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The strong-coupling corrections to the BCS theory for superfiuid 'He become small at low pressures. Since 
subsystems with different spin projections are independent in the A-phase in the BCS approximation, the 
region in which the order parameter changes in the A-phase widens and additional quasi-Goldstone modes 
arise. Linear dynamic equations for the A-phase at low pressures have been derived by the 
semiphenomenological method used earlier to obtain exact equations for the orbital dynamics of the A-phase 
at T = 0, taking account of additional soft variables. The equations indicate the existence of nine normal 
modes having a spectrum that coincides, in the limit when Fermi liquid and strong coupling effects are absent, 
with the nine-phonon mode spectrum obtained by Alonso and Popov [Sov. Phys. JETP 46,760 (1977)l by the 
exact path integral method in the BCS model. Since the new modes are coupled to the oscillations of 
longitudinal magnetization, it is proposed to use the longitudinal NMR technique to observe them. 

PACS numbers: 67.50.Fi 

1. INTRODUCTION s i s t s  of pairs with spin directed along the s axis; these 

In the BCS model the A-phase has a higher energy 
than the B-phase a t  al l  temperatures (see the review 
by Leggett'). The existence of the A-phase i s  connected 
with the so-called strong-coupling effects which a r e  
outside the scope of the BCS model. The strong- 
coupling effects a r e  large at high pressure where, 
thanks to them, the A-phase i s  energetically more 
favored than the B-phase. On reducing the pressure, 
they decrease and cannot stabilize the A-phase, which 
can therefore exist a t  low pressures in the presence 
of a magnetic field. Measurements of the heat capacity 
jump AC/C,,, which i s  sensitive to the strong coupling 
effects, in the transition from the normal to the super- 
fluid state showed2 that a t  pressures close to zero AC/ 
C, hardly differs from the value 1.43 which i s  charac- 
teristic of the BCS model. This indicates that the ef- 
fects of strong coupling a r e  small a t  zero  pressure. 

Suppression of the effects of strong coupling leads to 
a number of interesting phenomena. As i s  known, in 
the BCS model (or in other words in the weak-coupling 
model) the A-phase i s  described by an order param- 
eter of more complicated form than in the general case 
when effects of strong coupling a re  presenL3 In the 
general case the order parameter is 

A,=Cd,e,, (1.1) 

where d ,  i s  a unit rea l  vector in spin space and el is 
the orbital triad, 

e=Ar+iA", I=[AfX A N ] ,  (1.2) 

1 is the direction of the orbital momentum and C = const. 

In the case of weak coupling 

dr,=*lr~(e,e:"+e:e:"). (1.3) 

Here e ,  i s  the spin triad, 

e,=d,,'+id/, s= [d'd"] , (1.4) 

e'" and e"' a re  two different orbital triads of the 
form of Eq. (1.2) 

The order parameter (1.3) describes two subsystems. 
The first  subsystem, described by the first  term, con- 

pairs have an orbital momentum directed along 1") 
= [ ~ ' ( ' ) h " ( ' ) ] .  In the second subsystem the spins of 
the pairs a r e  oriented along s and the orbital moments 
along A"2'x A"''). In the weak-coupling approxi- 
mation the relative orientation of 1'" and 1"' can be 
arbitrary. The effects of strong coupling lead to a 
pinning of the angular momenta: 

a s  a result, at equilibrium @)= G2'p b, and Eq. (1.3) 
goes over into Eq. (1.1). The order parameter (1.3) 
also includes within itself the planar phase c)= - e'. 

The order parameter (1.3) has thus a large number of 
degrees of freedom and the number of Goldstone modes 
in the weak-coupling approximation i s  thereby in- 
creased. In the general case the order parameter (1.1) 
varies in a five-dimensional manifold, which leads to 
five Goldstone modes. The order parameter (1.3) as- 
sumes i ts  values in eight-dimensional space in the 
weak-coupling model. However, the exact microscopic 
calculation of the mode spectrum in the weak-coupling 
model, carried out by Alsonso and P ~ p o v , ~  shows the 
existence of nine phonon modes for @'= c2'. The dis- 
parity in the number of phonon modes and in the di- 
mensionality of the space indicates that this space is 
not homogeneous. It was just because of this fact that 
the study of the topology of stable defects in the weak- 
coupling model required the application of non-standard 
 method^.^ 

