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It is shown with the aid of the diagram technique that the interaction between parametrically excited spin 
waves (PSW) and thermal spin waves (TSW) can be described using the kinetic equation. The damping 
constants in the equations for the normal (n )  and anomalous (u) comelators of the PSW are found to be 
identical. They can be calculated with the aid of the ordinary kinetic equation by substituting into it the TSW 
occupation numbers, which, because of the effect of the PSW, generally differ from the thermodynamic- 
equilibrium values. The relative contributions of the various mechanisms underlying this effect to the 
damping are thoroughly analyzed with allowance made for the real form of the dispersion law and the matrix 
elements of the interaction Hamiltonian for spin waves in cubic ferromagnets. The nonlinear PSW-damping 
constant is computed up to terms of first order in the PSW occupation numbers n ,: y,  = 4, + Jq,,.n ,dk'. It 
is shown within the framework of the kinetic equation that, in the case of the dominant nonlinear-damping 
mechanisms, the coefficients q,, are singular: qu-+rn as k'+k. The effect of the nonlinear damping on the 
form of the distribution function and on other characteristics of the PSW beyond the excitation threshold is 
studied with allowance made for this circumstance. It is shown, in particular, that positive nonlinear damping 
leads to the broadening of the angular distribution function of the PSW, while negative nonlinear damping 
leads to the narrowing of this function. 

Thus far,  the main attention in investigations of para- 
metrically excited spin waves has been given to the 
study of the properties of the narrow packet of para- 
metric spin waves (PSW) whose frequencies lie in the 
region of parametric instability.' The res t  of the spin 
waves a r e  usually assumed to be close to thermody - 
namic equilibrium, and serve then only a s  a thermostat 
guaranteeing the PSW damping, which can be computed 
with the aid of the ordinary kinetic equation for spin 
waves after substituting into it the equilibrium distribu- 
tion of the "thermal" spin waves (TSW): 

nt=ntO=[exp(tior/T) - l ]  -'. (1) 

while in the decay processes (3) 

n 
Y.P ( k )  = 2- Ja1&l ~ ~ , ~ ~ l ~ ( n ~ + n ~ ) 6  ( o k - o I - o 2 )  6 ( k - k - k ) .  (5) 

Here the VleZ3= V(kl,k2, k3) a r e  the matrix elements of 
the three-wave interaction Hamiltonian 

1 .  
.36"3'= - (Vtc3aI+a2a3+H.c.),6 (k,-k2-k,)dk,dk,dk, 2 (6) 

and the abridged notation n, =n(kl), w, = w(kl), etc., has 
been adopted. The Planck constant ti is  "assumed to be 
equal to unity." 

Spin-wave damping in the four-magnon scattering 
The assumption (1) that the TSW have an equilibrium 
distribution is based on the fact that the number N of processes 

PSW at  low supercriticalities is significantly smaller o*+o ,=o ,+o3 ,  kt-k,=k,+k,. (7 
than the total number Nt of TSW. But, a s  we shall now may also prove to be important. In that case 
show, only a small part of the aggregate TSW reservoir 

IT 
participates effectively in the damping of the PSW. 7.. ( k )  = ~dk,&2dkJ~~,,,23~Z[n,(n2+n,)-n2n~16(k - 
Therefore, even a t  low supercriticalities the energy +k,-k2-ks) 6 (ok+o,-or-or). 
dissipated by the PSW can cause the TSW occupation 

(8) 

Here TI,,, is the matrix element in the four-magnon numbers in this region to significantly deviate from 
their equilibrium values. Indeed, in a typical experi- interaction Hamiltonian %'4 ': 

- - 
mental situation,' e.g., in the parametric excitation of a'" = ) TT,,,,al+az+~a,6 (1 + 2 - 3 - 41 d l  d2 d3 d4. (9) 
spin waves in cubic ferromagnets [usually in yttrium 
iron garnet (YIG)], sufficiently long spin waves with It is clear that the TSW with frequencies w,, lying within 

wave vectors k s  5 x105 cm" a r e  excited a t  a frequency the interval (w,, w, - w,), where w,= w,/2 can partici- 

of we= 2n xlO1° sec". For these spin waves the damp- pate in the decay processes (3). Consequently, AN,, is 

ing constant Y,  is determined largely by the processes smaller than the number of TSW in a sphere of radius 
L : -  

of wave coalescence 

ot+cot,-t=or, 

and decay 

or=orrf  or - t* .  

At a supercriticality of 6 dB, when the amplitude h of 

(3) 
the parametric pump is higher than the threshold value 
by a factor of two, the total number of PSW is' N=Y/ 

As is well known,2.3 in the wave-coalescence processes IS(,  where S= 2ng2 is the four-wave matrix element de- 

(2) 
scribing the interaction of the PSW with each other 
within the framework of the Hamiltonian (9) ( g =  2.8 

y e  ( k ) = n  jdk,dkZl V,~z~2(n,-n,)8(o,-oL-~2)6(k,-k-k,), (4) GHz/kOe is the gyromagnetic ratio). Let us estimate 
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the ratio 

g=AN.,/N (6  d ~ )  = s T A ~ J ~ ~ ~ :  as, 

where 

A o I = o ~ - o ~ = o * - ~ H - o , / ~ ,  o,===brgM 

(M is the magnetization), we, is the exchange frequency, 
and a is the lattice constant. We shall make all  the nu- 
merical estimates with the experiments with YIG at  
room temperature in mind: 

