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A theory is developed for the emission of ion-sound waves by a Langmuir soliton moving with acceleration. 
The acceleration is due to the nonuniform density distribution in the plasma. 

PACS numbers: 52.35.Dm 

At the present time, the soliton is one of the most with the velocity of ion sound c, and the velocity of 
intensively studied objects in plasma theory. This is translation of the region of localization of the Langmuir 
due to its value for the understanding of the dynamics oscillations. 
of nonlinear waves. In the voluminous literature devot - 
ed to the soliton (see Refs. 1 and 2 and the literature 
cited therein), its fundamental property is made clear,  
namely, if we neglect the inertia of the ions and the 
amplitude of the soliton i s  not large: then, in the inter- 
actions among themselves, the solitons, like particles, 
preserve their shape and velocity. 

In the present work, st i l l  another property of the 
soliton has been observed: a soliton moving with ac -  
celeration can, like a particle, emit ion-sound waves. 
A soliton moving in an inhomogeneous plasma i s  stud- 
ied in this work. It is the inhomogeneity which leads 
to i ts  a ~ c e l e r a t i o n . ~  The spatial distribution of the 
radiation field i s  investigated for linear and quadratic 
profiles of the inhomogeneity. An expression is ob- 
tained for the energy loss of the soliton as a result of 
the emission. The problem can be of interest in the 
estimate of the requirements on the degree of homo- 
geneity of the plasma for the experimental detection 
of the soliton and the study of its properties. 

1. We limit ourselves to the consideration of the one- 
dimensional problem. Following ~akharov: we de- 
scribe the nonlinear dynamics of the plasma with the 
help of the time envelope E of the electric field inten- 
sity of the Langmuir oscillations E ,: 

and the low-frequency variation of the plasma density 
6n (w, is  the plasma electron frequency). In a nonlin- 
ear  plasma, the se t  of equations for the determination 
of these quantities has the form6 

where v~ is  the thermal velocity of the electron, the 
quantity n(x) characterizes the profile of the inhomo- 
geneity of the unperturbed plasma and represents the 
inhomogeneous deviation of the density from its equili- 
brium value no. In obtaining Eq. (3) ,  we have neglected 
the plasma drift brought about by the inhomogeneity, 
assuming the drift velocity to be small in comparison 

In the following, we shall assume n(x) to be small, 
n(x) <<no, which allows us to simplify Eq. (3). We 
introduce the dimensionless quantities 

and we represent the system (2) and (3) in the form 
(for convenience, we have omitted the primes in what 
follows) 

We write down the solution of Eq. (5) in the form 

E = 8  ( x - f  ( t )  ) eiv"* ", (7) 

where %' and 40 a r e  real quantities; ~ ( t )  is the coordi- 
nate of the center of localization of the Langmuir oscil- 
lations. The time dependence of the coordinate x(t) 
will be determined in the following. Because of the in- 
homogeneity of the plasma, this dependence turns out 
to be nonlinear. 

In the expression for 6n we isolate that part of the 
density perturbation which i s  concentrated in the region 
of localization of the Langmuir oscillations: 

where 9 =&/dt .  The quantity N will characterize the 
perturbation of the density by the ion sound outside the 
soliton. 

Since we a r e  interested in the radiation of a soliton, 
it is natural to assume that the velocity of the source 
of radiation of the soliton is much less than the sound 
velocity: 

E 2 < 1 .  (9) 

Then the relation 

.i!A1<<1 (10) 

i s  easily satisfied (or,  in dimensional form, 2 A2 << cl) .  
This condition means that the change in the velocity of 
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the soliton within the time that the ion sound passes 
through a distance of the order  of the width of the soli- 
ton Al is small in comparison with the ion-sound velo- 
city (we shall not be interested in the reaction of the 
radiation on the soliton). For this we assume that the 
perturbation of the density by the ion sound is not large, 

limit ourselves in the expansion 

to only the first three terms.  If the conditions 

a r e  satisfied, we obtain for the amplitude of I the 
well -known equation 

Then, we obtain the following from Eqs. (5) and (6) with 
the help of Eqs. (7)-(11): 

the solution of which has the form 

where the coordinate of the center of the soliton, ac-  
cording to (18) and (21), can be determined from three 
equations 

It follows clearly from Eq. (14) that only a soliton mov- 
ing with acceleration can radiate. 

