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The static structure factor for liquid crystals formed by disk-lie molecules is calculated. It is shown that size 
effects occur in a two-dimensional lattice of liquid columns consisting of such molecules if the samples are 
much larger than the corresponding anisotropic three-dimensional crystals. 

PACS numbers: 61.30.C~ 

1. INTRODUCTION i te system with a smectic order a r e  the anomalous part 

It is known1 that the most important parameter of a of the diffuse background and quasi-Bragg scattering 

condensed system is the static structure factor S(q) , (since the Debye-Waller factor does not diverge in a 

which determines the integral characteristics of the system with finite dimensions). Depending on the pa- 

scattering, say of neutrons or  x rays. In ordinary rameters of the system, a finite sample of a smectic 

three-dimensional crystals S (q) consists of an aggregate liquid crystal behaves, in the sense of scattering of 

of Bragg peaks (whose position is determined by re-  x rays  and neutrons, either like an ordinary crystal  

ciprocal-lattice vectors) and a certain diffuse back- (i.e., it has relatively narrow Bragg peaks), o r  like an 

ground. This separation of the scattered radiation into infinite smectic (i.e., the singular diffuse background 
predominates). As already mentioned, the structure regular reflections and a diffuse background is possible, 
factor of systems with smectic order has already been 

strictly speaking, only in infinite crystals. In this case, 
the terms proportional to 6 functions in the expressions investigated e a r l i e r . ' ~ ~  

for the scattering intensity describe the regular reflec- 
tions, while the terms that do not contain 6 functions 
describe the smooth distribution of the diffuse scatter- 
ing. The thermal oscillations in three-dimensional 
systems lead to a weakening of the intensity of the regu- 
lar reflection on account of the Debye-Waller factor but 
do not cause line broadening. In crystals with finite di- 
mensions (- R), the 6 functions a r e  replaced by certain 
peaks of finite width -1/R, and in this sense a r e  indis- 
guishable from the diffuse background. Actually, how- 
ever, the characteristic widths of the diffuse back- 
ground, for wave vectors in the vicinity of the Bragg 
maxima, greatly exceed the 6-peak width connected 
with the sample dimensions. Indeed, in an isotropic 
three-dimensional system the characteristic inhomo- 
geneity of the diffuse background is of the order of 
E/?T (where E is the elastic modulus, 7 is the reci- 
procal-lattice constant, and T is the temperature). 
At typical values of the parameters (E -10" erg/cm3, 
7 -lo8 cm-', T -10-l4 erg) this quantity is -lo9 cm-', 
much larger than the width 1/R of the Bragg peaks at 
a l l  the permissible sample dimensions. 

The situation is different in systems with partial 
translational ordering, represented by the great variety 
of types of liquid crystals. For example, if we a re  
dealing with one-dimensional translational order (smec- 
tic liquid crystals), there a r e  no 6-function Bragg 
peaks a t  a l l  in an infinite sample, since the Debye- 
Waller factor diverges. In the vicinity of the recipro- 
cal-lattice si tes,  however, the structure factor is sin- 
gular, as reflected by the slow (logarithmic) decrease 
of the order in such systems. The structure factor of 
such systems was calculated by Feigelman and Pokrov- 
sky2 a s  well a s  by Gunther et a1 .3 Competing for a fin- 

A few years ago, Chandrasekhar5 discovered new 
types of liquid crystals, called diskotics, with two-di- 
mensional translational order. There a r e  very few pa- 
pers  on this topic, (see, e.g., the review6) owing to the 
difficulty of producing and ordering these mesophases. 
Definite progress has been made in this direction by 
now, h ~ w e v e r . ~  The principal method of determining 
the structures of these mesophases is to study the scat- 
tering of x rays. It i s  most convenient here to use a 
geometry in which the scattering i s  in the plane of a 
two-dimensional lattice of a diskotic phase. The most 
important question from the experimental point of view 
is how to distinguish the Bragg peaks of a two-dimen- 
sional lattice made up of liquid columns of the diskotic 
phase from the corresponding Bragg peaks of an ordin- 
ary three-dimensional crystal structure. This question 
will be answered in Sec. 3 below. 

