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We show that in weakly dispusive media two-dimensional sound solitons are stable against two-dimensional 
perturbations, while three-dimensional ones are unstable. With respect to three-dimensional bending 
perturbations both two-dimensional and one-dimensional solitons [B. B. Kadomtsev and V. I. Petviashvili, 
Sov. Phys. Dokl. 15,539 (197011 turn out to be unstable. 
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INTRODUCTION divergence (ah,u). The KP equation has thus the same 

I t  is well known what an important role is played in 
the dynamics of nonlinear waves by solitary waves- 
solitons. Their properties can be most completely 
studied in integrable models.' As a rule the solitons 
behave in such models like particles: when solitons 
interact with one another there occurs elastic scatter- 
ing of the solitons with the non-soliton part; this leads 
to definite shifts in the centers of the solitons, thus in- 
dicating their stability. When one analyzes the problem 
of the stability even of one-dimensional solitons in 
models which do not allow the application of exact 
methods, there arise certain difficulties. The situation 
becomes even more complicated when we study many- 
dimensional solitons. So far  there a re  no general analy- 
s i s  methods in this region and solutions of soliton type 
have been constructed analytical1 f .S (again, though, 
using the inverse scattering method) for some nonlinear 
equations, but the problem of their stability remains 
unresolved. One should add that by using the tradition- 
a l  approach based upon a linearization of the original 
equations one can only in exceptional cases solve the 
stability problem exactly; one is a s  a rule obliged to 
turn to the usual perturbation theory ,4 which obviously 
does not solve the entire problem. When the soliton 
possesses nontrivial topological properties its stability 
can be proved by using topological  consideration^.^ 
There is, however, another exact and rather clear 
method by means of which the stability of three- 
dimensional solitons has been proved for  a number of 
 model^."-^ This method is based upon a theorem of 
Lyapunov's according to which there is in the system 
a t  least one stable trajectory, provided some integral 
is bounded from above or  below. 

We apply this method in the present paper to the 
problem of the stability of two- and three-dimensional 
sound solitons in a weakly dispersive medium. We 
shall describe the propagation of the solitons by means 
of the Kadomtsev-Petviashvili (KP) equationg 

This equation is written down in a system of coor- 
dinates moving with the sound velocity c,. We have 
retained in it, after elimination of the velocity c,, the 
main terms responsible for the weak dispersion (aU,,), 
for the small nonlinearity (muu,), and for diffractive 

degree of universality as the known KdV equation, which 
is obtained from (1) when A,u =O. The sign of n cor- 
responds here to positive o r  negative dispersion. 

It is well known that the dynamics of a system of 
sound waves is in some sense trivial when the wave dis- 
persion is negative (examples a re  long-wavelength 
gravitational waves on the surface of a liquid, ion- 
sound waves in a plasma, sound in solids, and s o  on). 
The fact is that in that case one-dimensional solutions- 
 soliton^,^^'^ periodic stationary waves1'-are stable 
against transverse perturbations. A nontrivial picture 
ar ises  when the wave dispersion is positive (examples 
a re  long-wavelength gravitational-capillary waves, 
magnetosonic waves in a plasma, phonons in liquid 
helium under certain  condition^,'^ and so on). In this 
case there occurs a decay instability even for small 
wave amplitudes. It is just only when positive dis- 
persion occurs that there exist two-dimensional soli- 
tons, which can be found explicitly using the inverse 
scattering method: and also three-dimensional solitons, 
which were observed by Petviash~i l i '~  in a numerical 
simulation. 

In the present paper we show that two-dimensional 
solitons a re  stable against two-dimensional perturba- 
tions, while three-dimensional ones a r e  unstable. This 
is shown in the second section of the paper. This is 
preceded by 6 1  in which we consider some properties of 
the KP equation and its  stationary solutions. At the end 
of the paper we consider the problem of the stability of 
the two-dimensional soliton against three-dimensional 
perturbations. 

5 1. STATIONARY SOLUTIONS AND 
THEIR PROPERTIES 

Before we consider the problem of the stationary 
solutions of the KP equation, we give the properties of 
(1) which a re  necessary for what follows, restricting 
ourselves to the case of only positive dispersion. 