Our problem i s  to obtain dynamic equations for the 
A-phase a t  low pressures, taking account of the new 
degrees of freedom which arise. Wartake was the f i rs t  
to consider this problem phenomenologically, but he 
obtained only two and not four additional modes. In 
the third section, by using the semi-phenomenological 
method developed by Volovik and ~ i n e e v , ? ' ~  we obtain 
a closed system of equations for the linear dynamics 
of the A-phase at low temperatures. These equations 
give nine normal modes with a spectrum which goes 
over to the spectrum of nine phonon modes obtained by 
Alonso and P ~ p o v , ~  in the limit when Fermi-liquid and 
strong-coupling effects a r e  absent. In the second sec- 
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tion we discuss the structure of the A-phase degeneracy 
space. 

2. STRUCTURE OF THE A-PHASE DEGENERACY 
SPACE IN  THE WEAK-COUPLING LIMIT 

All values of the order parameter (1.3) can be sorted 
out if  the orientations of the orbital triads and the direc- 
tion of the spin momentum s (1.4) a r e  given The de- 
generacy space R in the weak coupling approximation is 
thus eight-dimensional (two triplets of Euler angles 
giving the orientation of the triads, and two angles de- 
termining the s axis). The R-space i s  not homogeneous; 
to  see  this we consider the subspace I? CR, specified by 
the equality of the orbital momenta 1')=1(2). Sinte we 
have superimposed two couplings, the subspace R 
should be six-dimensional in the case of homogeneity 
of the R space. In fact, for 1"'= 1(2' we obtain an order 
parameter (1.1) with five-dimensional degeneracy 
space. This results from the fact that rotations of the 
spin space around the d axis in Eq. (1.1) do not alter 
the order parameter. While for I"'= 1"' different 
values of the order parameter correspond to different 
orientation of s, for 1"'= 1") all s axes lying in one 
plane correspond to one and the same order param- 
eter, i.e. the dimensionality of the 2 space is lowered 
to unity. 

The number of Goldstone c o d e s  depends on whether 
the system i s  in I? o r  in R/R. If the state of the system 
A:, 4 g, the number of Goldstone modes must be  equal 
to the dimensionality of the R-space, i.e., eight, but i f  

A:, f then the number of modes i s  equal to nine. 
This latter can be shown on the basis of the simplest 
considerations expounded in the next section. Here we 
give the result of studying the quadratic form obtained 
by expanding the energy in terms of small departures 
6A,, from the initial value of the order parameter A:, 
(see the Appendix). We consider the Ginzburg-Landau 
region where the energy in the weak-coupling approxi- 
mation has the form (in dimensionless units) 

The eigenvalues X of the matrix of the quadratic form 
6 Z ~ { 6 ~ , , }  at the point A,, =A!, depend on the point A:, 
through a single parameter, the angle cp between @) 
and ': 

For all non-zero cp(0 < cp =s n) there a r e  eight zero  
eigenvalues XI_, corresponding to eight Goldstone 
modes. The remaining eigenvalues &-,, a r e  positive 
for 0 < cp < q,,, where coscp,, = 3 - 2 a .  One of these 
eigenvalues &(cp) - 0 a s  cp - 0, giving the ninth Gold- 
stone mode for cp = 0. For cp = cp, another of the positive 
eigenvalues X,,((p) goes to zero  and then becomes nega- 
tive for cp > PC,, indicating the loss of local stability of 
the A-phase a t  these cp. Starting from cp,,, the system 
can go over to the B-phase with a monotonic lowering 
of the energy. 

In the presence of a magnetic field H the spin vector 
s is oriented along H at cp > 0 due to the magnetic 

anisotropy energy. Two degrees of freedom a r e  there- 
by fixed and the degeneracy space becomes six-dimen- 
sional. In this case the order parameter (1.3) can be 
parametrized in the following way: 

Here and ( 2 )  a r e  matrices of three-dimensional 
rotations. The degeneracy space R, i s  the product of 
two groups of three-dimensional rotations (see the Ap- 
pendix): 

and i s  a homogeneous space. As a result  of this, the 
number of Goldstone variables i s  six for any angle cp 
between 1") and 1"). This agrees with the results  of 
Alonso and P ~ p o v , ~  obtained in two limiting cases: for 
the planar phase ( c l ) =  - c') and for the A-phase of the 
form of Eq. (1.1) ( @ I =  e'). The angle cp,,, starting 
from which the A-phase becomes unstable, increases 
with increasing field and becomes equal to n for H = H,, 
where 

(see also Alonso and Popov4). For H > H, the A-phase 
is locally stable in the entire R, region. Finally, the 
effects of strong coupling [~q. (1.5)] which fix 1"'- 1"' 
= 0, contract R, to a four-dimensional space 

In the following section we obtain the dynamic equa- 
tions describing all  the nine modes and find their spec- 
trum, taking strong-coupling effects into account. 