2. DlSKOTlC LIQUID CRYSTALS 

We consider first  the general characteristics of mes- 
ophases produced by a lattice of liquid columns. The 
order parameter is in this case a set of complex ampli- 
tudes $(q) that define a two-dimensional lattice, and the 
director vector n, which specifies the average orienta- 
tion of the planes of the disk-like  molecule^.^^^ In the 
simplest case n i s  perpendicular to the plane of the 
two-dimensional lattice (and is a tangent vector to the 
liquid columns that make up this lattice). The system 
is in this case obviously invariant to simultaneous rota- 
tion of n and of the plane of the two-dimensional lattice. 
Taking this circumstance into account, we have the fol- 
lowing Landau expansion of the free energy of the disk- 
otic in powers of dq) 
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Here, a, b ,  c,  D,,, and DL a r e  the expansion coeffi- 
cients, K3, is the longitudinal bending modulus of the n 
field. In the diskotic phase, the rigid two-dimensional 
lattice admits of only such a deformation, but when the 
two-dimensional lattice melts and the nematic phase is 
formed, other deformations a re  also possible (trans- 
verse bending and twist, described by the correspond- 
ing Frank moduli K,, and K,,). 

Let us explain also the origin of the gradient terms. 
As already mentioned, flq) describes the two-dimen- 
sional modulation of the density p, in the lattice of 
liquid columns: 

[r denotes the radius vector in the (x ,  y) plane, and the 
three-dimensional radius vector i s  R =  ( r ,  z ) ] .  It must 
be recognized here that the amplitudes z+!~(q) a re  general- 
ly speaking slow functions of R,  i.e., vi+!~(q) << qflq). The 
gradient t e rms  in (1) stem from expressions of the type 
[ ( n ~ ) ~ , ] ~  and ([nx v ] ~ , ) ~  with account taken of the in- 
equality written out above. Of course, such a simple 
form (the presence of only one coefficient DJ is a first 
rough approximation, since the elastic deformations of 
even an isotropic (for example, hexagonal) lattice a r e  
described by two moduli. 

One more circumstance is that the expansion (1) cor- 
responds to the straight diskotic phase Do. In principle, 
an even less  symmetrical structure is possible, in 
which the tangents to the liquid columns do not coincide 
with the normals to the plane of the two-dimensional 
lattice. In such an oblique diskotic structure D,, the 
free energy differs from (1) only in the form of the 
gradient terms. It is convenient, to introduce the vector 
8, which describes the deviation of the director n from 
the tangent v to the liquid column. Then the gradient 
terms in (1) take the form 

(we have assumed that the angle between n and v i s  
small, i.e., I << 1). In the general case we have also 
a certain expansion of the f ree  energy in powers of B 
and Vfi. We thus obtain the complete phase diagram of 
the Do, D,, and N ,  phases (N, i s  the nematic phase 
made up of disk-like molecules). This diagram has a 
triple point at which the stability regions of all three 
phases are  in contact. The transitions Do-N, and 
D, -N, a re  of first order, while Do - D, can in principle 
be a second-order phase transition. 

The foregoing analysis corresponded to an experi- 
mental situation in which the liquid columns also vanish 
when the two-dimensional lattice i s  melted, and we ob- 
tain the N, phase. If the liquid columns were to be 
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preserved in such a melting, we would obtain a phase 
similar to a polymer nematic.') This question, how- 
ever,  is outside the scope of the present paper. Being 
interested only in the structure factor of the Do phase, 
we shall investigate expression (1) for the free energy. 

