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We investigate emission (absorption) of phonons by rotons, due to the energy uncertainty of the latter. The 
temperature Green's function method is used to obtain the photon-roton relaxation time for the process in 
question. The contributions of the obtained time to the phonon viscosity and to the thermal conductivity at 
various pressures are calculated. 

PACS numbers: 67.90. + z 

The principles of the kinetics of superfluid helium 
were developed by Landau and ~ha1atnikov.l-3 Accord- 
ing to the cited papers, establishment of equilibrium 
between phonons and rotons is determined by the Ray- 
leigh scattering of the phonons by the rotons. It will 
be shown in the present article that in addition to this 
mechanism, relaxation in the quasiparticle gas is also 
possible and is due to emission (absorption) of phonons 
by rotons. 

It is known that at momenta p smaller than and equal 
to the momentum po corresponding to the minimum of 
the energy A ,  a roton cannot emit a phonon. A for the 
region of energetic rotons with p > p ,  = P o  + PC, the pos- 
sibility of this process cannot be unequivocally deduced 
from the experimental data. (Here p i s  the roton ef- 
fective mass and c is the speed of sound). However, a s  
will be shown below, if account is taken of the finite 
lifetime of the rotons, the energy uncertainty permits 
the emission and absorption of phonons to  take place in 
the entire range of roton momenta, and this leads to 
additional relaxation in the quasiparticle gas. A simi- 
l a r  situation, but connected with the broadening of the 
phonon energy spectrum, a r i ses  when the absorption of 
ultrasound by thermal lattice vibrations in a solid is 
  on side red.^ 

According to Ref. I ,  the Hamiltonian of the consider- 
ed system can be written in the form 

+LC B.. Bp:V4 ( P I P Z I  P ~ ' P ~ ' ) B D ~ ' B ~ ~ + H P ~ P ~ ~  
2 

(1 

The first two t e rms  describe here the gas of interacting 
phonons and rotons, the third describes the phonon-ro- 
ton interaction, and the fourth and fifth respectively 
the roton-roton and phonon-phonon interactions. (The 
explicit form of H,,,, is of no importance to  us.) 

We start  with the temperature Green's function for 
phonons: 

roton, can be represented graphically (see Fig. 1) in 
the form of a loop made up of two complete roton 
Green's functions and having two vertices, one of which 
V S  is simple and the other is unrenormalized. As 
shown in the diagram, the second vertex can be ex- 
pressed in terms of the simple vertex and the interac- 
tion between the rotons. In the upshot we have 

where F ( p ,  p' I k, iw) is the Fourier transform of the 
temperature correlator 

( ~ 6 f , ~ ( z j X f . ~ ( ~ ' )  

The subscript "irr" means here that only the irreduc- 
ible parts are  to be taken, and 

6 f p t ( z )  = ~ . - L ~ Z ( T ) B ~ + ~ ~ ~ ( Z )  

is the operator analog of the fluctuation of the distribu- 
tion function in the temperature representation. 

To obtain the phonon reciprocal lifetime t", due to 
the considered process, we must carry  out in (3) an 
analytic continuation (iw -- w + ib), which is carried out 
here in standard fashion (see, e.g., Ref. 5). As a re- 
sult we have for f-' = 2 Im C,, 

Here w =ck is the phonon energy and ~(p,p' /k,  w) is the 
Fourier transform of the function of the linear response 
of the roton to an external perturbation of the type 
U, exp[i(k-r - w t ) ] .  This function is expressed in terms 
of the mean value of the commutators 6f and 6f' in the 
form 

~ ( p , p ' l k , t ) = - i ~ ( t ) C [ 6 f , ~ ( t ) , 8 f ~ ~ ~ ( 0 )  I>. (5 

Differentiating the function (5) with respect to  time 
we obtain 

whose Fourier transform we write in the form 
- 

G ( k ,  io) = [ i o - o t - Z ( k ,  i o )  I-'. 0.0 The self-energy part, irreducible in the phonon lines, ' 1 1  ' 1  
y+k/7 p 1 + k / 2  

which enters in the mass operator .Z and correspond 
to the process of emission (absorption) of a phonon by a FIG. 1. 
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where Af =.f(p- k/2) - f(p +@) i s  the difference be- 
tween the roton distribution functions: 

f - (p*W2)=<~Lt/r~ptr/z). 