3. LINEAR DYNAMIC EQUATIONS OF THE 
A -PHASE AT T =  0 

We shall look for dynamic equations for a l l  degrees 
of freedom in the R space, taking account of strong- 
coupling effects. We choose an initial equilibrium 
orientation of the order parameter; the variables a r e  
the deviations from this orientation. At equilibrium 

) =  q)= 4, and the order parameter i s  given by Eq. 
(1.1), with d, , lH at  equilibrium. At equilibrium the 
spin quantization axis so can be oriented in any direc- 
tion in the plane perpendicular to &. We shall f irst  fix 
the so axis. In the weak-coupling approximation the 
system consists of two independent components with 
spins parallel and antiparallel to so. Each of these 
components has i ts  orbital order parameter. The orbi- 
tal  dynamics of each component i s  described by a 
Lagrangian which differs by a factor $ from the La- 
grangian obtained by Volovik and ~ i n e e v ~ "  which de- 
scribes the orbital dynamics in the usual case when 
the orbital order parameters of both components move 
in phase. The action S has in the quadratic approxima- 
tion the following form: 

where, according to Volovik and Minee@ 
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Here p and p ( 2 )  a r e  the density of each of the com- 
ponents, ("+ " )=  p; 6 0( l )  and 68'2' a r e  the angles of 
rotation of the orbital order parameters: 

axorb and (p - C,) a r e  respectively the orbital sus- 
ceptibility and the spontaneous orbital momentum of 
each component; the energies ~(61'"; vv,'")) and ~ ( p )  
a re  the same a s  in the usual A-phase: 

~ ( 6 1 ;  v,) =f/zp~.2-(li/2m)Co(I,v,) (1, rot 61) 

+'/zKi (V61)2+'I,K,(I, rot 61)Z+'/,Ks[10~ rot 611 ,. (3.4) 

The values of the coefficients in Eq. (3.4) a r e  given by 
C r o ~ s . ~  The action (3.1) i s  described by the dynamics 
of six orbital variables 6 0" and 60" I. If A:, efi, the 
deviation of so from the equilibrium state must be added 
to these six variables, i.e., there a re  two more vari- 
ables. 

The situation i s  different in the case considered, A:, 
E R, since the state does not depend on the direction of 
so in the plane perpendicular to $. We now choose a 
different direction for the so axis; the order parameter 
at equilibrium does not change then. However, some 
of the variables transform then and the Lagrangian 
(3.1) becomes noninvariant relative to a rotation of so. 
In fact, the variable 6S= -&(6p("- 6 ~ ' ~ ' ) ,  which i s  the 
spin density in the so direction, transforms a s  a vector 
on rotating so, while the variable 6p = 6p ("+ 6p "), 

which i s  the change of the total density, does not trans- 
form. Therefore, + (6p '"- 6p ")) is  one of the com- 
ponents of a two-component vector S, defined in the 
plane perpendicular to $. This also applies to the 
variables $(60(')- 5 0 ' ~ ) )  which must be replaced by 
the corresponding two-component spin vectors 68,; 
in the same way the number of Goldstone variables 
effectively increases by three and becomes equal to 
nine. 