It is convenient to introduce the modulus and the 
phase of the order parameter: 

$ ( q )  =m ( q )  ej*(q1. (2) 

Substituting (2) in (1) we obtain 

Minimization of 6 F  with respect to the modulus m(q) 
yields the following results. At a temperature T, = T* 
+ 2b2/9ac (a= a(T- T*)) we have a first-order phase 
transition from the N ,  phase (in which m = 0) into the 
Do phase, in which the distribution of m in the ground 
state is uniform in space: 

We consider for  the sake of argument only a hexa- 
gonal lattice of liquid columns and take into account the 
principal period q,, (m(q,,) =md : 

To exclude the fluctuations of the director it is neces- 
sary  also to minimize (4) with respect to 6n. We obtain 
thus an expression that depends only on the spatial de- 
rivatives of the phase: 

Equation (5) agrees with the known theorem of Landau 
and Peierls," that in such a two-dimensional lattice of 
liquid columns the correlation function of the displace- 
ments takes the form: 

Indeed, by minimizing (4) with respect to 6n we obtain 

From the definition of the phase of the order parameter 
and from the obvious connection between the displace- 
ments of the two-dimensional lattice with the deviations 
of the liquid columns (with the director fluctuations in 
the case of the Do phase) we have cp= q, .u .  

Thus, Eq. (5) i s  an approximate expression for the 
elastic energy of the Do phase. It is easy to write also 
the total form of the elastic energy. For example, for 
a hexagonal lattice of liquid columns we have the follow- 
ing generalization of Eq. (5): 
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We used in (7) the standard notation for the elastic mod- 
uli and [in contrast to (5)] took into account the possible 
compression deformation of the liquid columns Bu,/8z. 
Equation (7) differs also from the expression for the 
elastic energy of the three-dimensional crystal with 
hexagonal symmetry. The point is that in the Do phase 
the relative shift of the liquid columns does not lead to 
an elastic energy -q2. The corresponding shear modulus 
is therefore zero. 

We introduce for convenience somewhat different 
symbols. The displacements in the two-dimensional 
lattice will be designated by u,  (a = 1,2), and the dis- 
placement along the liquid columns by v .  similarly, q, 
a r e  the wave vectors of the two-dimensional deforma- 
tion and x is the component of the wave vector along the 
z axis. In this notation, the expression for the elastic 
energy (7) can be written as follows: 

Similarly, in the single-constant approximation (5) we 
have 

1 dx#q 
*F = -j, { [ C q 2 + K x 4 ] ~ z + E x z v a } ,  

2 n)' 

where C = ~ , m , ~ q ~ ,  E -C,,. From (9) we obtain the fol- 
lowing expression for the correlators: 

T T8u@ (u.v)=O, (9) =- <U,U") =- 
CqZ+Kx' ' Ex' ' 

o r  more accurate formulas that follow from (8) 

where e is the unit vector that defines q. We see that 
qualitatively (11) and (10) lead to the same dependences 
on q and n, differing only in the tensor structure and in 
the values of the elastic moduli. 

3. THE STRUCTURE FACTOR 

From the definition of the structure factor S we have 
- 

~ ( q ,  x )  = 1 eiq8 l2<es*.+h>+ e a ~ ~ - * ~ ) < e x p ( i q ( u U - u . ~ )  +i*-vn)}> 
.,a' 

(12) 
(a is the vector of the two-dimensional lattice of the 
liquid columns). The first  term in (12) corresponds to 
coherent Bragg scattering, and the second describes 
the diffuse background (incoherent scattering). We 
s tar t  with coherent scattering: 

In the usual manner, the first  sum in an infinite crystal 
yields 6-function Bragg maxima, and the second multi- 
plier yields the Debye-Waller factor 

Here v, is the a rea  of the unit cell of the two-dimension- 
al lattice, N is the number of cells, and T is the recip- 
rocal-lattice vector. In a finite crystal, the 6 functions 
a r e  replaced by certain (dependent on the sample shape) 
6-like functions with width 1 / ~ .  

Less trivial size effects can manifest themselves in 
the Debye-Waller factor. In the harmonic approxima- 
tion 

Substituting here expressions (10) for the correlators, 
we obtain 

In principle, size effects of different types a r e  possi- 
ble. In the simplest case it can be assumed that the 
properties of a finite system a re  the same as those of 
an infinite one. In other words, we can consider an in- 
finite system, but the scattering is effected in some 
small part of this system. All the size effects a re  sim- 
ply connected in this case with the restrictions on the 
integration region in (16). We consider a system with 
dimensions L1x L1x L (L is in the direction of the liquid 
columns). 

