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Explicit asymptotic expressions are derived for the terms of the perturbation theory series for the T matrix of 
the process (1)  in the case of arbitrary quantum numbers of the compound particles. The cross sections for 
charge transfer into arbitrary ns and np states in a collision of a "heavy" charged particle (a proton, an atomic 
nucleus with Z - 1)  with hydrogen atoms at high energies are computed. A simple method of deriving the 
asymptotic wave functions of two-particle systems in the momentum representation as p+w diiectly in 
terms of the asymptotic form of the Fourier transform I?@) of the potential is presented. 
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In the present paper we consider within the framework We derive explicit expressions for the cross  sections 
of nonrelativistic quantum mechanics high-energy colli- for charge transfer to the indicated states in first-order 
sions in a system of three "elementary"1) particles, of perturbation theory and the exact asymptotic expres- 
which two in both the initial and final states a r e  bound, sions by considering the amplitude in the first  two 
i.e., form a "compound" particle: orders of perturbation theory (the cross  sections for 

i+ (2+3) -+ (1+2) +3, (1) charge transfer to states with higher orbital angular mo- 

where 1, 2, and 3 number the particles of the system 
and (1 + 2) and (2 + 3) denote the corresponding compound 
particles. 

To the type of collisions in question pertain such pro- 
cesses of atomic physics a s  charge transfer in the 
collisions of a proton (or some other charged "elemen- 
tary" particle: the positron, a nucleus, etc., but not 
an ion) with the hydrogen atom. The cross sections for 
such processes occurring at high energies have been 
computed in quite a large number of papers (see Refs. 
1 and 2 for reviews) in various approximations (and 
for different quantum numbers of the compound par- 
ticles-the hydrogen-like atoms). It has been estab- 
lished that the asymptotic form of the amplitude for V - * is given by the f i rs t  two terms of the perturbation 
theory series, but a consistent calculation of the a s y m p  
totic form of the cross section has been performed only 
for the reaction H' + H(1s) - H(1s) + H' in the case in 
which the atoms a re  in the ground 1s states.'-* Let us 
note that the highly developed asymptotic-in terms of 
the impact parameter-methods of the theory of atomic 
collisions516 cannot be used to compute the cross  sec- 
tions for charge transfer a t  high energies, since the 
small impact parameters are, on the contrary, im- 
portant in this case. 

In the present paper we develop a method for the com- 
putation of the asymptotic forms of the terms of the 
perturbation theory series for the T matrix of the pro- 
cess  (1) in the case of arbitrary quantum numbers, n, 
and I ,  of the compound particles. This method allows 

menta can be computed in similar fashion). We also 
present below a simple method of deriving the asymp- 
totic form of the wave function of a two-particle system 
in the momentum representation for p - * and quite 
arbitrary potentials. 

ASYMPTOTIC FORM OF THE WAVE FUNCTION OF 
A TWO-PARTICLE SYSTEM I N  THE MOMENTUM 
REPRESENTATION AS p+m 

Let us set  forth the principal notations and a s s u m p  
tions used in the paper. The mass of the a-th particle 
i s  denoted by ma and the reduced masses a r e  denoted by 

The interaction potential U = xa ,, Ua, for the particles 
in the system i s  given by central pair potentials 
Uas(lra - rbl), where 

According to the general theory of many-channel scat- 
tering,? the expression for the T matrix of the process 
(1) in perturbation theory has the form 