0 , -4 .9 .  iOs sec-' , w,=9.8. 10e sec-I , 

yr=2-l0.10' set-' , T=300 K, o,p'=O.l cm2 . sec-I . (10) 

The quantity AU, is determined by the applied magnetic 
field, and varies in experiments from lo8 to 5 x1Og 
sec". Under these conditions 5 3  1 0 ' 8 ~ ~ ~  1, i.e., the 
number N of PSW and the number AN,, of thermal spin 
waves that make the dominant contribution to the "de- 
cay" damping constant ~,,(k) of the PSW a r e  indeed of 
the same order of magnitude. It is essential that the 
group of AN,, spin waves have sufficiently long wave- 
lengths, s o  that the scattering processes (7) do not have 
time to scatter the nonequilibrium part of its energy 
throughout the reservoir of thermal spin waves. It is 
therefore clear that the nonlinear PSW damping that 
ar ises  as a result of the superheating of the group of 
AN,, spin waves in the decay processes (3) can be sub- 
stant ial. 

Similar arguments lead to the idea that a nonlinear 
dependence of Y, on N can also a r i se  in the coalescence 
processes (2). To be sure,  the fact that the number 
AN, of spin waves participating in the processes (2) is 
sufficiently small is not so  obvious here; in fact, it 
does not follow from the conservation law (2) that the 
spin-wave vectors 1 k' ] and ] k -kt ( = kN a r e  bounded 
from above. But analysis of the integral (4) (see 82 be- 
low for details) shows that the dominant contribution to 
it is made by the spin waves with k' and k" of the order 
of k, and, consequently, AN,= AN.). 

Similar qualitative arguments were adduced long ago 
by Schliimann,4 LeGall et u Z . , ~  Melkov,' and others to 
show the nonlinearity of the damping in the three-wave 
processes (2) and (3). In a preprint of one of the auth- 
o r s  of the present paper (V.L.)," these effects a r e  quan- 
titatively analyzed in the simplest possible model that 
still preserves the main characteristics of the phenom- 
enon: the spin-wave spectrum is assumed to be iso- 
tropic, the dependence of the three-wave interaction 
constants V,,, on the angles is  neglected, and the PSW- 
pump interaction constant V, and the PSW-damping con- 
stant y, a r e  also assumed to be isotropic. Fairly sim- 
ple dependences of y, on N a r e  obtained which qualita- 
tively agree with experiment. 

In the present paper we study the interaction between 
the PSW and the thermal spin waves without making 
model assumptions about the spin-wave dispersion law 
o, and the matrix elements of the interaction Hamilton- 
ian. To begin with, in 81,  we discuss the question 
whether the kinetic equation can be used to compute the 
damping of a spectrally narrow PSW packet. In spite of 
the fact that this question has an almost obvious answer 

within the framework of Wyld's diagram technique, it 
is still discussed in the literature. 

In 82 we compute the nonlinear-damping constants q,,. 
for  relatively small numbers N, of PSW, when 

y,(N) =yto+na qrt.Nkr dk'. I (11) 

Further, we compute the q,. for the nonlinear damping 
due to the processes (2) of coalescence of two PSW. 
This mechanism was first  proposed by Gottlib and Siihl.' 
We also carry out in this section a consistent compari- 
son of the various mechanisms of nonlinear damping, 
and derive formulas giving the q,,, in different ranges 
of the external-magnetic-field strength. The contribu- 
tions of the various three-wave processes to the nonlin- 
ear  damping are ,  according to rough estimates, of the 
same order of magnitude. To ascertain the sign of the 
9,. and the role of the various mechanisms, we must 
carry out a thorough quantitative analysis that takes ac- 
count of the specific dispersion law and the form of the 
matrix elements. We a r e  also careful to retain the nu- 
merical coefficients of the type 2n that have a tendency 
to enter in high powers into a final answer and make one 
contribution numerically small compared to another. 
The main qualitative result obtained in 62 should be 
considered to be the proof that q,,. is  singular a t  k' =k: 
q , , , ~  Ik - kt]". This means, in particular, that the 
nonlinear contribution to the damping diverges on the 
singular spectra predicted by the S theory (see Ref. 1). 
This divergence occurs a s  a result of the use of the kin- 
etic equation to describe the narrow wave packet. The 
minimum packet width ~k for which the results pre- 
sented in the present paper a r e  valid can be estimated 
by comparing the q,., (2.6), computed with the aid of 
the kinetic equation with the nonlinear-damping constant 
for a monochromatic wave8: 

As is well known (see §I), this is the condition of appli- 
cability of the kinetic equation. As far  a s  we know (see, 
for example, Ref. lo), the condition (12) is always ful- 
filled in experiments on the parametric excitation of 
spin waves. 