Separating out both sor ts  of combination in the action 
(3.1), we write it in a form invariant with respect to 
transformation of the so axis: 

-J/r(p-Co) (I,, [6i, x 61,I)f 2~(61,)~). (3.5) 

Here 61= $(61'"+ 61t2') describes the in-phase oscilla- 
tions of the orbital momentum of a pair; 60 = $(6$(') 
+ 60"') is  the change in overall phase of the order pa- 
rameter; v, = @/2m)V@ is  the usual superfluid velocity; 
the variables 61, = 60, X 1, is a vector generalization of 
the variables $ (61 (')- 61(2)) for fixed so; 6d = - 6@ 
x $, where 60, is the vector generalization of the 
variable $(60(') - 60c2)); 

x is the spin susceptibility equal to f (a2&/Bp2)-'. 
The condition of being orthogonal to the vector $ i s  
imposed on the spin variables: 

The action (3.5) consists of three independent actions. 
The first  part (in the first curly bracket) describes the 

usual orbital dynamics of the A-phase. The remaining 
part  of the action describes the independent dynamics 
of two projections of the spin vectors (along H and along 
$ x H). In the absence of strong coupling and of a mag- 
netic field all  three actions a r e  identical. 

Varying the action (3.5) leads to the following system 
of linear equations: 

(3.13) 
The f i rs t  three equations (3.8) to (3.10) describe the 
usual orbital dynamics. Equations (3.11) and (3.12) 
describe the usual spin dynamics, j, i s  the spin cur- 
rent. The four equations (3.13) a r e  related to the four 
additional degrees of freedom which ar ise  in the weak- 
coupling limit. 

The action (3.5) i s  written without taking Fermi-liquid 
effects into account. However, the structure of the 
equations should not change when these effects a r e  
taken into account. It i s  only necessary to take into ac- 
count the fact that the energy E, the variational deriva- 
tive of which enters into the equations, has the most 
general form consistent with the symmetry conditions. 
The coefficients also change: for example, the mag- 
netic susceptibility X i s  no longer equal to i (B2c/ 
ap2)-I. 

The spectrum of all modes can be obtained from Eqs. 
(3.8) to (3.13). We will not write it out in the general 
case, but confine ourselves to one particular case: 
suppose E i s  represented in the form of a sum of ~ ( p ) ,  
~(61; v,) and ~(61,; v,,) a s  in the action (3.5); we neglect 
the magnitude of the spontaneous angular momentum 
$ ( p  - C,) <<p; we use the fact that a s  T -0 the coeffi- 
cient K,  in the energy (3.4) becomes much larger than 
the other coefficients.' In this case we have the fol- 
lowing spectrum: 

oI=c,q, c,'=pi+'e/i+pp'; oz, ,=czq, cZz=p/4x; 
(3.14) 

or ,  ? = ~ ~ " ( q l ) ~ ,  cJ'=Ks/xOrb; ~s-~'=ca'(ql)'f 4yl~o.b. 

Here c,, c, and c, a r e  the velocities of, respectively, 
ordinary sound, spin waves, and orbital waves in the 
usual A-phase. 

The remaining four modes w,, a r e  connected with the 
extra spatial degeneracy of the states which ar ise  when 
the coefficient y i s  small. Our result for these modes 
differs from Wartak's result6 obtained for a wave vec- 
tor q =  0, in that he found only two such modes (taking 
account of polarization) and not four, and he also had a 
coefficient 2 instead of 4 before y. The latter i s  evi- 
dently due to an incorrect determination by Wartak of 
the orbital susceptibility for each of the spin compo- 
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nents. In the absence of strong-coupling and Fermi- 
liquid effects (in the gas-like approximation c, = c, 
= v , a ,  c, = v,) the Alonso and Popov result4 is ob- 
tained, i.e., three modes with a spectrum w = v,lq 11. 

The expression for the spectrum of modes w,., i s  
valid for the gap in the spectrum 

where A, is the amplitude of the gap in the Fermi ex- 
citation spectrum. The quantity y/xOrb is of the order 
of 6A;, where 6 i s  the spin-fluctuation parameter for 
strong coupling (see, for example, CrosslO). Condition 
(3.15) i s  apparently poorly fulfilled a t  high pressures 
but i s  well fulfilled a t  low pressures, when 6 << 1. 

In addition, Eq. (3.14) only applies at sufficiently low 
temperatures T << T, The A-phase can only exist a t  
low pressures and low temperatures in strong magnetic 
fields H > 5 kOe. In a magnetic field a gap [see Eq. 
(A8)] of the order of the Larmor frequency appears in 
the spectrum of the three modes w, and w,,, whose spin 
variables 68, a re  transverse to the magnetic field 
(i.e. 6B,H, = 0). This gap i s  comparable with A. in 
those strong fields in which the A -phase exists at low 
temperatures. The spectrum of the remaining six 
modes does not change in a magnetic field. 