The differential cross section for the process i s  given 
b Y 

us  to derive explicit expressions for the amplitudes for where p, is the momentum of the first  particle in the 
high energies under conditions when the changes in the c.m. system before the collision and &, with pi 
momenta of all the three particles participating in the = ~12,,p:/~2,,l, i s  the momentum of the compound par- 
collision a re  also large. On the basis of these expres- 

ticle (1 + 2). 
sions, we consider charge transfer to arbitrary ns and 
npm states during the collision of a "heavy" particle (a Of importance for the analysis below a re  the following 
proton, nucleus) of charge Ze with a hydrogen atom in limitations on the behavior of the Fourier transforms of 
the s state: the potentials a s  q - * and arbitrarily small E > 0: 
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3) does not contain a rapidly oscillating factor 
of the type sin(cygn) with n 3 1 .  Remembering the rela- 
tion 

and the general ideas about the character of the law 
governing the decrease of the Fourier transform a s  q 
--, we note that the indicated limitations 2) and 3) 
imply that the function U(l rl ), the even continuation 
into the region r <  0 of the function U(r) regarded a s  an 
analytic function of the variable r, has a singularity a t  
r=  0. It i s  precisely t h i .  singularity which determines 
the asymptotic form of U(q) a s  q --; in particular, the 
"weaker" the ~ingular i ty  of the function U(I r( ) is, the 
more rapidly U(q) decreases. The condition I), on the 
other hand, limits the nature of the singularity by the 
requirement that 

(c > 0 is arbitrarily small; for the function U= cy/? we 
have fi = 2nZ0/q). 

As i s  well known,8 for a particle in a central field 
satisfying the condition (5), the bound- state wave func- 
tion 

$.,,lm (11 =r'Ytm (rIr) R,,,, (r) (6 

possesses a s  r - 0 the properties Rn,,(0) = const * 0 and 
Rnr,(0) < Above we noted the prospective singular be- 
havior of the even continuation of the potential at the 
point r = 0. In this case the even continuation of the 
radial function RnT, also has a singularity a t  r=  0. It 
is, however, significant that the singularity of the func- 
tion R,,, i s  weaker than that of the potential U. This as- 
sertion is a direct consequence of the Schrodinger 
equation. In particular, if the singular part of U(r) has 
the form U "'(r)= r ~ r " , ~ )  then the singular part of the 
radial function i s  

2ma 
R:' (r) = 

(v+Z) (v+21+3) 
Rnv (0) rV+'. 

and vanishes a s  r -0, in contrast to Rn,,(0). 

For the subsequent calculations, i t  i s  convenient to 
write the spherical function in the form 

where cl...,, i s  symmetric in any two of the indices of 
the traceless tensor of rank I: ell...,, = 0. We shall also 
need the asymptotic forms of the wave functions in the 
momentum representation of the two-particle system, 
or, bearing in mind the general approach to the two- 
body problem, of one particle in an external field. This 
asymptotic form can be found a s  follows. Multiplying 
both sides of the ~ c h r o d i n ~ e r  equation 

by (2n)-312 exp(- ipr), and integrating over the coordi- 
nates, we effect the following transformation: 

i' 
=-- 

a a 
(2n) ,,* Ei...n -. . . - j eciP'U (r) Rnr I ( R )  d3r. 

apt a p ,  

As p - we can take out from under the integral sign 
Rn,,(r) a t  the point r=  0 (in so doing we nevertheless re- 
tain the most singular part of the integrand a t  the point 
r=  0, i.e., the part that determines the asymptotic 
form of the integral in question!). Using also the rela- 
tion 

and the fact that the tensor cl.. ., is traceless, we obtain 
the sought asymptotic form 

From (8) i t  follows that q(p) decreases more rapidly 
than U(p), which reflects the above-noted fact that the 
radial function behaves less  singularly than the potential 
a t  the point r = 0. 

Bearing in mind the above calculations, we can 
easily see that the result (8) can be generalized in an 
obvious manner to the case in which the points r = * a 
on the real  axis a r e  the only singular points of the even 
continuation of the potential (various kinds of model 
potentials with sharply marked boundaries or kinks): to 
do this we must replace Rn,,(0) in (8) by Rnr,(a). But 
despite the fact that the asymptotic forms in these 
cases a re  outwardly similar, they differ significantly 
from each other. This difference i s  due to the fact 
that, in the case of :he singular points r = * a # 0, the 
Fourier transform U (P) contains the rapidly oscillating 
factor sin(pa), whose presence gives r ise  to a situa- 
tion in which all t_he derivatives of o ( p )  decrease in the 
same fashion a s  U(p). Accordingly, the wave functions 
of states with different values of I also decrease in the 
same manner a s p  --. But in the case of the singular 
point r = 0 the higher the value of the angular momentum 
I is, the faster the wave function of the state with I de- 
creases. 