The operator analog of the linearized kinetic equation 
for 6f can be written in the form 

where I i s  the linearized collision integral and v = a ~ / a p  
is the roton velocity. (We take into account here and 
everywhere that p >> k.) Using (6) and (7), we obtain an 
equation for the Fourier transform of the linear-re- 
sponse function: 

(o-kv-iI)F-Af6 (p-p'). (8 

Substituting (8) in (4) and integrating with respect to p' 
we obtain 

If we disregard the dependence of the parameters of the 
roton spectrum on the density then, following Ref. 1,  
we can write V3 in the form 

Relation (9) yields then, accurate to terms of order 
(v/cI2, 

According to the law of momentum conservation in col- 
lisions, the first term under the integral sign makes no 
contribution to  t-', and the second can be rewritten in 
the form 

In the hydrodynamic limit t" can be expressed ex- 
actly (in the considered approximation) in terms of the 
first and second roton viscosities. To this end it i s  
necessary to average in (12) over the direction of the 
vector k and symmetrize the obtained expression. The 
result i s  the known formula (see, e.g., Ref. 6) for the 
absorption of first sound in a roton gas: 

where the first viscosity i s  

and the second viscosity 

Here S, and c, are respectively the entropy and specific 
heat of the roton gas. 

The character of the interaction between rotons is not 
well known, so that we continue the calculation in the 7, 

approximation. In the upshot we obtain according to 
(12) for arbitrary WT, 

Here N is the roton density and 7, i s  a parameter of the 

problem and i s  brought about by the roton-roton inter- 
action. In the hydrodynamic limit (WT, << 1) the param- 
eter 7, i s  determined by dissipative processes in the 
roton gas. At WT,>> 1 it i s  due to broadening of the ro- 
ton spectrum. Thus, the upper limit T, of the param- 
eter  7, and be obtained from the roton viscosity, and 
the lower T,, from the measured width of the roton line. 
It follows from most experiments that T,,=T,, (see, e.g., 
Ref. 7 and the literature there). Exceptions are the re- 
sults of Ref. 8 in which the ratio T,,/T,= 10 at T =1.2 K. 

The linear-response function can, of course, be found 
in standard fashion, by solving an equation of the type 
(8) in the T, approximation. Its pole corresponds, a s  it 
should, to the roton second sound.g The result obtained 
in this manner coincides naturally with (14). Here, 
however, this approach turns out to be more cumber- 
some. In addition, it presupposes the use of the 7, ap- 
proximation at the very outset and does not yield ex- 
pression (13). 

The foregoing results presuppose smallness of (V/C)~. 

For rotons with momenta p >p, this parameter, ac- 
cording to available experimental data, is not small, 
therefore the contribution of rotons with p >PC to the 
quasiparticle-gas relaxation calls for a separate anal- 
ysis. The starting point is expression (9). Just as  in 
Ref. 10, the dispersion law for the rotons will be as- 
sumed in this region to be close to linear: 

To estimate the relaxation time at WT, >> 1 we use in 
(9) the 7, approximation. As a result we get 

To obtain the last expression we made use of the pres- 
ence of a sharp maximum of the integrand at small an- 
gles between the vectors k and y. After integration, 
expression (16) takes the form 

, - P2N. t- - - (i-e-'/T 2or7 
) arctg 

2~ 1+2a (G,) a'r: ' 

(1 7) 

Here Nc = (p:T/2n2c)exp(-E,/T) is the density of rotons - 
with momenta larger than PC, and (p-p,) =T/C i s  the 
mean value with the distribution function f (p) at p >PC. 

