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The methods of classical theory are used to study the radiation of an electron moving along the arc of a circle. 
The main attention is concentrated on obtaining the exact analytical characteristics of the radiation in various 
cases. 

PACS numbers: 41.70. + t 

The radiation of electrons moving in sys tems of the 
"short-magnet" type has a number of remarkable fea- 
tures  which, besides presenting theoretical interest, 
may turn out to be of practical importance. Some of 
these features have already been pointed out in several  
theoretical studies.'-= Here we attempt to give the 
most complete possible analysis of the properties of 
the radiation of an electron moving along the a r c  of a 
circle. 

Motion along the a r c  of a circle is  the simplest  
example of motion in a "short magnet" (for the case  of 
a smal l  a r c  length). On the one hand, many properties 
of the radiation generated in such motion can be cal- 
culated exactly in the classical  theory and can be 
analyzed most  completely in this  way. On the other 
hand, al l  of the important features of the radiation 
which a r i s e s  in motion in a shor t  magnet of a rb i t ra ry  
structure occur also in this special  case. Finally, 
synchrotron radiation i s  a particular case  of the prob- 
lem discussed he re  in the limit of a n  infinitely large 
number of revolutions of the electron along the arc.  

1. GENERAL FORMULAS FOR THE RADIATION OF 
AN ELECTRON MOVING ALONG THE ARC OF THE 
CIRCLE 

Let an electron with charge e move with a velocity 
v =cp which is  constant in magnitude (where c is the 
velocity of light), up to a certain moment of time in a 
straight line, then under the influence of external 
forces let i t  describe an a r c  of a circle of radius R and 
sector  angle 27, and then let  the electron again continue 
i ts  motion along a straight line. The choice of the co- 
ordinate system is c lear  from Fig. 1. 

The electronic vector E of the radiation field of the 
electron in the wave zone a t  a point with coordinates r 
a t  a time t ,  as  is well known,4 has the form - 

E(r, t )  = (e/2ncr) f ( o ,  n ) e x p [ i o  ( t -r /c)  ] d o ,  
-a 

(1) 
m 

f ( o , n ) = j  [nX[(n-p)~$ll[l-(np)l-zexp{-to[t-(na)/c]}dt, 
-- 

BE"/~,  b=dl3/dt, n=rlr= (sin 0 cos p, sin 0 sin p, cos 8 ) .  

Here a =a(t) is the radius vector of the moving charge 
a t  a t ime t. From Eq. (1) we obtain the spectral  and 
angular distribution of the total radiated energy 

d 8 =  (ez//4n2c) 1 f ( o ,  n )  1 'dodQ, dQ-sin 0d0&, O<o. (2) 

Introducing the unit vectors of a spherical  coordinate 
system n,  e ,, e ,, we s e e  from Eq. (1) that 

where the quantities f a =  (fe ,), and f,=(fe8) characterize 
the u and I components of the linear polarization of the 
electron ra~i ia t ion .~"  

In our case  of motion along the a r c  of a c i rc le  it is 
easy to obtain the expressions1' 

*T 

f.=p j (cos ~ - p ) p - ~ ( x ) e - ~ q + d z ,  
.-I 

1.- cos 0 ( s )  .-'" Sin sdz, 
*-I 

p=p ( x )  = l - p  cosz ,  g = g ( z )  - s -p  s ins ,  
(4) 

p=$ sin 0, q-o /oo ,  o . - c ~ / R ,  

which a r e  the start ing point for  analysis of the proper- 
t ies  of the radiation. 

Integrating over frequencies and angles in Eq. (2), we 
find the total radiated energy in the form 

2 ce2 E ' 
a-WOT,  wo = T F ~ ~ ( z )  , 

mc" 21 27R E -  T=-=-. 
(i-pZ)'h' 0 0  cp 

Here W o  is the total power of synchroton radiation of 
an  electron moving along a c i rcular  a r c  of radius R, 5 . 8  

and T is the time of motion along a circular  a r c  with 
sec tor  angle 2y. Thus we have the obvious result  that 
the total radiated energy i s  proportional to the t ime of 
motion along the circular  arc. This simple fact  shows 
that Eq. (2) can conveniently be rewritten in the form 

where the functions F , ,  characterize the spectral  and 
angular distribution of the relative average power of 
polarized radiation in an a r c  with sec tor  angle 2y and 

FIG. 1. 
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we have the obvious property 
9 

W-W.+W,- j d x  $ d ~ = l ,  

From Eq. (7) it follows in particular that the degree of 
linear polarization of the radiatian (separated into o and 
r components) coincides with the polarization of the 
synchrotron radiation. This, however, is  a consequence 
of the general properties of the radiation which were 
proved in Refs. 7. 

From Ref. 4 i t  follows that for w - .of,,, fall off as 
w-' and consequently the spectral and angular distribu- 
tions of the radiation fall  off as w". This conclusion is 
valid only in our particular case-the acceleration in 
the motion considered is a discontinuous function of the 
time (it undergoes finite jumps). If the acceleration is 
continuous, then, as follows from the general theorems 
of the theory of Fourier integrals, the spectral and 
angular distributions fall off no slower than wm4. This 
is confirmed by the examples discussed in Ref. 2. 