Let us make two other observations in regard to the 
notation. Below we shall often drop the quantum num- 
b e r s  n,, 1, and m of the states of the compound par- 
ticles, denoting the corresponding wave functions in 
the coordinate and momentum representations as  $,,,(r) 
and p,,,(p) respectively [the subscript 1 pertains to the 
compound particle (2 + 3); the subscript 2, to (1 + 2)]. 
Finally, we introduce the following notation for the 
combinations of the momenta p,,,: 

The analysis performed below presupposes the ful- 
fillment of the conditions 

where a is the characteristic range of the pair interac- 
tion potentials; -f,, g, and -& then actually determine 
the changes that occur in the momenta of the ls t ,  2nd, 
and 3rd particles respectively in the process (1). 

ASYMPTOTIC BEHAVIOR OF THE TERMS OF THE 
PERTURBATION-THEORY SERIES 

Before proceeding to derive the asymptotic expres- 
sions for the amplitude TI, of the process (I), let us 
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demonstrate the main idea of the calculation of such 
asymptotic forms with a simpler example. 

Let us  consider the asymptotic form, a s  q--, of the 
integral 

in the case in which the angular momentum has the 
value I,= 0 in the state 1 and an arbitrary value 1, in the 
state 2. In the integrand the functions pi,, a r e  local- 
ized in regions of dimension of the order of l / a  around 
the points A = 0 and A = q. Furthermore, the entire in- 
tegrand is localized in the indicated regions [here i t  is 
essential that p(q), like U(q), decrease more slowly 
than an exponential function; in the opposite case, e.g., 
when p , , a  exp(- aq2) the region of localization i s  com- 
pletely different]. Accordingly, 

[since, on account of (4) and (8), p(q) decreases faster 
than l/q3, the contribution of the res t  of the region A 
-q to the value of the integral (10) i s  asymptotically 
negligible in comparison with the contribution of the 
regions indicated in (ll)]. 

In the expression for I, in (11) we can drop the A in 
p:(q - A) [it is  then essential that p, like fi, satisfy 
the conditions (2) and (3) (see (4) and below)] and extend 
the integration over A to cover the entire space. We 
then obtaid 

The asymptotic form of I, in the I,= 0 case is derived 
in an entirely similar fashion. But we cannot thus pro- 
ceed when I, = I  +O [JI,,,(O) = 01. In this case we must 
f i rs t  expand p,(q- A) in powers of A right up to the 
terms of the I-th order in the A, inclusively: 

The first  I terms of the sum vanish, and the asymptotic 
form of (13) i s  given by the last  term (with n = I; the 
subsequent terms of the expansion in A give corrections 
to the asymptotic form). The vanishing of the first  I 
terms follows from the orthogonality of the spherical 
functions, since the n -th rank tensor A,.. . A, can be 
represented in the form of combinations of the spheri- 
cal functions Y,,,(A/A) (multipled by A n )  with I ' G ~  

1 -  1 and (p, (A) contains Y,,(A/A). To compute in (13) 
the integral corresponding to the term with n =  I, we 
proceed in the following manner. Let us take the 
(B/Bx,. . . B/Bx,)-type 1-th derivatives of both sides of 
the equality 

Taking (6) and (7) and the symmetry and tracelessness 
of E,. .. , into account, and letting r - 0 in the expression 
obtained after the differentiation, we find that 

- 
i' 

(II)R.,r(O)ec r ( m ) - T j  As . .  . Ar%,lm(A)$A. 
(2n)  

Accordingly, the asymptotic expression for I, assumes 
the form 

The sum of the expressions (12) and (14) with al- 
lowance for (8) completely determines the explicit 
asymptotic form of the integral (10): 