~f 2 1 1 ~ ~ - 1 ~ 2 7 ;  << 1 (but w7, >> 11, we obtain 

We note that the result (18) does not depend on whether 
we have or have not a decay spectrum, and everything 
i s  determined by the broadening of the roton energy. 

In the inverselimiting case 2 1 ff 1 Tc"o2r; >> 1 (but 
I ff I T / C  << 1) we have for a non-decay spectrum (0 > 0) 

and for a decay spectrum (0 < 0) 

We note that in this case the result depends substantial- 
ly on the character of the spectrum. If it i s  assumed 
that I f f  I Tc-'wT,>> 1 but W/T > 1, then (20) coincides in 
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fact with the result obtained in Ref. 11 directly from 
the collision integral. 

In the hydrodynamic case (wT,<< 1) the contribution of 
the rotons with momenta p > p ,  to the relaxation pro- 
cess  can be easily obtained by putting (12) v = c  and us- 
ing the T, approximation: 

Numerical estimates show that the obtained time is 5-7 
times larger (depending on the temperature) than the 
time given by expression (14). 

Unfortunately, the available experimental data do not 
make it possible to determine the parameter CY with 
sufficient accuracy. It is therefore difficult to estimate 
the contribution made to the quasiparticle-gas relaxa- 
tion by the rotons with p >PC. In the subsequent calcu- 
lations we confine ourselves therefore to  the time given 
in expression (14). 

We note that we can obtain in similar fashion the ro- 
ton relaxation time due to the considered processes. In 
this case we must start  out from the roton Green's 
function. The corresponding irreducible self-energy 
part, which enters in the roton mass operator, can be 
represented by a loop made up of the complete roton 
and phonon Green's functions with simple vertices V,. 
The relaxation time obtained in this manner is much 
longer than T,. 

We calculate now the contributions of the obtained 
time to the phonon viscosity and to the thermal conduc- 
tivity at various pressures. The collision integral of 
the kinetic equation for the phonon distribution function 
n,  following Ref. 12, can be written in the form 

where no = (eW IT - 1 1-l is the equilibrium distribution 
function; ti1 =ti& +ti: +t" is the total collision fre- 
quency, in which 

is due t o  the Rayleigh scattering of the phonons by the 
rotons, t-l is due to emission (absorption) of photons 
by rotons, ti: is due to phonon-phonon large-angle 
scattering; t ,  is the time connected with small-angle 
phonon scattering. 

The first  term in (22) describes relaxation t o  the 
equilibrium distribution function, and the second the es- 
tablishment of equilibrium in a specified direction with a 
temperature P-' that depends on j =k/k. The parameter 
p(j) is  determined by the law of energy conservation 
in phonon-phonon collisions in the specified direction: 

If small-angle scattering does not establish equilibri- 
um in the number of phonons, it will be necessary to  
introduce in the second term of (22) also the chemical 
potential y(j), which is determined by the conservation 
of the number of phonons in collisions at a fixed j. 
However, a s  will be made clear by the calculations that 
follow, allowance for p ( j )  is of no importance. 

The deviation from the equilibrium state is assumed, 
a s  usual, to  be small: 

To  obtain the viscosity due to  the phonons we must use 
a kinetic equation with a collision integral (22) and with 
the condition (24). As a result we have 

where the prime of ni  denotes differentiation with re- 
spect to  the argument; Va1 is the shear tensor in the 
kinetic equation; 

Substituting (25) in the momentum-flux tensor, we ob- 
tain for the first-viscosity coefficient 

where 

We have similarly for the thermal-conductivity coef- 
ficient 

where S is the entropy and p, the density of the normal 
component. We note that expressiolls (26) and (27) de- 
pend in like fashion on the relaxation times. It suffices 
therefore hereafter to  consider only the viscosity. 