It is known that the KP equation is Hamiltonian: 

with a Hamiltonian 
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3(V w)' H = j  
2 2 1.9 

where w , =u,  u = 1. Together with H, Eq. (1) conserves 
in the three-dimensional case the momentum 

and the x-component of the angular momentum. For the 
two-dimensional K P  equation one can find apart from H 
and P an infinite series of integrals of motion.ls14 The 
reason for  the existence of such a se t  when the disper- 
sion is positive is ,  according to Ref. 14, the degener- 
acy of the dispersion law w, for the linear part of the 
K P  equation, i.e., when one can find on the decay sur-  
face 

o h = o k , + o h : ,  k=k,+k, (3) 

a nontrivial function f, for which 

t=f*,+h,. 

One should note that the dimensionality of the degener- 
ate submanifold (3) equals four, i.e., less than the 
dimensionality of (3). There a re  therefore all grounds 
to think that in three-dimensional geometry there a re  
no other integrals than the ones given above. 

We now consider stationary solutions of Eq. (1) of the 
form u =u(x - vt r ,) which decrease in all directions. 
We shall call such solutions solitons; their form is 
determined from the equation 

The operator L here is elliptic when v>  0, guarantee- 
ing the existence of a decreasing solution.13 When the 
dispersion is negative, regardless of the sign of v, L 
is hyperbolic. 

One must add that in the two-dimensional case the 
solution of Eq. (1) was found by using the inverse scat- 
tering method? 

It has the form of a two-dimensional soliton, decreas- 
ing like l/? as lr 1- a. For this solution the momentum 
and the Hamiltonian have, respectively, the values 

The problem of the stability of the two-dimensional 
solitons has not been discussed earlier in the literature. 
Below we give a simple solution of this problem both 
for two- and fo r  three-dimensional solitons without 
resorting to the inverse scattering method. 

$2. STABILITY OF THE SOLITONS 

We consider Eq. (4) which we rewrite, using (2) in 
the form 

6 (H+'I,vP) =O. (6) 

This form means that all finite solutions of Eq. (4) a re  
stationary points of the Hamiltonian H for fixed P. In 
that case the velocity v has the meaning of a Lagrang- 
ian multiplier. 

We now turn to the stability problem. To solve it we 
use directly the Lyapunov theorem according to which 
there exists in a dynamic system at least one stable tra- 
jectory if some integral, for instance, the Hamiltonian, 
is bounded from above o r  from below. The opposite is 
also true, If this integral is not bounded, there a re  no 
absolutely stable solutions. This does not, of course, 
exclude the existence of locally stable solutions. It is 
clear that such solutions will not be present if the given 
integral depends monotonically on its variables. 

We must thus prove, in accordance with (6) that H 
is bounded (in this case, clearly, from below) for 
fixed P. We consider to begin with the simplest scale 
transformations 

which conserve P (d is  the spatial dimensionality). 

In this case H will depend on the two parameters, a! 
and p: 

where 

When d =2 a simple analysis shows that H a s  a function 
of the two parameters is bounded from below, while 
direct substitution shows that the minimum is realized 
by the soliton solution (5). In the three-dimensional 
case the situation is the opposite: there is no mini- 
mum, the focus is replaced by a saddle-point. One 
checks this easily by considering the lines a2 =cp on 
which H changes monotonically, which guarantees the 
absence of locally stable solutions. Moreover, the 
absence of additional integrals of motion, mentioned 
earlier,  finally leads to the conclusion that the three- 
dimensional soliton is unstable. As for the two-di- 
mensional case,  scale transformations clearly do not 
exclude all possible deformations. Dimensionality 
estimates only indicate that H is bounded. We give a 
rigorous proof of this fact. To do this we set  an upper 
bound on I, in terms of I , ,  I,, and P. 

Firs t  of all we have from the HGlder inequality 

We estimate next lu4dxdy: 

(in the last integral we interchange the order of inte- 
gration over x and y ' and then integrate by parts) 

Further using the obvious inequality 

we get for the integral lu4dxdy the following upper 
limit estimate: 
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Hence the required estimate for I, has the form 

za<2FJ~*1?1:. 

Substituting this inequality into the Hamiltonian gives a 
lower limit of H: 

H > ' / J , + ~ / ~ I ~ - ~ P ' ~ ~ I ~ ~ I ~  >-z/,P3. 