The problem has a characteristic parameter with di- 
mension of length 

A= (KIC) ". (17) 

F a r  from the transition into the nematic phase, A is of 
the order of the molecular dimension d, but in the vicin- 
ity .of the transition point we have C - 0 and A -=J. The 
second term in (16), which holds a t  x+O, describes 
scattering by the liquid columns. The dimensional de- 
pendences of the corresponding contribution to the De- 
bye-Waller factor a re  trivial: 

(a is the lattice period of the liquid columns). 

We note, however, that the "liquid" contribution 2Wf 
is practically independent of the dimension L'. 

We consider now the case n =  0. The scattering is 
determined by the liquid-column lattice. Let L1 - =J 

(what is actually required is AL1>> L2). We then have 
Tqa d'p Tq2 d'pdt 

2 W, = --- 
(2n)'CL J T + WJ pz+Aztl . 

The first  term in (18) describes the contribution of one 
lattice layer, the second the contribution from the 
three-dimensional system. We thus get from (18) 

where 

.p(u)= j d r l n ( l + L i i ) ,  

1 1+2"u+u' 1 2% 
cp(u) =-4uln u+uIn(l+u4) f F , l n  i-2"u+uz + - 2" arctg -' 

The asymptotic forms of this functions a re  
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To be able to observe size effects in this case we 
must satisfy the following inequality: 

This condition is similar to that obtained in Ref. 2 for 
anisotropic three-dimensional crystals. A subdivision 
such a s  (18) of the Debye-Waller factor into two-dimen- 
sional and three-dimensional contributions has the fol- 
lowing meaning. In fact, we have in place of (18) a sum 
over the whole-number vectors t = 2nn/L. Equation (18) 
corresponds to separation of the term n = 0 and replace- 
ment of all the remaining terms of the sum by an inte- 
gral  with respect to t. This replacement is justified 
because in our system there i s  a mode with t = 0, in 
which the crystal layers a re  shifted as a whole. Such a 
mode i s  permissible only if the diskotic liquid crystal 
layer has free boundaries. On the other hand, since the 
dependences on n a r e  slow enough (logarithmic), we 
can confine ourselves with good accuracy to separation 
of only the term with n = 0. As L2 -L'A - 00 the two-di- 
mensional contribution to the Debye-Waller factor tends 
to zero and a transition takes place thus to the "volume" 
case. 

The situation i s  different at La >> LtA. In this case 
we must replace by a sum in (16) or  (18) also the inte- 
gral over the transverse momenta: 

Separation of the term with m = n = 0 in (21), however, 
is inadmissible. The point i s  that such a mode would 
correspond to a synchronous flexure of all the liquid 
chains, and consequently to simply a flexure of the en- 
t i re  sample a s  a whole. By itself, a cylindrical sample 
of a diskotic liquid crystal is not stable to such a flex- 
ure. Flexure of the entire sample a s  a whole i s  forbid- 
den by the boundary conditions (simply speaking, by the 
presence of rigid walls of the vessel containing the liq- 
uid crystal). 

The integral in (21) converges and can be easily cal- 
culated 

Tq'n'" I 1 2w1=-- - 
8C (AL') (mz+nz) " ' 

To determine this double sum it is convenient to use the 
known Euler-Maclaurin theorem: 

where B, a re  Bernoulli numbers and f P )  is the kth de- 
rivative of the function f (x). 

In this case, this formula should be used twice. We 
consider first  the function f = (x2+ n2)-3/4. The summa- 
tion interval i s  h = 1. It is the difference between the 
sum and the corresponding interval which i s  the size ef- 
fect of interest to us. The most substantial contribution 
to this difference i s  due to small values of m and n. In 

the principal approximation in l /L t  we rep lacex ,  sim- 
ply by an integral, and in the second summation, now 
already with the function f (2) = z-'/', we take into ac- 
count the first  two te rms  in the Euler-Maclaurin formu- 
la. We thus obtain 

We note that in diskotic liquid crystals the size effects 
in this geometry a re  considerably larger than in ordin- 
ary three-dimensional crystals, since ( a / ~ ~ ) ' / ~ > >  a / ~ ' .  

