponential 
electrical-conductivity function. 

FIG. 3. Dependence of the ratio uM,/u on the parameter A/kT 
for different values of K  and 2rc/a: A ) 2rc/a =8, K =  0.5; 6 )  

2rc/a = 8, K =  0.05; ) 2rc/a = 15, K =  0.5; 0 )  2rc/a = 15, K 
= 0.05. 

It should be borne in mind that, for the energy dis- 
tribution assumed in the present paper, the tempera- 
ture  starting from which the Mott law (19) should be 
applicable has, according to Ref. 1, the form 

so that, for  2 r d a  = 15 and 8, the ratio A/kTc= 60 and 
32 respectively. This means that the point with A/kT 
=40 and in practice the point with A/kT=28 for 2rJa 
= 8 belong to the region of applicability of the Mott law. 
Thus, the HCC play a minor role in the Mott-law region 
as well. As we saw in Sec. 2, this i s  due to the fact 
that the system i s  disordered. 

It can be seen from Figs. 2 and 3 that the effect of the 
HCC is stronger at 2rJa = 15 than at 2rJa = 8. This 
was to be expected, since the HCC should make to the 
index 5, of the exponential electrical-conductivity func- 
tion a contribution A{,(HCC) that is  proportional to 5,, 
and the value of f ,  for 2rJa= 15 is significantly higher. 
On the basis of the data obtained by us,  we can conclude 
that in the region of the Mott law Af,(HCC) =O. 03[,, 
i. e. , three times greater than the rough estimate ob- 
tained in the analysis of isolated tetrads (Sec. 2). 

In order to verify that we correctly understand the 
cause of the deviation of UMA from U, we calculated 0 

and UhlA for the case of slight compensation K = 0.05. 
In this case,  a s  the temperature i s  lowered, the Fermi 
level quite quickly becomes fixed near the energy 0.45A, 
and the electrical conductivity is  realized in a gradually 
narrowing energy band. In contrast to the K = 0.5 case, 
at not too low temperatures, this band is asymmetric 
about the Fermi level, and includes many more oc- 
cupied states than empty ones. It follows from the an- 
alyses performed in Secs. 1 and 2 that the HCC can play 
a role only when many transitions occur between states 
lying on different sides of the Fermi level. In the case 
of strong band asymmetry such transitions a r e  rare ;  
therefore, the role of the HCC should be significantly 
smaller here than in the K = 0.5 case. The computation- 
al results given in Figs. 2(b), 2(d), and 3 confirm these 
conclusions. The effects of the HCC for K=O. 05 a r e  
two-four times weaker than the effects for K=O. 5. 

Thus far,  we have been discussing the results obtained 
for one random set of coordinates and energies of 800 
donors. It is  natural to ask: What i s  the import of 
these results for a macroscopic sample? Can we con- 
sider them to be a stochastic property of the investigat- 
ed se t?  It seems to us that we cannot. The point i s  
that a t  the various temperatures and 2 r d a  values in- 
vestigated by us  the critical resistors and the tetrads 
containing them a r e  entirely different, and we have, 
a s  it were, essentially independent se ts  to deal with. 
At the same time, a t  low temperatures Af,(HCC) has 
the order of magnitude 0.03[, in all cases. 

To verify directly the dependence on the random set, 
we investigated four other random sets for K=0.5,  
2 r d a  = 15, kT = A/28, and eEW1I3/A= i0.005. It 
turned out that the spread in the ratio UMA/U for all the 
five se ts  does not exceed 20%. Thus, it can be as- 
sumed that the estimate (A[,(HCC) =0.03fc) obtained 
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by us  for the effects of the HCC at low temperatures 
is  valid for the majority of random donor-coordinate 
and energy sets  and, consequently, for macroscopic 
samples. 

The authors a r e  grateful to A. L. Efros for reading 
the manuscript and for useful advice. 

')Strictly speaking, the lifetime of the system in the state in 
question is a random quantity, and, to stimulate the system 
correctly, we must use the expression 6 t  =-W-'(t)ln~, 
where X is a random numerical variable whose values a r e  
uniformly distributed in the range from zero to unity. But 
we need the values of 6 t  only for the computation of 
t = X i & , .  It is easy to show that the two methods of computing 
6 t  yield the same estimate for the physical time t ,  but the 
dispersion of the estimate obtained without 1nX is smaller, 
and it  is more economical in terms of machine time. 
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