Thus, by virtue of the boundedness of the Hamiltonian 
its lower limit corresponds to some stationary point- 
to a two-dimensional soliton. One then sees  easily that 
H for  fixed P has a single minimum (in the opposite 
case H as function of a! and B would have a t  least one 
more minimum under scale transformations). Hence 
i t  follows necessarily that the Hamiltonian reaches its 
smallest value for the soliton solution (5). This proves 
indeed the stability of the two-dimensional soliton 
against two-dimensional perturbations. We study the 
stability against three-dimensional perturbations in the 
next section. 

83. BENDING INSTABILITY OF THE TWO- 
DIMENSIONAL SOLITON 

We consider the three-dimensional Eq. (1) linearized 
with respect to the solution (5): 

where the perturbation bu is chosen in the form 

while the operator 

In the general form it is difficult to solve this spectral 
problem and we therefore turn to a determination of 
the spectrum w(k) in the long-wavelength limit. To do 
this we seek the eigenfunction in the form of a series 

Here #, is determined by the equation 

and is an indifferent-equilibrium perturbation. Due to 
the translational invariance of (I), #, can be chosen in 
the form 

which i s  a small shift of the soliton as a whole; the 
f i r s t  function represents a shift along x and the second 
along y. It is clear that these perturbations a re  
independent and can therefore be considered separately. 

The next approximation in (7) for the f i rs t  type of 
perturbation gives 

One can give the solution of this equation explicitly. To 
do this we differentiate Eq. (4) with respect to the 

velocity v and compare it with (8). As a result we get 

In the second approximation we have 

We obtain the spectrum o(k) from this a s  the condition 
for solubility. For this it is necessary to multiply Eq. 
(9) scalarly with the eigenfunction cp, of the zero-eigen- 
value operator which is the adjoint of A. Because of (2), 
rp, =w, and thus 

Integrating by parts we get the expression 

oa aP 
-A=-- k2 P.  
2 av 3 (10) 

Hence i t  follows that the two-dimensional soliton is 
unstable against bending of the entire front: 

The qualitative reasons for the instability a re  here the 
same a s  for the instability of the one-dimensional soli- 
tons where the result which was obtained earlier by a 
somewhat different method by Kadomtsev and Petvia- 
s h ~ i l i ~ . ' ~  follows directly from Eq. (10) for the case of 
a one-dimensional soliton. As for the other perturba- 
tion, i t  is stable in the long-wavelength limit. The ex- 
pression for the square of the frequency is obtained in 
a similar manner: 

CONCLUSION 

Notwithstanding the fact that two-dimensional solitons 
a re  stable when d =2, they turn out to be unstable in the 
three-dimensional case. This instability is ,  as in the 
one-dimensional case (cf. Ref. 15), of the self-focussing 
type and its development must lead to a division of the 
front of the two-dimensional soliton into three-dimen- 
sional localized clusters. The subsequent behavior of 
the system will be determined by the evolution of each 
of these clusters. 

It is well known that in the one-dimensional case the 
evolution of any localized perturbation leads to the 
separation of the solitons from the non-soliton part 
that approaches asymptotically a self-similar solution 
a s  t - -.I6 An analogous situation occurs when d =2 
when the non-soliton part also reaches the self-similar 
regime as t - -.I7 In the three-dimensional case the 
situation must change radically. Here there a re  no 
stable solitons and therefore in the process of the 
evolution of any initial condition there does not occur 
a splitting off of solitons a s  occurred in the one- and 
two-dimensional cases. On the other hand, one should 
expect that the solution a t  d =3  must also reach the 
self-similar regime. This is ,  in particular, indicated 
by the estimates of 52, from which it is  clear that H 
as  a function of a and j3 decreases fastest on the lines 
(u2 =c@,  which corresponds to the self-similar behavior. 
In contrast to the one- and two-dimensional cases the 
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attainment of the self-similar  regime must  occur fo r  
d = 3  after  a finite time which, in turn,  leads to the 
appearance of a singularity-a phenomenon such a s  a 
collapse. At the present it is as yet unclear what i s  
the nature of the singularity, what a r e  the integral 
c r i te r ia  for  the formation of singularities, o r  whether 
they can be described a s  self-focusing. To a large 
extent numerical experiments must  give the answers 
to these problems. 
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