Section 3 is devoted to the consideration of the effect 
of the nonlinear damping, in particular, its singular 
character, on the properties on the PSW. Here it is 
shown that positive nonlinear damping is an isatropi- 
cizing factor (increases the size of the packet in k 
space), while negative damping is an anisotropicbing 
factor. Owing to the latter circumstance, the S-theory 
equations with a negative nonlinear damping constant of 
the form (11) do not have a steady-state solution a t  all. 
It is shown that a small quantity of defects (the scatter- 
ing of the spin waves by which is an isotropizing factor) 
leads to the existence of a steady-state solution with a 
finite packet width in k space. Besides the PSW distri- 
bution, the following integrated characteristics a r e  
found: the number of spin waves and the nonlinear sus- 
ceptibilities. 

5 1. SYSTEM OF BASIC EQUATIONS 

1. The diagram technique. We shall, in describing 
the spin waves, proceed from the total Hamiltonian of 
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the problem: 

~ = % " ' + % ( ~ ' + ~ ' L ) + % ( P ' .  

-. (1.1) 
Here fl' is the Hamiltonian of the noninteracting spin 
waves: 

5" is the three-magnon interaction Hamiltonian ( 6 )  
and 8'' is the four-magnon Hamiltonian (9) ,  in which 
we have, for simplicity, retained only the part describ- 
ing the scattering processes (7). Finally, flu' is the 
spin wave-microwave pump interaction Hamiltonian: 

Since in the majority of experiments on the paramet- 
ric excitation of spin waves in ferromagnets the tem- 
perature Tz 300 K and is significantly higher than the 
p u m p  frequency kw,a 1 K (in the three-centimeter re- 
gion), we go over to the classical description of the 
spin waves by replacing the operators a; and a, by the 
corresponding c numbers, i.e., by the canonical vari- 
ables a: and a,. This allows the use of the canonical 
diagrammatic technique1' for the statistical description 
of the PSW. 

As shown in Ref. 12,  a system of Dyson equations for 
the normal (G,) and anomalous (La) Green functions 
arises upon the summation of the weakly coupled dia- 
grams. These equations can be represented in the form 

Gq=(o,-o--Bt-iI'q)Aq-', Lq=&A,-', q-k, o; 

Aq=(op-o-ot-iI'q) ( o - a k + i r q ) -  lPq12. (1.4) 

The interaction-renormalized spin -wave frequency Gk, 
the spin-wave damping constant I',, and the renormal- 
ized pump power pa can be expressed in terms of the 
normal (ca) and anomalous (II,) compact diagrams. For 
example, I?,= ~IZ,,~. Below we present the C dia- 
grams that are of second order in the vertices in 8") 
and S4 ): 

- 

Here we have used the normal diagram notation: the 
straight lines represent the Green functions G ,  and La; 
the wavy lines, the normal (no) and anomalous'(u,) pair 
averages.'' By summing the weakly coupled diagrams, 
we can obtain for n, and u, equations that generalize the 
S-theory equations: 

Here a, and !Pa are the sums of the compact, normal, 
and anomalous diagrams, e.g., 

They differ from the diagrams for C and Il in that they 
can be cut into two parts only along n and o lines. 

2. Transition to the kinetic equation in the absence of 
a pump. I f  hV, = 0, there are no anomalous correlators, 

La=O and oa=O in the equations (1.6), and expression 
(1.5) for the normal Green function assumes the simpler 
standard form 

Gq-(0 -a t -XkU)  - '=(a-BL+ irk)- ' .  

Then, instead of (1.6), we obtain 

nq= I Gql ' ( D q = 6 k m k  1 (o-&) 2+I't2]-'. 

The quantity a,, is a smooth function of k and w, and, 
consequently, the dependence of n,, on w is determined 
by the square of the modulus of the Green function. In- 
tegrating (1.9) over w, we have 

For wave packets that are spectrally broad enough 
(i.e., whose spectral width ~ w , > >  I',), we can, by set- 
ting n,, = nk6(w - w,), perform the integrations in the ex- 
pressions for I', and @, over all the internal frequen- 
cies. As a result, the diagrams 1 and 2 in (1.5) give the 
standard expression (4)  for the spin-wave damping con- 
stant due to the coalescence processes ( 2 ) ,  the diagram 
3 gives the expression (5) for the damping constant due 
to the decay processes (3), and the diagrams 5 and 6 
give the expression (8)  for the damping constant due to 
the scattering processes (7). The diagrams 1, 2, and 4 
in (1.7) for iP, give the sell-known expressions for the 
arrival terms in the above processes. Thus, we indeed 
arrive at the steady-state kinetic equation. Let us re-  
call that we do not, in deriving it, take the diagrams 
with three or more vertices into consideration. It can 
be shown1' that these diagrams can indeed be neglected 
in the case of sufficiently broad wave packets, i.e., 
when 

a@, a=@ I'haAk-,  ak r8<- aka (Ak)'.  

As is well known, the solution to the kinetic equation 
is the Rayleigh-Jeans distribution, which is also estab- 
lished in the absence of a pump. By substituting nt into 
(4) ,  (51, and ( 8 ) ,  we can compute the spin-wave damp- 
ing constant in the near -equilibr ium state: 

rro=rspV-+r."++r,>. 

The contributions from other processes, e.g., the 
Kasuya-LeCroy process,' should be added to yi as the 
need arises. 