An original change of variables that reduced the 
nonlinear Schriidinger equation for the inhomogeneous 
plasma to an  equation for the homogeneous plasma was 
obtained in Ref. 4. Here we shall show that we can 
arr ive  a t  a similar solution by a much more lucid 
route. 

while the width of the soliton is equal to & = 2 1 ' 2 / $ m .  

We thus obtain results that a r e  s imi lar  to those found 
in Ref. 4. However, the method of calculation that we 
have used k i t h  the help of Eq. (20)] enables us to show 
lucidly the conditions under which a Langmuir soliton of 
the form (24) can exist in the inhomogeneous plasma. 

Since the amplitude of $ i s  sought in the form of a 
function that is dependent on the self-similar argument 
5 = x  -a(t), we find from (13) the following for values of 
I that vanish a t  infinity (5 -* , $- 0) 

2. Substituting (24) and (25) in (14), we can find the 
explicit form of the density distribution in the emitted 
ion sound. We introduce the natural initial condition: 
a t  the initial instant of time, t=O, let emission be ab- 
sent,  N = 0. This means that from the moment t = 0 the 
soliton begins to move with acceleration. Then the 
solution of Eq. (14) has the form7 

qJ=z' ( t ) z+ f  ( t ) ,  (15) 

where f(t) is a function of t i m  that is thus f a r  arbi- 
trary.  Substituting (15) in (12), we obtain 

t i+l-t'-z't" 

N=--j atf j a&(l f ) - -a2(~) .  a 
az (26) 

0 .-l+t*-i(t.) 

Using the condition (9), and also the smallness of the 
change in the acceleration of the soliton within the time 
of passage of the ion sound across  the width of the 
soliton, 

F o r  the first  integral of Eq. (16), we find 

we find from (26) 
It follows from (17) that 

2-f ( t )  
A1 

If we assume that the maximum value of the amplitude 
$=Im corresponds to the point x  =Z( t ) ,  we can then 
find the equation for the function f(t) from (17): 

Knowing the profile of the inhomogeneity, we can, 
from (25) and (27), determine the spatial distribution 
of the perturbation of the velocity by the radiated ion 
sound. We note that with the help of (27) we can also 
find the density distribution inside the soliton. In the 
following, we shall assume that the soliton moves to the 
right, 2 > 0. Then the first  term in the curly brackets 
of (27) corresponds to forward radiation and the second 
to backward radiation. Because of the smallness of the 
velocity of the soliton, the distance traversed by the 
radiation front is  greater than the displacement of the 
soliton within the same interval of time. It is clear 
that we can speak of soliton displacement if it is great- 

1 i 
2f(t)  +> (r) +g ( t ) r  ( t )  +n (3) - - & G ( t )  + E)F - T b m z - ~ .  ,I 1 az 

Substituting (19) in (16), we obtain 

[ z - f  ( t )  ]+n(z) -n(3)  

In the following, we shall assume that the density of 
the inhomogeneous plasma changes over distances of 
the order of the width of the soliton. Then we can 

840 Sov. Phys. JETP 55(5), May 1982 Cow et a/. 840 



e r  than the width of the soliton, i.e., we can set  

t B  If ( t )  -f ( 0 )  1 BAL. (28) 

We now analyze the radiation field for specific forms 
of the density profile of an inhomogeneous plasma. 

a) For  a linear profile n(x) = 2ax, the motion of the 
center of the soliton i s  described according to (25) by 
the formula 

s ( t )  =s ( 0 )  + ~ t - ' / ~ a t ~ ,  

where K(0) is the initial value of the coordinate, w i s  
the initial velocity, and the accelerator is  constant and 
equals K=-a, i.e., if a > 0, then the soliton is slowed. 
We note that the restriction (22) is lifted for a linear 
profile of the inhomogeneity, since a2n(x)/ax2 = 0. 