Let us  proceed to  derive the asymptotic expressions 
for the amplitude. In first  order perturbation theory 
T (1)- 1, - (f IU,, + U,, I i), the amplitude of the process is 
given by the relations 

The asymptotic form of the expression (15) i s  found 
directly with the aid of the formula (8), and has in the 
case I, = 0, 1, = 1 (which is the only one we shall con- 
sider below) the form 

where 

The asymptotic form of the expression (16) i s  found 
in much the same way a s  used to derive the integral 
(10) above. The integrand in (16) is localized in three 
regions of the space of the momenta A: 

and these regions, under the conditions (9), clearly do 
not overlap. Since p(p) decreases faster than f i ( p ) ,  i t  
is easy to understand that the contribution to the 
asymptotic form of the expression (16) from the third 
of the regions in (19) (where the potential i s  localized) 
is asymptotically negligible, and the asymptotic form 
of the expression is given by the contribution of only 
the first  and second regions in (19). Consequently, 
we can write 

(f lU,81i)=(jlu,31i)I+(flU181i)2 

[cf. (ll)]. The asymptotic form of (f 1 U,, 1 i), can then 
be found in much the same way a s  (12) was found, and 
has the form 

The asymptotic form of ( f l  U,,l i),, on the other hand, is 
computed in much the same way a s  expression (14): 

The described method of deriving asymptotic expres- 
sions can be directly applied in the computation of the 
asymptotic amplitude of the process (1) in second- 
order perturbation theory: 
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Let us show how this can be done for one of the terms 
in (22). For this purpose, let us write it in the mo- 
mentum representation (A = g - q, - q,): 

Arguments similar to those adduced in the analysis of 
the integrals (10) and (16) allow us to asser t  that the 
dominant role in the integral i s  played by the momen- 
tum regions I q,,,l S l/a. We can then negle_ct the de- 
pendence on q, of the expressions for U,,, U,,, and the 
energy denominator [in exactly the same way a s  was 
done in the derivation of (12)], and allow for the depen- 
dence on q, by expanding them in ser ies  in powers of 
q,, right up to the terms of the I-th order inclusive [as 
was done in the derivation of (14)]. After this, the in- 
tegration over q,,, is performed in exactly the same 
way a s  in the derivation of (12) and (14). Proceeding 
in this manner, we find that 

(23) 

The asymptotic forms of two other t e rms  from (22) 
can be derived in much the same way: 

~ < . , . ~ ( r n )  a1 
~flU2,(E-Ko+iO)-1U12ii) m - 7 U28(f2) 

(25) 
It is easy to see that the terms (23)-(25) of the ampli- 

tude of the second approximation a r e  of the same order 
of magnitude a s  the first-order perturbation-theory 
terms (17), (20)) and (21). The fourth term in (22), 

( f  1 U,,(E-Ho+ iO)-'U,s)i),  

which contains the same pair potential U13 on both oc- 
casions, i s  of completely different order of magnitude. 
An order-of-magnitude estimate shows that this term 
differs by the factor U,a/V (U, and a a r e  the charac- 
teristic magnitude and range of the potential and V i s  
the relative velocity of the colliding particles) from 
the magnitude of the (f 1 U13 1 i )  term of the amplitude of 
the first  approximation Thus, in the case U,a/V<< 1, 
which i s  the necessary condition of applicability of per- 
turbation theory to fast-particle scattering (see Ref. 8), 
this amplitude term is asymptotically unimportant, and 
can be  dropped. All the third-order perturbation- 
theory terms also have negligible asymptotic values, 
s o  that the asymptotic form of the amplitude is entirely 
determined by the considered first- and second-order 
perturbation-theory terms. 

ASYMPTOTIC BEHAVIOR OF THE CHARGE- 
TRANSFER AMPLITUDES AND CROSS SECTIONS 

In this section we compute the cross  sections for the 
charge transfer (2) on the basis of the obtained asymp- 
totic expressions for the amplitude of the process. (1). 