3. Procedure for dividing the sfin waves into para- 
metric and thermal spin waves in the presence of a 
pump. A pump changes the occupation numbers n, not 
just in the parametric-resonance region, but in the en- 
tire k space. Therefore, the question arises: 'Which 
waves should be considered to have been parametrical- 
l y  excited, and which ones should, as before, be clas- 
sified as thermal waves?" A qualitative answer is this: 
"The parametric spin waves (PSW) are those pairs of 
spin waves whose phases are correlated with the phase 
of the pump; the remaining spin waves can be called 
thermal spin waves i f  their occupation numbers n, do 
not differ too much from the equilibrium level." As 
shown in our preprint,13 it is reasonable to define the 
PSW distribution function n,(k, w)  by the formula 

n,&, o ) = n ( k ,  o ) - n t ( k ,  a ) ,  (1.12) 
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where frequencies, setting 

is defined by analogy with (l.9), with the difference that 
here the quantity *,, should be computed not for the 
thermodynamic -equilibrium distribution ng, but for the 
real spectrum, n,(k, w), n,(k, w), and o(k, w) ,  computed 
in the presence of a pump. For such a definition, 
n,(k, w) is everywhere a smooth function of k, and 
asymptotically tends to the equilibrium spectrum a s  we 
move far  away from the resonance surface, i.e., a s  w, 
>> wb/2 increases. As for the quantities 

and o(k) they fall off rapidly with distance from the res- 
onance surface. It can be shown that 

4. The damping of the spin waves in the presence of 
a pump. An essential feature of the basic equations (1.6) 
is that they contain only one quantity (r ,)  that character- 
izes the damping of the waves. This means that, in the 
S-theory equations and any of their generalizations, the 
damping constants for the normal (n,) and anomalous 
(0,) correlators have the same value r k,w,,,. At the 
same time, in some exper iments14 different damping 
times 7, and 7, a r e  observed for the integrated quanti- 
ties 

Indeed, a question that has still not been fully answered 
is: "How a r e  the times 7, and rE related in the various 
experiments with the quantity r, and the other charac- 
teristics of the PSW-the two-magnon damping constant 
ydcfr the PSW packet width AW, with respect to the mod- 
ulus of k, etc. ? Let us se t  this question aside, and 
compute the quantity r,. Generally speaking, this 
should be done by substituting the quantities o(k, w), 
n(k, w) = n, + n,, and the exact expressions for the Green 
functions into the diagrammatic expressions (1.5) for 
C,. Then r,= ImC,,,k can be split up into the terms 

the first  yg of which depends only on n,, while the sec- 
ond and third, y,(k) and y,(k), contain the f i rs t  and sec- 
ond powers, respectively, of n, and o. The computation 
of yo{n,) is, in principle, simplified by the fact that 
n,(k, w) is a smooth function of k, and the dominant con- 
tribution to the integrals is made by the region where 
the wave vector of the Green function does not lie on the 
resonance surface, with the result that the approxima- 
tion (1.8) for the Green function can be used. As a re -  
sult, on performing the integration over the internal 
frequencies, we again arrive a t  the well-known expres- 
sions (4), (5), and (8) with the thermodynamic-equilib- 
rium spectrum ni replaced by the spectrum n,(k), which 
differs from ni because of the interaction with the PSW: 

The part of y of f i rs t  order in n,(k, w) is just a s  easy 
to compute: we should integrate f i rs t  over the PSW 

and then over the remaining internal frequencies, re- 
placing Im G,, by n6(w - w,). This can be done if the 
range of integration over a t  least one of the internal k' 
is broad, s o  that w,, changes by an amount significantly 
greater than the greatest of the damping constants for 
the spin waves participating in the process. Thus, for 
example, 

By comparing this expression with (41, we can easily 
verify that Y,,, can be obtained from the kinetic equation 
[i.e., from (4)] by substituting into it the PSW distribu- 
tion n,(k) with allowance made for the fact that w,= wP/2. 
The expressions for  y,,,, and Y,,,, can be obtained from 
(5) and (8) in similar fashion. The second-order terms 
Y,,,, can also be computed in much the same way. It is 
only necessary to take also into account the contribution 
of the diagrams 7 and 8 that ar ises  because of the pres- 
ence of the anomalous correlators. 

All the preceding expressions for the damping con- 
stants a r e  valid for any k, including k lying on the res- 
onance surface. But if we set  w,= wp/2 in the analytic 
expressions for the diagrams 6-9 in (1.5). then it turns 
out that the frequency figuring in the Green functions 
also falls on the resonance surface. The approxima- 
tions (1.8) used by us for G and n, a r e  then no longer 
valid, and, instead of the simple formulas for  y,,, , that 
follow from the kinetic equation, we obtain an entirely 
different expression: see  the formulas (3) and (4) in 
Refs. 9 and 17. 

The arrival terms a, of the kinetic equation a r e  com- 
puted in the same scheme as the damping constant, and 
split up in exactly the same way into terms of zeroth, 
f irst ,  etc., orders in n, and o (see our preprintls). 

Summarizing the results obtained in this section, we 
can say that the kinetic equation can be used to study 
the interaction between the parametrically excited 
waves and the thermal waves if the wave vectors of the 
TSW lie fa r  away from the resonance surface w,= wp/2. 
In this case we must take into account the additional 
terms that a r i se  a s  a result of the correlation of the 
phases in the PSW pairs, and we can s e t  w,= wP/2. 