We confine ourselves to  the temperature region T 
2 0.9 K. At saturated-vapor pressure, the shortest is 
the small-angle relaxation time t i  =t, , , ,  which corre- 
sponds to three-phonon processes.'3 In first-order ap- 
proximation ti,2 =0, and then 

where p,,*is the phonon part of the normal density, and 
x = W / T  is a dimensionless parameter. 

We note that in this case the viscosity, in accord with 
Ref. 2,  is found to be inversely proportional to the mean 
value of the collision frequency. Since t&-x4, the 
main contribution upon averaging comes from the ener- 
getic phonons with x =  2r. This is a reflection of the 
fact that, according to Refs. 1-3, the relaxation in the 
phonon gas proceeds in two stages. An equilibrium is 
first  established between the roton gas and the high-en- 
ergy phonons with x c  2r,  and then all the remaining 
phonons attune themselves instantaneously ( f l , , -  0) to 
the energetic ones. The dissipative coefficients for 
finite t,,2 were obtained in Ref. 14. 

Integration in (28) yields 

where rpla =tpm at x =2n, and t, is determined by (14) 
with WT,>> 1. We present the numerical value of the 
time ratio in (29): 
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If 7, i s  taken to be its upper bound, obtained from the 
roton viscosity, then ~ ~ , / t ,  << 1 in the entire considered 
temperature range and relation (29) coincides in fact 
with the result given in Ref. 15. If, however, T, i s  cal- 
culated from the data of Ref. 8, then the ratio (30) at T 
E 1.2 K is of the order of unity and must be taken into 
account. 

The situation changes markedly with increasing pres- 
sure. It is known that at P 2 18 atm the phonon spec- 
trum i s  non-decaying. Consequently ti,z+ = and all the 
remaining phonon times increase by two orders of mag- 
nitude (because of the change in the parameters of He I1 
with increasing pressure). An exception i s  the time t 
given by (14), which decreases with increasing pres- 
sure. Estimates show that at a pressure P =24 atm the 
times t, and t,, are the shortest. Taking this circum- 
stance into account, we should retain in (16) only the 
times t,,, and t,. In the upshot we get 

We note that inThis case q,,,, in contrast to (28), is 
proportional to the mean value of the characteristic 
time, just as  in the usual gaskinetic theory. The con- 
vergence of the integral in (31) is then ensured at small 
x by the time t,, since tp,-xe4. From the mathematical 
point of view the results (28) and (31) are  two limiting 
cases of the general expression (26). From the physical 
point of view this means that at increased pressures 
equilibrium in the phonon gas is ensured only by the 
phonon-roton collisions. In contrast to the case of sat- 
urated-vapor pressure, we have no establishment of 
equilibrium in two stages of which one i s  purely phonon. 

Relation (31) can be rewritten in the form 

3 
dx. 

If P= 24 atm, we have 

At all possible values of T,, the main contribution to the 
integral that enters in (32) is given by x =3  to 4. We 
have therefore with accuracy sufficient for our purpose 

t)ph='/5pmph~~to(i+ta/tPb (4) (34) 

where tp&(4) = tpw at x = 4. If T, i s  taken to be its lower 
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value obtained from Ref. 8, then ta/tp,(4) << 1 and the 
phonon viscosity i s  determined in fact by t,. On the 
other hand if it is assumed that T, is governed by the 
roton viscosity, the ratio in the considered tempera- 
ture interval is tJtp,(4) 5; 1 and must be taken into ac- 
count. 

It follows from the results that the numerical value 
and the temperature dependence of the phonon viscosity 
and of the thermal conductivity should change substan- 
tially with increasing pressure. At the present time, 
unfortunately, the experimental data on the viscosity 
and thermal conductivity under pressure are extremely 
scanty. In addition, the available results obtained by 
different experimenters vary greatly. A detailed com- 
parison of theory and experiment can hardly be of use 
at present. It can only be indicated that in order of 
magnitude the theoretical value (34) is close to the ex- 
perimentally observed one. 
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