We obtain from (27) the following expression for the 
radiation field: 

t-z+z(O) 2-5 ( t )  
A1 

-2 th-1 .  (29) 
A1 

The qualitative spatial distribution of the density, cor- 
responding to (29), is shown in Fig. 1. 

The region occupied by the radiation field in front of 
the soliton i s  narrower than the region behind it. Here 
the perturbations of the density in these regions have 
different signs. The change in the sign takes place in 
regions of localization of the soliton at a given instant 
of time. These regions broaden rapidly; the bounda- 
ries of the regions move away from the soliton with the 
velocity of ion sound. Ahead of the soliton, the pertur- 
bation reaches i ts  maximum value 

N=-2'h&m 

a t  the point x,, which i s  located outside the soliton, 
Iz(t) -x,l >* Al. At the point x , = t  +a(O), the pertur- 
bation i s  equal to 

N=-2-'!3& m. 

The perturbation falls off rapidly to the right of this 
point. According to (29), the perturbation in this re-  
gion is equal to 

N=-2-"&,{I-th(z/Al)}, z=z-t-Z (O)>O, (30) 

and consequently the perturbation falls off exponentially 
a t  large z (z >> Al). We note that the falloff takes place 
more rapidly the smaller the value of the soliton width 
Al. In the limit Al-0, the radiation front takes the 
form of a sharp boundary. This was to be expected. 
Actually, we assign a width Al to a soliton of the form 
(24). However, there a re  in fact no sharp boundaries 
and the soliton extends over all space, although it falls 

FIG. 1. Radiation field in the case nG)=Zcrx. The arrow 
indicates the direction of motion of the soliton. 

off exponentially outside the width Al.  Therefore, the 
radiation front emitted from the soliton i s  also smear-  
ed out with the same characteristic width Al.  Only the 
radiation front of a source with sharp boundaries has a 
vanishingly small width. In the case A1 -0,  the radia- 
tion field to the right of the point x, =t +X(O) should be 
absent, since the radiation front reaches exactly this 
point within the time t measured from the beginning of 
action of the source. 

Similarly, behind the soliton, to the left of the point 
x, =X(O) - t ,  the perturbation also falls off rapidly. In 
this region, it i s  described by the formula 

At this point x -x(O) - t  itself, the perturbation is 
equal to N = z f  The maximum value of the 
perturbation behind the soliton is N =21'2a%', is reach- 
ed near the point x(0). 

The condition ( l l ) ,  when the conclusions given above 
a re  valid, has the following form for a linear profile 
of the inhomogeneity : 

o r  in dimensional form 

where L is the characteristic length of the inhomogen- 
eity . 

b) The case of a quadratic inhomogeneity n(x) = azx2 
is of interest. Here, according to (25), the soliton 
executes harmonic oscillations about the point x = 0 
without changing its shape. Choosing the initial condi- 
tion in suitable fashion, we can rewrite the law of mo- 
tion in the form 

E ( t )  =- ( wla) cos at, (31) 

i.e., a t  the instant of time t = O  the soliton is located 
a t  the left turning point ~ ( 0 )  =+/a. 

Substituting (31) in (27), we obtain the following rela- 
tion for the density perturbation in the field of ion 
sound: 

z+t-z (0)  x-s ( t )  - qos .(t+z) [th 
*l -.-I) A1 

Thus, just as in the case of a linear profile, two wave- 
fronts leave the soliton in different directions; how- 
ever, in the given case the distribution of the perturba- 
tions in space has a periodic structure. 

AS an illustration, we consider the distribution a t  the 
time t = (4k + l)n/2a (k i s  an integer), when the soliton 
reaches the point of equilibrium, moving to the right, 
2 > 0. From Eq. (32) we get 

= + ( & t i )  d Z + w  -thaz- (4k+l )  n/Z+w , 
N ( z ,  t)=2-"aw8, sin az a A1 aAl 1 

(33) 
The principal features of this distribution can be traced 
qualitatively in Fig. 2. 