If, on the other hand, the wave vectors of the TSW lie 
close to the resonance surface (i.e., if 1 w, - w,/2 1 2 y), 
then the description scheme becomes complicated: it 
becomes necessary to include more terms in the ex- 
pressions for y, and *,, but no fundamental difficulties 
a r i se  here. 

$2. NONLINEAR DAMPING IN  THE CUBIC 
FERROMAGNETS 

Many new and interesting effects connected with non- 
linear damping occur even in the case of a small num- 
ber of PSW, when the deviation of the state of the TSW 
from the equilibrium state is small, i.e., when 6n, <<no,. 
This case, which admits of a detailed analytical inves- 
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tigation, constitutes the subject of the present paper. 
In this section, using the principles validated in 51, we 
compute that correction to the PSW-damping constant 
which is proportional to the first power of the number 
of PSW. 

1. Basic equations. In the experimental situation (10) 
of interest to us ,  we can neglect the contribution of the 
four-wave processes to the nonlinear damping. The 
deviations 6n, of the TSW from equilibrium should be 
found from the kinetic equation for thermal magnons: 

W e  shall use for the analysis the actual dispersion 
law for spin waves in an isotropic ferromagnet: 

wt2= ( ~ ~ + a k ' + ' / ~ w ~  sinZ 0) -1/,om2 sinh 9, (2.2) 

where 6 is the angle between the wave vector of the 
wave and the magnetic field, 

For a wave close to the equator of the resonance sur- 
face, the dispersion law (2.2) can be approximated by 
the formula 

~ ~ = w ~ + a k ~ = w . + ' l ~ w , + a k ~ ,  (2.3) 

which for (10) corresponds to a roughly 1% error. 

In the case of the dispersion law (2.2) decays are al- 
lowed for waves with 

akZ>akp~2(wo2+wpwm sin2 0)'". 

The frequency of the parametric waves is fixed ( w, = w,/ 
2 ) ,  and the variation of the wave vector is achieved in 
experiment through the variation of H (and, consequent- 
ly, of wo). The decays become allowed when 

wo<'lS(wp2+4wm2 sin' 0)'"-1/, ( ~ , ~ + o , ~  sin' 0)'". 

2. Negative nonlinear damping in the processes of 
coalescence of a parametric wave with a thermal wave. 
Let us first consider the case in which the decay of a 
PSW is allowed. Then, as noted at the qualitative level 
in Ref. 1,  the nonlinear damping of the PSW will be 
negative, i.e., y,(N) will decrease with increasing N. 
For a quantitative analysis, it is essential that we take 
into consideration the angular dependence of the three- 
wave interaction matrix element 

V,, =V (sin 20,,,e-'01+sin 202,e-'v*), V= (8ntg3~V)'b, (2.4) 
where the z axis has been oriented along the magnetic 
field and el,, 6, and (p,, q2 are respectively the polar 
and azimuthal angles of the vectors k, and k,. Substi- 
tuting 6n, from (2.1) into (4) and (5) ,  we obtain in ac- 
cordance with (11) the expression 

qkk. = dl  I Vt, kt-); 1" (wg - o k  - wg-k) 1 VI+L;, IL; 1'6 (w+L; - at 

X 1 VI+L;. ,L; 1'6 - - (or) n10 - . , ,  nl+L; - S 1 vc. kr-r 1' I Vq, kt-. 1' 

The third and fourth terms in g,,. have a singularity 
at k' = k ,  which arises as a result of the coincidence of 
the arguments of the 6 functions. We can, by perform- 
ing the integration, easily verify that for I << k gkwx 
a 1/ I x 1 .  Let us analyze the expression (2.5) for k' 
close to k. Assuming that x,,x,.<< 1, and limiting our- 
selves to the consideration of only the singular term in 
(2.5), we obtain 

4TopV4 
'lkk. - 

ak [2 sinZ ( ( ~ / 2 )  + (xk - xk,)' + ((k - kl)/k)']'!' 

Here 
wt+2akz 0 1  El =, E2=-, Xk,k' =2-ek,kz, 

2ak cos (cp/2) ' 2ak cos ( ~ 1 2 )  2 

where (p is the difference between the azimuthal angles 
of the vectors k and kt .  

As is well known, when k goes over from the nonde- 
cay region into the decay region, the damping ccnstant 
Y: increases severalfold. It is easy to  see that k ,  sat- 
isf ies the inequality El > k,= (awl/ cr)?. Therefore, for 
;,< k,, which is equivalent to 

the dominant contribution in (2.6) is made by the sec- 
ond term. For field intensities higher than Hl ,  q,,. is 
several times smaller. To  study the effect of the non- 
linear damping on the PSW distribution in the case of 
axial symmetry, we need 

Computing this quantity for H<H,, we obtain 

3. Nonlinear damping due to the decay of the PSW. 
Let us now consider the nonlinear damping of the para- 
metric waves in the decay region of the spectrum. 
Limiting ourselves in the expression for the damping 
constant to the consideration of the term corresponding 
to the decay of the parametric waves, we write 

yr ( N )  = ykO + n d k ~  I Vk, rk-r 128 (or - oi - ok-,) tin: 

Neglecting all the terms in (2.1) except the second, 
since they make a "nonresonance" contribution (the cor- 
responding g,, does not have a singularity at k' = k ) ,  we 
obtain 

For the quantitative calculations, let us again use the 
dispersion laws (2.3) and the matrix element (2.4). For 
the PSW close to the equator, we obtain, similarly to 
(2 .6) ,  the express ion 

908 Sov. Phys. JETP 55(5), May 1982 V. S. L'vov and G. E. Fal'kovich 908 



Here 

sin (k,) = 
oo+2ak,' 

2akk, cos(q/2) ' 2 2a 

In the computation of qkk. the dominant contribution is 
made by the region around q = 0: 

+ (y)2] -'. 
Here kn2 = 2 wl/ a. 