In three-dimensional crystals with anisotropy of the 
chain type, the size effects also have a different char- 
acter.  The point is that now we can already separate 
the one-dimensional mode connected with the synchron- 
ous compression of all the chains. This mode includes 
the displacement v of the atoms: 

The justification for this subdivision i s  analogous to that 
presented above for Eq. (18). The three-dimensional in- 
tegral  is -Tn2/Ea, and the one-dimensional, -TuaL/ 
ELt2. The size effects a re  noticeable at L' < (La)'/'. 
Anisotropy of the chain only increases this inequality. 
Thus, in diskotic liquid crystals in the ALP < La geome- 
t ry  the largest size effects take place at w= 0 and q#0 ,  
whereas in three-dimensional chain crystals they ap- 
pear more strongly at x# 0 and q = 0. 

We proceed now to the diffuse scattering. Let q be 
close to the reciprocal-lattice vector, and let u =  0. In 
the harmonic approximation we then have from (12) for 
the contribution of the diffuse scattering to the struc- 
ture factor 

We have put here 
d'k r=r-r. G.(R)- j < ~ ( k ) u ~ ( - k ) )  (1 -COS~R) .  (26) 

We begin with the calculation of the function G,, = Gb, , .  
We consider again first  the case ALt>> L2. We then 
have 

T d's 1 G=-I-- (I-cossr)+- -- I d'sdt [I-cos(s*+tz) I .  LC (2n)"' C (2n)= s2+Azt' 
(27) 

Equation (27) has the same structure as (19). Again, 
the first  term in (27) is connected with the contribution 
of the individual lattice layers, and the second with the 
three-dimensional fluctuations: 

where 

T 1 ( a h )  '" 

[cp is the same function a s  in (19)]; 

KO in (29) is a modified Bessel function of zeroth order. 
The integral that determines expression (29) can unfor- 
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tunately be obtained only numerically. However, the 
asymptotic form of interest to  us, at z << (Ar)'" but 
z >> d, reduces to  a calculation of the following known 
integral 

Thus, in this limiting case we have 
T 1 Z.(R)- --- 

b C  (Ar)" 
{Ko[(2A)'h(l+i)  ]+KO[ (2A)"(i- t )  I}. (30) 

At A<< 1 

T I  
I.(R)---~-+. 
. anC (W" (A4 

(31) 

Comparing expressions (28) for the "two-dimension- 
al" contribution to the diffuse scattering and (31) for the 
"three-dimensional," we find that the size effects mani- 
fest  themselves at LP < L1 for thicknesses L smaller 
than a certain critical value L,: 

L u x -  8(h)" ln(r /L t ) .  
In (za/Ar) 

In the second limiting case AL' < La we have in place 
- of (27) 

After cumbersome transformation we obtain in the 
principal approximation in 1 / ~ '  

where D,/, is a parabolic-cylinder function. 

At z >> (Ar)'" we have 

The size-effect corrections to the structure factor, 
just as for the case of coherent scattering, a re  of the 
order of (u/L')'/~ and manifest themselves therefore at 
much larger thicknesses than in ordinary and anisotrop- 
ic  three-dimensional crystals with the appropriate type 
of anisotropy (chain structures). 

The simplest to  calculate is the structure factor of 
diffuse scattering under the condition that p(aA)'la<< 1. 
The arguinent of the exponential in (25) is then small 
and we can replace the exponential by i ts  argument. 
This means in fact that S,(p) is a linear combination of 
the correlators (u,(p)ud-p)): 

A contribution to the diffuse scattering is made also 
by the displacements v of the atoms in the liquid col- 
umns: 

- -  .--- 

Sa-TIEL' ' x .  (3'7) 

We shall not present the expressions for the diffuse- 
scattering structure factor, since they a re  very un- 
wieldy, and describe the results only qualitatively. If 
the dimensions of the scattering region satisfy the con- 
dition ALt >> LZ, we have two characteristic lengths, 
L, and L,,. The value of LC, is determined only by the 
parameters of the diskotic-liquid-crystal structure, by 

the temperature, by the elastic moduli, and by the di- 
mensions. L, depends in addition on the considered 
scattering region, i.e., on the wave vectors p. From 
(32) and (20) it is easy to see that when the following in- 
equalities a re  satisfied: 

we always have 

We have thus in this case: 

, 1) at L <L, <L, the diffuse and coherent scatterings 
a r e  determined by two-dimensional fluctuations. The 
structure factor is of the form2es 

where the exponent x = T ~ ' / ~ I ~ C .  