Here the compound particle (2+ 3) i s  a hydrogen atom 
(2 i s  an electron and 3 i s  a proton), while 1 is a heavy 
"elementary" particle (m, >> m,) of charge Ze, i.e., an 
atomic nucleus, in particular, a proton; the compound 
particle (1+ 2) i s  consequently a hydrogen-like atom. 
It i s  assumed in the calculations below that prior to the 
collision the hydrogen atom i s  in the n,s state. The 
state of the hydrogen-like atom after the collision i s  
fixed by the quantum numbers n, I, and m (n = n,+ l +  1); 
the quantization axis for the angular momentum compo- 
nent i s  chosen in the direction of the vector p,. 

For the process (2) we have 

Recognizing that m, a m  << m, -m, (m is the electron 
mass), we easily establish the following kinematic re- 
lations3 ': 

where q is that component of the vector & which is per- 
pendicular to pl p, and 8 is the angle between the vec- 
to r s  pl and R. The cross  section for the process can, 
according to (3), then be computed with the aid of the 
formula 

(in view of the rapid convergence, the upper integration 
limit can be taken to be equal to infinity). 

As i s  well known, the most complete analytical in- 
vestigation of the asymptotic behavior of charge-trans- 
fer cross  sections has been performed only in the Op 
penheimer-Brinkman-Kramers (OBK) approximation, 
which i s  based on the consideration of the amplitude of 
the process in first  order perturbation theory without 
allowance for the interaction of the nuclei with each 
other, i e., ToBK = (f 1 U12 ( i). The charge transfer cposs 
section in this approximation i s  given by the expression 

where V= mpa,/K~,, i s  the relative velocity of the col- 
liding particles in atomic units and a, i s  the Bohr radi- 
us. Notice that this result  i s  very easy to obtain if we 
take into account the fact that, according to (17) and 
(26), (27), the asymptotic form of the amplitude in the 
OBK approximation has the form 

- 4 (2i)' Zme'l! lpl (0) R$)* (0) Y:; ( f l l f l )  
ToBrc(nls+nlm) -- - npl+' [(rn12pls)~ + B ~ I ~ + " ~  

and in computing aOBK(nls -nl) with the aid of the formu- 
l a  (28) we use the relation 
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lY,,(n) Iz=(21+1)/4n. 
"I 

The "partial" cross  sections uo,,(nls - d m )  then sat- 
isfy a relation of the form 

q,BK(nl~+nlm) =g(l, r n ) ~ ~ & n , s - ) n l ) ,  (304 

where 

In particular, 

Before proceeding to compute the exact asymptotic 
expressions for the charge-transfer cross sections, let 
us  consider the energy dependence of the cross  sections 
in first-order perturbation theory. In this approxima- 
tion the asymptotic form of the amplitude is given by the 
sum of the expressions (17), (20), and (21), and the 
cross sections can be computed consistently for dif- 
ferent values of the quantum number I (and m)  of the 
atom in the final state. As for then  dependence of the 
cross sections, which is characteristic of the OBK ap- 
proximation, i t  is preserved in first  order perturbation 
theory, since i t  is entirely determined by the factor 
$,(O)R,!:"(O) in the asymptotic form of the amplitude. 
Thus, we have in f i rs t  order perturbation theory the 
relation 

where @(')(I, m, Z) does not depend on any of the quanti- 
ties n,, n, and V. 

In the case of zero orbital angular momentum of the 
atom in the final state, the amplitude of the process 
(2) has, according to (17), (20), and (21) with allowance 
for (26) and (27), the form 

(32) 
where 

(the OBK approximation corresponds to the neglect of 
the second term in the square brackets). A simple in- 
tegration in accordance with (28) yields 

where uo(V) = 218ra:/5V 12. In particular, for Z = 1 and 
n, = n = 1 (33) yields the well-known Jackson-Schiff re- 
sult9: 

In the case when the orbital angular momentum of the 
atom in the final state has the value I = 1 the asymptotic 
form of the amplitude in first  order perturbation theory 
has, according to the above-given formulas, the form 

[if we retain only the f i rs t  terms in the two expressions 
in the square brackets, then (34) reproduces the a s y m p  
totic form of the amplitude in the OBK approximation 
for 1=1].  