If the wave vector k of the PSW lies near the decay 
edge k2 = k;(l+ 6), 6 << 1, then 

It can be seen that, for PSW at  exactly the equator (i.e., 
for x, =xk. = 0), qkk.a 6'<< 1 because of the fact that the 
matrix element Vk,,.,,. vanishes for waves propagating 
in the plane perpendicular to the magnetization. 

A comparison of (2.10) and (2.7) shows that the nega- 
tive nonlinear damping is replaced by positive damping 
when 6>'/,, i.e., the formula (2.9) o r  (1.10) can be 
used to describe the nonlinear damping in the decay re-  
gion. 

4. Nonlinear damping due to the coalescence of two 
PSW. In the case of the dispersion law (2.3) we obtain 
from (4) the expression 

- P cos cp, (sin2 20h+sinz 20kr+ (20,/akk1) cos Okcos 0,s) -- 
n 2akk' sin 0, sin 0,- sin cpo 

where cos cpo= 0,/2&kf sin @,sin eke. 
The coalescence process is  allowed for 

wp2+om sin' O 
) 'A - ( ;: ) ' )a 
- - or 2akk'>o,. 

~f kkf = ( ~ , / 2 ( ~ ) ( 1 +  6'),6' << 1 ,  then for the PSW near the 
equator 

VZ (x,+x,.)? 
,kk' = - 

no, '(tiT-'/, (x,2+zA.') )"' ' 

Let us now compare the contributions of the various 
processes to the nonlinear damping. For this purpose, 
let us compute 

-A 

for q,, given by the formulas (2.7), (2. lo),  and (2.11). 
This quantity is equal to the nonlinear damping constant 
for the PSW a t  the equator in the model with N(x) chos- 
en in the form of a rectangle of width 2A. To simplify 
the comparison, let us assume that the y i  entering into 
(2.7) and (2.10) is equal to yi = cyc= b v 2 ~ / 4 n a 2 k ,  
where, a s  experiment shows, t z  1 - 5. Then 

2 VzA - *" " [ q z o  =-- 
no, A 

VZollnA-I - 4VZti2 1n A-' tic= - 5Sa2kl ' 11" 
. (2.12) 

5~a,?('/20p-~aiz) 

It can be seen f rom (2.12) that i,, is substantial in a 
small  region of width A around H,,,. A comparison of 
i, and i,, for H =  H,,,,(l + A )  shows that 

Thus, the contribution of the process of coalescence 
of two PSW increases with increasing angular width of 
the packet. Figure 1 shows typical behavior of the non- 
linear damping constant for the case A = 0.1. This be- 
havior agrees well with the experimental data reported 
in Ref. 15. 

Summarizing, we can asse r t  that, for H<H,a650 Oe, 
the nonlinear damping constant q,,. for the waves with 
wave vectors lying close to the equator of the resonance 
surface is given by the formula (2.10). For H,< H< HI, 
qkk, is negative, and is given by the expression (2.7). 
At H z  H,,,,a 1.1 kOe, q,,, has a narrow peak. In the 
reg ion H >  Hi, / 9 1 decreases severalfold. 

93. THE EFFECT OF THE NONLINEAR DAMPING 
ON THE STEADY STATE OF THE PARAMETRICALLY 
EXCITED WAVES 

As is easy to see, the nonlinear contribution to the 
PSW damping constant (2.7), (2.10) diverges on the S- 
theory distributions that a r e  singular in k space.' It is 
natural to assume that the S-theory equations with a 
nonlinear damping constant will have a s  a solution the 
PSW spectra having in k space a finite width with re- 
spect to both 0 and k. This assumption is correct, but 
only in the case of positive nonlinear damping. Indeed, 
it is known from the S theory that the PSW distribution 
is stable against the production of new pairs if the sur-  
face of the renormalized pump 

P,=hV, +J S,r,or dk' 

is enclosed by the y, surface and touches it a t  those 
points where N, + 0. Positive nonlinear damping in- 
creases  the curvature of the y, surface, and, a s  a con- 
sequence, can be a factor increasing the angular width 
of the PSW packet, whereas negative nonlinear damp- 
ing, on the other hand, is an anisotropicizing factor. It 
is easy to see  (see below) that the S-theory equations 
with a nonlinear damping constant of the form (11) pos- 
sess  a solution with a finite width with respect to the 
angle 0 and the modulus k when 7] > 0, but possess no 

FIG. 1. Dependence of the nonlinear damping constants on 
the magnetic field: 1) in the processes involving the coale- 
scence of a PSV and a TSW (v,); 2) in the processes involving 
the coalescence of two PSW (q2,); 3) in the decay processes. 
The curve 4) i s  the total curve. 
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solutions a t  all  when q<0.  Let us now proceed to per- 
form analytic computations. 