2) In the region Lc2 < L < L,, the coherent scattering is 
already three-dimensional, but the diffuse scattering is 
still described by the f i rs t  term of (38), i.e., it has a 
singular two-dimensional character. 

3) Finally, at L > L,, both types of scattering a r e  de- 
termined by the three-dimensional fluctuations. 

In the ALt < L, geometry this division of the scatter- 
ing into one-dimensional (chain) and three-dimensional 
contributions a re  impossible, for reasons already dis- 
cussed. A one-dimensional contribution to the struc- 
ture factor is obtained only for diffuse scattering and is 
due to the displacements v of the particles along the 
liquid columns. At w#O this contribution competes with 
the three-dimensional scattering by the displacements 
of the two-dimensional lattice of these columns. 

Let us sum up. The structure factor of diskotic sys- 
tems has a large number of peculiarities. It must be in- 
dicated first  that, compared with three-dimensional 
systems, the role of diffuse scattering in diskotic liquid 
crystals is much greater. The point is that the Debye- 
Waller factor in diskotic liquid crystals i s  large, and 
the coherent scattering is therefore weaker. The ratio 
of the scattering intensities of both types in diskotic 
liquid crystals is larger than in ordinary three-dimen- 
sional ones, by a factor 

C"K'"(p ( (Aa) '"Id) - lo2, ' Ea3/'6f (aS/d) 

where f (u) = u ln(l+ uZ) + 2arctan u - 2u lnu, 6 is the 
anisotropy parameter of the three-dimensional system, 
C - log erg/cm3 is the elastic modulus of the diskotic 
liquid crystal, and E-10" erg/cms is the Young's 
modulus of the three-dimensional crystal. 

The second difference of diskotic systems manifests 
itself in the presence of strong size effects at thick- 
nesses when such effects no longer appear in the corre- 
sponding three-dimensional systems. Indeed, in an 
isotropic three-dimensional system the size effects 
manifest themselves at dimensions R -a .  In an aniso- 
tropic system the size effects extend to large dimen- 
sions L -d/6 o r  L'-a/6. In diskotic liquid crystals the 
size effects a re  even stronger and extend to even larger 
thicknesses on account of the factor l n ( ~ / ( a ~ ) ' / ~ )  or  
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We note a l so  that  the competition of the quasi-one- 
dimensional ( o r  quasi-two-dimensional) fluctuations of 
the  displacements  i n  chain or layered s t r u c t u r e s  can  
lead in principle to  nonmonotonic size dependences of 
the  s t ruc ture  factor .  The  point is that i n  the quasi-one- 
dimensional o r  the  quasi-two-dimensional case the con- 
tribution to the coherent  scat ter ing cross sect ion de- 
c r e a s e s  with the size of the sample  in  the  corresponding 
direct ion (owing to the  divergence of the Debye-Waller 
factor),  and the relat ive s h a r e  of the diffuse background 
i n c r e a s e s  therefore.  On going to the three-dimensional 
system, however, the  usual  size effects  set in, where-  
in  the coherent  c r o s s  sect ion becomes l a r g e r  than the  
diffuse one. 

In conclusion, t t e  au thors  are s incere ly  grateful  t o  
I.E. Dzyaloshinskii and S. Chandrasekhar  f o r  discus-  
s ions  and Yfor in te res t  i n  the work, as well as to V.L. 
Pokrovskii,  who pointed out an error i n  the initial 
t rea tment  of the  AL1<c L2 case. 

 h his circumstance was pointed out to us by G. E. Volovik. 
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