2. ANGULAR DISTRIBUTION OF THE RADIATION 
OF AN ELECTRON MOVING ALONG THE ARC OF A 
CIRCLE 

The integration over frequency in Eq. (6) can be 
carried out exactly, and after simple but straighffor- 
ward calculations we obtain 

9 

p . . . ( ~ , 7 ; 0 , ( ~ ) =  j ~ ( ~ , ~ ; x ; e , c p ) d x  
0 

where a0 characterizes the angular distribution of the 
synchrotron radiation averaged over a turn5": 

and the functions a',,,(x) a re  defined by the formulas 

psinz  
p(z)+(l-W')" 

. , 
psinz  

p(x)+(I-p')" 

Q=(1-p~a[128np~(1-p')'p4(z)]-'. 

Integration over the angle cp in Eq. (8) leads to the ex- 
press ions 

which describe the angular distribution averaged over 
a turn of the synchrotron radiation. This property is 
also a consequence of the general statements proved 
in Ref. 7. 

From Eqs. (8)-(10) i t  also follows that for y =nN (N 

= 1,2,. . . ; the electron executes N complete turns) 

which again coincides with the angular distribution av- 
eraged over a turn of synchrotron radiation. For y- 0 
we obtain from Eqs. (8)-(10) 

Fs,m(p, 0; 0,q) -3(1-$ ' )A~~/8np' (~) ,  

A,=p-cos cp, A,=cos 0 sin cp. 

These a re  the instantaneous angular distributions of the 
polarized synchrotron r a d i a t i ~ n . ~  

Thus, Eqs. (8)-(10) with variation of y in the range 
from 0 to n describe the continuous transition from the 
instantaneous angular distribution of synchrotron radia- 
tion to the average over a revolution. 

3. GENERATION OF LOW-FREQUENCY RADIATION 
I N  MOTION ALONG A CIRCULAR ARC 

Letting w - 0 in Eq. (6), we obtain 

(1-P2)B,. sin 7 ' 
F..S(B* Ti 0i0. ~ ) - 3 [ ~ ~ ~ ~ ( ~ + ~ ) ~ ( ~ - $  I 3 

B.=cos cp-p cos 7, B.-cos 0 sin cp, 

o r  after integration over the angles2m3 

\ -  --I 

F=(p, 7; 0)=3(1-~)'(4n~'rv)-'[ln(l+v)/(l-v)-2v, 
v=$ sin 7/(1-$'cosz7)". 

The functions F, , ( j3 ,  y; 0) a r e  maxima[ for y = O  and a t  
the maximum they have the form 

For y = r N  (an integer number of revolutions) the 
radiation a t  zero frequency disappears. Consequently 
the relative contribution of low frequencies to the total 
radiation is greatest in a "short magnet" and decreases 
with increase of the a r c  angle 2y. This indicates that 
with increase of y (O< y <  r )  the maximum in the radia- 
tion spectrum shifts to the short-wavelength region. 

Equation (14) also permits us to obtain a distinct 
criterion of smallness of y,  nameiy that y can be con- 
sidered small if v<< 1, which is equivalent to the in- 
equality 

The criterion (16) characterizes a "short magnet." 

It follows from Eq. (15) that on division into o and n 
components in a short magnet the radiation at zero fre- 
quency is polarized in the ratio 4 and 4, regardless of 
the electron energy. However, calculation of f(0, n) 
shows that the radiation a t  zero frequency for arbitrary 
y and p has complete linear polarization, and the vector 
E of the radiation f ield a t  zero frequency is parallel to 
the vector l(y): 

l(y) = (cos cp-pcos y)g+cos0 sincpee. (17) 
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4. RADIATION OF AN ELECTRON MOVING IN A 
SHORT MAGNET 

As we already noted, the angle y can be considered 
smal l  if i t  sat isf ies the cri ter ion (16). In this case ,  
expanding the expressions (4) and (6) in s e r i e s  in y and 
retaining only the f i r s t  nonzero t e rms ,  we find that the 
radiation in a shor t  magnet is completely linearly polar- 
ized for  any @ and w, and the vector E is parallel to the 
vector l(y = O )  defined by Eq. (17). The spectral  and 
angular distribution of the radiation in a shor t  magnet 
has the form 

Integration over frequency in Eq. (18) leads to the ex- 
pressions (12) which characterize the instantaneous 
angular distribution of synchrotron radiation. 