1. The case of positive nonlinear damping. Ant ici- 
pating that the waves will be concentrated in a narrow 
region of k space (as we shall see  below, this is guar- 
anteed by the condition qN<< y), and assuming that the 
wave packet will be axially symmetric, we neglect the 
dependence of the coefficients St,. and y, on O and k 
within the limits of the width of the packet. Then we 
can assume that 

j Stt tNt .  dk'=S(Bt) N, N = j Nt-  a'. (3.. 1) 

The formuia (3.1) expresses the fact that the integral of 
interest to us is proportional to the total number of 
PSW and a t  the same time serves a s  a definition of the 
coefficients S(O,). 

In the narrow-packet approximation, the steady-state 
S-theory equation with a nonlinear damping constant a s  - 
sumes the form1 

This equation is valid in the region where N,+O. Tak- 
ing account of the fact that V(B) = Vcos20, S(O) = S cosZO 
(the angle O is measured here from the equator of the 
resonance surface ;,, = w,/2), and = ij,, + (k - $)v, 
where v =  aw/8k is the group velocity of the spin waves, 
we can represent Eq. (3.2) in the vicinity of the equator 
of the resonance surface in the form 

Here 

P= ( h 2 p - S a W )  '1,. 

Notice that, since k,v,/Pa kov,/y >> 1, the dimens ionless 
PSW-packet width with respect to the modulus k is 
much smaller than the width with respect to the angle 
8. Therefore, as a f i rs t  approximation, let us consider 
(3.3) for k = k,, setting N(k, 8) = N(O)6(k - k,): 

Equation (3.5) possesses a solution that is nonzero in 
the interval -A < O < A  and equal to zero outside it. This 
solution can be expanded in a Taylor ser ies  in powers 
of 8'. We can verify by direct substitution that, up to 
terms -L~-'[P/(P-Y)] it is given in the entire interval 
by the formula 

where A is the PSW-packet width with respect to the 
polar angle and N is the total number of PSW: 

It is difficult to  perform such a detailed analysis in 
the two-dimensional case; therefore, we shall, in com- 
puting the packet width, limit ourselves to an estimate. 

Assuming that N(k, B), a s  a function of k, is a rectangle 
of width ~ k ,  we find from (3.3) that 

Equation (3.8) for the total number N of PSW will, of 
course, not change. Let us note that (3.8) differs only 
by the logarithm from the S-theory equation with a non- 
linear damping constant of the form qkk.= const, ob- 
tained in Ref. 7. Thus, the simple model used in Ref. 7 
describes the integrated characteristics of the PSW 
fairly well. Indeed, neglecting the slowly varying log- 
arithmic function in (3.8), we find that 

where 5 = hV/y and c = q/ ( S  I. The real and imaginary 
parts of the nonlinear susceptibility can be obtained in 
the usual manner (see Ref. 7): 

From (3.10) and (3.11) we can obtain the properties, 
discussed in Ref. 7, of the nonlinear susceptibility: the 
finite slope of ~ " ( f )  and the zero slope of ~ ' ( 5 )  a t  the 
threshold point, the finite x"(Q) value, the displacement 
of the ~ " ( 6 )  peak toward the region of high f values a s  
c increases, etc. Let us only note that allowance for 
the logarithm in (3.8) leads to a situation in which in the 
vicinity of the threshold, when 5 - 1 << (q ln(f  - 1)/S)2, 

i.e., has a zero derivative a t  5 = 1. 

A qualitatively new phenomenon, which is connected 
with the singular character of qkk,, is, a s  we can see ,  
the possession of a finite width by the packet. Knowing 
the function N([), we can determine this width from 
(3.7): 

As we saw in 92, by varying the magnetic field, 
we can vary the quantity c = q /  IS I within wide limits. 
For cz/(cz + 1) << t2 - 1,  

A2=9 (E2- 1) 12 (c2+1) ". (3.13) 

In the opposite limiting case, when l / c  >> 5'- 1 >> c2/ 
(1 +cZ), 

A Z = 9 c ( ~ z - 1 )  '". (3.14) 

It can be seen that, for c =  1, the PSW packet is greatly 
broadened with respect to the angle even a t  supercriti- 
calities e1.5 dB. 

Let us recall that all  the above-presented formulas 
have been obtained under the assumption that qN<<y. At 
the applicability limit A =  1 ,  

,Ak/k= ( y lo ) '"<I .  

On the other hand, it follows from (12) that, for the re-  
sults obtained to be applicable, it is necessary that A 
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>y/  w, which, together with (3.12), leads to the condi- 
t ion 

y  ( y l o ) 2 c 9 N c y .  (3.15) 

Besides the positive nonlinear damping, the presence 
of thermal noise, the inter-PSW interaction, which is 
described by the off-diagonal terms of the Hamiltonian, 
and the two-magnon scattering of the PSW by the static 
inhomogeneities lead to the broadening of the spectrum. 
But a comparison of (3.8) with the results of Ref. 10 
shows that, for [ >> &,,,/y, where P=(ak)T/T,= 
- and y,,, is the two-magnon damping constant in 
the absence of a pump, the broadening of the packet in 
k space is due largely to the nonlinear damping, i.e., to 
the interaction between the parametric and thermal 
waves. 