Let us note in connection with the computation of the 
cross  sections ~ ' ~ ' ( n , s  -npm) from the amplitude (34) 
that, i f  we write the amplitude in the form 

and take the specific form4' of ~ ( m )  into account, then 
we can, according to (28), easily arrive a t  the relations - 

o(nls-+npO) -i2n'pliip'j I F,(0) IZd0', 
0 

The integration yields [see (31)] 

a") (I, 0,Z) = 
10292-1050Z+105@ 979 

I5360 , a(') (I, *I, Z) = - 
1280 ' 

a(') (nls-tnp) = 
350-302+32' (37) 

512 Q B ~ ~ * ~ ~ ~ P ) .  

In particular, in the case Z = 1 we have 

a'') ( i ,  0, 1) m0.609, a") ( i ,  *l, 1) m0.765, 

~ ( ~ ) ( n ~ s + n p )  =0.631aoB~nls+np). 

Let us note that the cross  sections for charge trans- 
fer to excited states with n >> 1 and I = 0, 1, and 2 a re  
computed in Ref. 10. The n dependence of the cross  
sections ( ~ n - ~ ,  a s  in the OBK approximation) obtained 
in Ref. 10 i s  correct, but the numerical coefficient i s  
incorrectly determined. The asymptotic form of the 
term (f 1 U,, I i )  (in our notation) i s  computed without 
allowance for the fact that the dominant role in the ma- 
trix element is played by two regions of momentum 
space [see (20) and (21)1, the contribution (fl U131i), of 
only one of them being computed. 

Let us proceed to compute the exact asymptotic ex- 
pressions for the charge transfer cross  sections. The 
asymptotic form of the amplitude i s  given in this case 
by the sum of the first  and second order perturbation 
theory terms (17), (20), (21) and (23), (24), (25). 

In the case of charge transfer to s states we find from 
the indicated formulas that 

(38) 
This expression a s  a function of 8 has a pole a t  the point 
go= 31'2m/2p13, and i s  clearly incorrect in the region of 
angles close to 8,. The divergence of the amplitude a s  
8- 8, occurs a s  a result of the use of the asymptotic ex- 
pression (24), and i s  due to the vanishing of the energy 
denominator 

It should, however, be remembered that (39) represents 
only the asymptotically leading ("V2) term in the energy 
denominator, against whose background we could, gen- 
erally speaking, neglect the remaining lower order- 
in V-terms, and i t  is precisely this circumstance that 
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led to the simple asymptotic form. But for angles close 
to 8, these terms in the energy denominator a r e  no 
longer negligible. In this region of angles the expres- 
sion (24) can be written in the form 

(we have retained in the energy denominator the terms 
of the order of V2 and V). Taking into account the fact 
that q , ,  - l / a  and f,,, 5 mp/p,,, we see that the angle 
region where we cannot use the asymptotic expression 
(24) for (40) is limited by the condition I 6 - 0, I S l/ap, 
i.e., this region narrows down a s p  increases. It is 
apparently impossible to obtain an explicit expression 
for the asymptotic form of (40) in the indicated range 
of scattering angles. But, a s  will be  shown below, we 
can compute the contribution from this range of scat- 
tering angles to the cross  section in i t s  explicit form 
without f irst  computing the amplitude. 