It is  evident from Eq. (18) that the maximum in the 
radiation spectrum of an electron in a shor t  magnet 
corresponds to w =0,  and on integration over angle for  
o = O  we obtain Eq. (15), in accordance with the conclu- 
sions of Sec. 3. With increase of w, a s  follows from 
Eq. (18), the spectral  and angular distribution falls off 
slowly to ze ro  (as w-'), and the effective width of the 
spectrum is  AH =n/2(1- @) o r ,  converting to frequency, 

where 1 is the length of the circular  a rc .  In this way 
we a r r ive  a t  the conclusion that in a shor t  magnet 
"white noise" is  actually generated with an effective 
spectral  width Aw. If we assume 1- 10-100 cm,  then 
for  an electron with energy -1 GeV we have Aw - lo1" 
-1016 sec-', i.e., white noise is generated with an ef- 
fective spectrum width from zero  up to the ultraviolet, 
and the power of the signal is determined by the power 
of the synchrotron radiation, but the signal itself has 
the nature of a narrow ray  bundle (with an apex angle 
A a - r n c ? / ~ )  directed along the electron velocity. 

Integrating over angle in Eq. (18), we can find the 
spectral  distribution of the radiation in the form 

The integrals in the right-hand side of Eq. (20) can ob- 
viously be expressed by elementary transformations in 
t e rms  of the sine and cosine integrals, but the resulting 
expressions a r e  much more  cumbersome than Eq. (20) 
and we shall  not give them here. 

5. RADIATION OF A NONRELATlVlSTlC ELECTRON 

Exact results  can be obtained also for a nonrelativis- 
tic electron ( p  =0). The spectral  and angular distribu- 
tion for  8 = 0  has the form 

F.(O, y; x ;  0, c p )  =3 (S,+2S2 cos Zcp), 
F ,  ( 0 , ~ ;  e, V) =3 ( s , - 2 s z  cos 29) C O S ~  0, (2 1) 

sin2(%-y) sin"x+r) + s in(x+y)s in(x-7)  
S ,  = 

16n2(x-7)' ' 16nZ(x+7)' ' = 16nz(x+y)  ( x - y )  ' 

FIG. 2. 

After integration over angle we obtain the spectral  dis- 
tribution in the form 

Fur ther ,  if we integrate over frequency in Eq. (21), 
the angular distribution of the radiation ofanonrelativis- 
t ic  electron has the form 

sin 7 
16n 

7 
The same  result  follows for /3 = O  from Eq. (8). From 
Eq. (22) i t  follows that the main contribution to the 
radiation is from the region of frequencies n -y with an 
effective width -l/y. 

6. RADIATION OF AN ELECTRON EXECUTING AN 
INTEGER NUMBER OF REVOLUTIONS. FORMATION 
OF THE SYNCHROTRON RADIATION SPECTRUM 

Now let an  electron complete a finite number N of 
complete revolutions (y =nN, N = 1 , 2 ,  . . . ). In this case  
it i s  convenient to fix the point of entry and exit of the 
electron, choosing it to be located, for  example, on the 
y axis. The choice of the coordinate sys tem in this 
ca se  i s  made clear  by Fig. 2. Equation (6) is now 
written in the form 

-le-s~c~) P- 1 sin pfnqE: ( 4  ksin nq+nqh' ( ( . P )  cos nq 1 a 

(24) 
~ . - [ 3 ( r - p ~ ) ~ / ~ ~ p * i n d  e I { q j  r i q * ~ = ) d r  

I 

-ie-iQ'+(q)p-' (cp) +inqEQ ( q p )  }sin n q + h q ~ ~ ( q p )  cos 1 q  1 * , 

Here J,(x) and E,(x) a r e  the Anger and Weber func- 
t i o n ~ , ~  and the prime designates their  derivatives with 
respect  to the entire argument. Thus we s e e  that the 
number of revolutions N enters  only in the factor g,(q), 
and the remaining part  of the expressions in Eq. (24) do 
not depend on N and coincide with the spectral  and 
angular distribution of radiation of an electron execut- 
ing a single turn,  g,(q) = 1. The spectral-angular dis- 
tribution depends on the angle cp. I t  is physically ob- 
vious that the asymmetry of the distribution in the 
angle cp is due to the presence of the point of entry 
(exit) of the electron. Integration over frequency in Eq. 
(24) leads to the formulas of Sec. 2 and removes the 
asymmetry in p. 

The formulas (24) permit us to t race  how the synchro- 
tron radiation spectrum is formed a s  N- m. It is easy 
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to see  that ' 

and here if N>> 1 the effective width of the spectral line 
q = n  is A q - 1 / ~ .  From Eq. (24) we find f o r N - a :  

Here we have taken into account that J,(x) =J,(x), where 
J,(x) is a Bessel function on integer order n. This is 
the well known Schott formula-the classical expression 
for the spectral-angular distribution of synchrotron 
r a d i a t i ~ n . ~ * ~  

As N- the terms in Eq. (24) which produce the 
asymmetry in cp drop out, and for N>> 1 they a r e  1 / ~  
times smaller than the terms which do not depend on cp. 

Thus, it is possible to demonstrate the nature of the 
formation of the classical spectrum of synchrotron rad- 
iation in the case when the electron executes a finite 
but very large number of revolutions on a circular path. 

"since Eq. (2) involves ( f I 2 ,  the expressions (4) for  f, and f, 
have been written with accuracy to  a common phase factor, 

which is unimportant for  discussion of the properties of the 
radiation. This phase factor will be omitted everywhere in 
what follows. 
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