2. The case of negative nonlinear damping. As has 
already been noted, negative nonlinear damping de- 
creases the PSW-packet width, which, in the S-theory 
approximation, is equal to zero anyway. Therefore, it 
is absolutely necessary in the consistent theory that we 
take into account, besides the negative nonlinear damp- 
ing, the interactions leading to the smearing of the sin- 
gular distribution of the PSW. At not too high super- 
criticalities, the dominant interaction is usually the 
two-magnon scattering. 

Let us f i rs t  consider the case in which the two-mag- 
non damping constant y,,, is much smaller than the total 
damping constant: Y,,, <<y. In this situation we can 
neglect the effect of the scattering by the defects on the 
interaction between the parametric and thermal waves, 
and use the nonlinear damping constants qkk. computed 
in 82. As in Ref. 16, the equations describing the angu- 
lar  distribution of the PSW can be derived with the aid 
of the diagram technique. In the axially symmetric 
case they have the form 

1 

yNL (11 - J q - . ~ = ,  d z f ,  P = = ~ ~ , - ~  j s-9P=vN=v dxl 
- 1  - I  

r,. 

Here x = cos 8; r, and P, a r e  respectively the renormal- 
ized damping constant and pump power. 

Naturally, it is difficult to obtain the exact solution to 
this complex system of nonlinear integral equations. 
Even the smallness of the quantity Y,,,/Y << 1, which 
leads to a situation in which the distribution function N, 
of the PSW should have a t  x = 0 a sharp peak with char- 
acter istic width A << 1,  is of no help. The point is that, 
because of the singularity of the kernel qxr8, the form of 
the function significantly depends on the shape of the 
packet N,. Therefore, we shall just estimate the angu- 
lar  width A without computing N,. For this purpose, we 
represent N, in the form of a rectangle of width 2A, and 
use the fact that N, is a narrow packet. Then we can, 
after approximately evaluating the integrals in (3.16), 
reduce this system of integral equations to the following 
system of algebraic equations: 

~ ~ = r ' - - P ' - 2 ~ q N  In A-', ( h V )  '=PZ [I+ (SN)2/(I ' -qhrln A-I)']. 

(3.17) 
Let us give its solution in two limiting cases: if 

then a t  low supercriticalities, when h - hc << hc, 

where N, is the magnitude of the "forward" jump in N 
a t  the threshold: 

The width A of the packet is then determined by the 
two-magnon scattering, and practically does not depend 
on the nonlinear damping: 

The expressions for the jumps in the susceptibilities 
X" and X' and the jump in the phase of the PSW have the 
form 

The results of the theory in this limiting case differ 
only by the logarithmic factor attached to q from the 
results of the simple theory presented in Ref. 7 ,  which 
assumes qkk. = const. 

If the coefficient q is large, and, instead of (3.19), 
the inverse relation is fulfilled, then the analysis of the 
equations (3.17) is significantly less trivial. Here we 
give only the expressions for the N, x', and X" jumps 
occurring a t  the threshold. Instead of (3.20), the mag- 
nitude of the "forward" N jump is now given by a form- 
ula that does not contain s: 

It can be seen that the magnitude of the jump N+ is se t  
such that yNL does not exceed the two-magnon damping 
constant y,,,. The width A of the packet is then smaller 
than the width given by (3.21): 

It can be seen from the formulas (3.21) and (3.24) that 
negative nonlinear damping indeed decreases the width 
of the PSW packet. In this limiting case the x", x', and 
JI jumps a r e  given by the expressions 
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instead of (3.22). Comparing the results of the calcu- 
lations in the two cases, we see  that the behavior of the 
PSW (e.g., the jumps in the phase, x', x", . . .) is deter- 
mined by the smaller of the two quantities (q/S) ln(y/yd) 
and (Y,/Y)~. 

Notice that we have consistently neglected the four- 
wave processes. At the same time, they make to the 
nonlinear damping a positive contribution that is, in 
particular, proportional to the square of the number of 
PSW: 

The nonlinear damping constant due to the four-wave 
processes naturally does not have singularities, and is 
therefore determined by the total number of PSW. The 
coefficient o! can be roughly estimated for the process 
involving the scattering of two PSW: T2/w,,. The 
formulas (3.19)-(3.25) a r e  valid when crN, < q ln~- ' .  In 
the opposite case the jump is limited by the positive 
contribution to the nonlinear damping. Evidently, the 
quadratic-in N-contribution to the nonlinear damping 
constant explains the change, observed by Melkov and 
Kru t~enko , '~  from negative to positive nonlinear damp- 
ing a s  the supercriticality is increased. 

The case of a large number of impurities, i.e., the 
case in which y,,, >> y , can be considered in similar 
fashion. In this situation, because of the two-magnon 
scattering, the s ingularity in qkk, is smeared, and the 
distribution of the PSW over the ;,= w, /2  surface is 
isotropic. 

In conclusion, let us note that the singular character 
of qkk. was neglected in earlier6*'' interpretations of the 
experiments on nonlinear damping. Therefore, for any 

detailed comparison of the results of the present paper 
with the results of measurements to be possible, we 
need new purposeful experiments. 
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