In the range of values of the coordinate 
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FIG. 2. Radiation field in the case nk)=a2$ at the instant 
t=(4k+l)r/2a.  

the density perturbation has a purely periodic charac - 
t e r ,  by virtue of the condition (28), and has the constant 
amplitude 

N-2"aweP, sin at.. 

In the region of positive x > 0, the maximum farthest 
from the soliton, equal to ~ = 2 ' ~ ~ a w $ ,  is achieved a t  
the point xo, located in the interval 

To  the right of the point (4k + l)n/2 -w/a the pertur- 
bation of the density is described by the formula 

N = 2 ' h d m  cos as{l- th ( s l A l ) ) ,  s=z-  (4k+l)n/2a+w/a&O. 

The perturbation thus diminishes with increase of s 
without having a chance to oscillate, since 

by virtue of the smoothness of the profile of the in- 
homogeneity [see Eq. (21)]. The decrease in the per- 
turbation takes place more rapidly the smaller the 
width of the soliton. 

In the region of negative values of the coordinate, 
x < 0, the extremal value of the perturbation farthest 
from the soliton, equal to N =-2"12aw~, is achieved 
near the point. 

For  even smaller values of the coordinate, x < x,, the 
perturbation is described by the formula 

N=-2-'haw&, cos ap.( i - th  ( q l A l ) ) ,  q--2- ( 4 k + l ) n / k - w a > O ,  

which also indicates a rapid decrease in the perturba- 
tion with increasing distance from the soliton. 

For  the parabolic profile of the inhomogeneity, the 
condition (11) [in dimensional quantities] takes the form 

where v is the velocity of the soliton, and from (22) we 
get the inequality 

These inequalities can be satisfied also at small values 
of the amplitude of the soliton. 

3. In the calculations given above, we have neglect- 
ed the radiation recoil, a s  can be done a t  $:<< la6 
This condition is implied everywhere above. The con- 

dition (11) guarantees the smallness of the energy of 
the sound waves in comparison with the energy of the 
soliton. It is of interest to obtain an expression for the 
rate of energy loss by the soliton. We begin with the 
consideration of the conservation laws for the system 
(5) and (6)."* 

The total number of plasmons is conserved in the 
radiation process. This follows immediately from (5): - 

j &lRl'===const. 
-- 

For  the change in the momentum of the system "soliton 
+ sound wave," we obtain the expression 

As was to be expected, the momentum of the system 
is not conserved. The term on the right side of Eq. 
(35) represents the force acting on the system and due 
to the inhomogeneity of the plasma. Neglecting the 
radiation recoil, and using the relations (B), ( l l ) ,  and 
(34), we can easily obtain the equation of motion for 
the soliton (25) from (35). 

The energy conservation law has the form8 

where 

If we determine the total energy of the system "soli- 
ton + sound," (i.e., the integral over the volume whose 
boundaries the front of the radiation has not yet cross- 
ed, and within which all the energy of the radiation is 
concentrated), then the total energy will be conserved 
and there will be no energy flux across the boundary of 
the chosen region of integration. We therefore carry  
out the integration of Eq. (36) over a volume whose 
boundaries a r e  fa r  from the initial position of the 
center of the soliton ~ ( 0 )  a t  a distance Al which satis-  
fies the condition 

t B A L B I Z ( t ) - E ( 0 )  1 + Al, Al. (37) 

Using (7), (8) and (24), we can find the total energy 
flux P through the bounding planes which pass through 
points ~ ( 0 )  - hL and X(0) + hL : 

where the velocity u of the particles in the sound wave 
is determined from the equation 

If we assume that the distance from the bounding 
planes to the radiation front is greater than the width 
of the soliton, t - AL >> Al,  then we obtain the follow- 
ing expression for the energy flux, with the help of (25) 
and (27): 
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Consequently, the energy flux is proportional to the 
square of the density gradient of the inhomogeneous 
plasma. 
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