Since one of the longitudinal modes (o,,, in the general 
case becomes coupled with fluctuations of longitudinal 
magnetization w, because of the term (1- curl61,)(1- v,,) 
in the action (3.5), a noticeable absorption line can be 
expected in longitudinal NMR a t  a frequency 

In conclusion the authors consider i t  their pleasant 
duty to thank V. P. Mineev for valuable discussions. 

APPENDIX 

We shall consider the quadratic form obtained by ex- 
panding the free energy (2.1) in terms of the deviation 
of the order parameter A,, from its equilibrium value 
At,: 

We parametrize the order parameter A t ,  (1.3), which 
takes on its values in the expanded eight-dimensional 
R space, in the following form 

We have here separated the single parameter 8 ,  con- 
nected with the angle cp [ E ~ .  (2.2)] between the orbital 
momenta e' and 162) by the relation 

cos q=sinz ~ / ( ~ + c o s ~  0) .  (A3) 

The remaining sevenparameters a re  the angles of ro- 
tation of the spin and orbital spaces and the phase 
variable. They do not influence the result because of 
the symmetry of the energy (2.1) relative to trans- 
formations connected with these parameters. Equa- 
tions (A2) and (A3) hold for 0 a cp n/2. For n/2 cP 
-' n a different parametrization must be used: 

.. 
e("=^x+ia(y cos 0-^z), e=x+iy, 

where 9 i s  connected with p by the relation 

We also switch on a magnetic field H in which there i s  
an additional term added to the energy (2.1) . 

and direct i t  along the i axis in order that the states 
(A2) and (A4) should correspond t o  the equilibrium 
state in the magnetic field. The value of C in Eq. (1.3) 
then turns out to be 2 .  

The quadratic form sought has the following form: 

This form can easily be diagonalized. The eigenvalue A 

and the eigenvectors corresponding to them a r e  written 
out below, and i t  is pointed out a s  well which hydrody- 
namic variables a re  related a t  cp = 0 to these vectors: 

hi=O, u,z-Bv~i, 6Q; 

R2=0, vz2+~uZl,  6 d l H ;  

h3=2~, ust+fi~Zz, 6dllH; 

h,=hs=O, Buta-B~zz, Bv's+P~zz, 61; 
h,=h,=O, vzs -~v t i ,  puzs+Bvlz, 61., e,61,Hv=0; 

For u,, and v,, the characteristic equation i s  of the fol- 
lowing form: 

This equation gives the eigenvalues A,, and A,,. One of 
the solutions A,, i s  always positive, while A,, becomes 
negative for a certain angle cp,, equal to 

cos tp,=3+3v/2- ( I +  18v+25vV4) '". (A 10) 

This cp,, becomes equal to  n for v=$.  In stronger 
fields (v> a )  all the eigenvalues A a r e  non-negative. 
In the absence of a magnetic field there a r e  eight zero 
eigenvalues A,-, for all  cp > 0. There i s  one more eigen- 
value A, = 0 for cp = 0. 

We also note that twelve eigenvalues A,,,, X4-,, All-,,, 

whose eigenvectors orthogonal to the field (u,, H, 
=u,, H, = O), a r e  independent of cp. This results from 
the fact that for the A,, matrices orthogonal to the mag- 
netic field (A,, H, = O), the energy functional (2.1) i s  
symmetric relative to rotations of each of the orbital 
spaces. Its symmetry group i s  

c=ucl) (1) X S O ~ ~ ~ ) X U ~ ~ ~  ( I )  X S O ~ ' ~ ) .  (Al l )  
The symmetry group of the order parameter in a mag- 
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netic field i s  of the form 
H = U ( l ) X U ( l ) .  

As a result, the R ,  space, which i s  the region of the 
change in the order parameter in the magnetic field, i s  
a homogeneous space G/H and is given by Eq. (2.4). It 
should also be realized that for l ( l ) #  1 (2 )  all  states in 
a magnetic field a r e  doubly degenerate since the spin 
axis s can be directed both along the field and in the 
opposite direction. These states a r e  indistinguishable 
in the subspace 1") = The space of the states in 
the magnetic field therefore consists of two spaces R,  
with different directions of the spin axis joined along 
the subspace 1("= 
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