Let us write, in accordance with (28), the cross sec- 
tion for the process in the form 

(we have made the change of variable z = 4p:,82/m2). 
The integration range has been divided into three, with 
z,,, =z,(l r c), where z, = 3 and E i s  an arbitrary quan- 
tity satisfying only the conditions l/V<< E << 1 (E does 
not enter into the final answer). The computation of 
the contribution to the cross  section of the regions 0 

z << z,  and z 3 z, [the first  and third terms in (41)], in 
which the asymptotic expression (38) obtained above for 
the amplitude i s  valid, offers no difficulty: a simple 
integration yields 

l2 436+15 1n 3+20/e 
o i + o ~ ~ 2 ' a n 3 8 m 4 e 8 ~ ( 0 ) * ( 0 )  ~'(s) , . (42) 

As for the contribution of the region of angles z, z 
z,, i t  can be computed in the following manner. Let 

us  note first  that the dominant term in the amplitude in 
this region in (40), which determines the asymptotic 
form of the amplitude, so  that 

- 
where f,,, = 8 1 ~ . , ~ ~ f , , d r n ~ p ~ .  The vectors ?,,,, like the 
f,,,, depend on 8, but we can neglect this dependence in 
(43), and take them at B =  8,; then If,,,l f 161 = 8pI3/mp. 

To evaluate (43), we write T* in the expression I TI  
= TT* in the form of integrals over q:,,, s imilar to the 
integrals for T, and first  perform the integration over 
Z: 

3s 
dZ I ( - -  

-2. ~ + f , ~ , + ~ ~ q , + i ~ )  (t"+j,q,'<fzq,'-io) 

[we have taken jnto account in (44) the fact that q,,, 

- l /a ,  so  that (Q),,, 5 8p,,/mpn << 3c 1. Using (44), we 
easily transform the expression (43) into the form 

It is convenient to write, using the relation 

(a i s  a rea l  quantity), the integral term in the curly 
brackets of the expression (45) in the coordinate repre- 
sentation: 

Bearing in mind the above-performed transformations, 
we easily find u2 and, with it, the cross  section for the 
process: 

[we have taken into account the fact that (436+ 151n 3)/ 
3 -  2' ~0.2951, where 

In particular, for n, = 1 we have 

Let also give the values of a,,(n, Z) for the case Z = 1, 
n ,= l :  

a,.=l, a,.=26/27, a3.=245/256, a..=0.953 for n>l (48a) 

(in computing a,, with n >> 1 we used for the wave func- 
tion of the ns state of the hydrogen atom the well-known 
expression for the wave function of the s state with 
energy E = 0 in the Coulomb fields). 

In the case Z = 1, n = n, = 1 (47) and (48) yield Drisko's 
well-known 

The results  obtained show that ~ ( l s  -ns) crnv virtually 
for all values of n, and not only for n -rn. 

Notice that, in the expression (47), because of the nu- 
merical smallness of the coefficient 5n/212=0.004, the 
term 0~ V-I, (let us recall that u0cc V-12) ,  which predorn- 
inates for V--, actually plays the role of a correction 
to the term a: V-I' at the values of V c 40, for which i t  
still makes sense to use the nonrelativistic approxima- 
tion. 

In the case of charge transfer to the j~ states the am- 
plitude of the process has, according to (34) and 
(23)-(25), the form 

(49) 
where z =4m2@/p.;,; this expression, like (38) in the 
case 1 = 0, i s  inapplicable when z - 3. 

The computation of the charge-transfer cross sections 
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o(n,s -npm) with the aid of the formulas (35) and (36) 
can be performed in much the same way as  was done 
above in the 1 = 0  case [this computation i s  more tedious, 
since, for 1 +0, we cannot, in computing a, in the ex- 
pression for T, neglect the dependence of f,,, on the 
scattering angle and limit ourselves to the consideration 
of only the most singular terms in the expression (43); 
a simpler method of computing the cross sections will 
be  indicated below]. Let us give the final results: 

where 

27 " $,!:! ( r )  R::' ( r )  ' 
- p ( n l , z ) = y ~  2ao , $1 gy,', (O)RFd ( 0 )  I dr, 

and the values of the corresponding cross sections in the 
OBK approximation a r e  given by the expressions (29) 
and (30). 

The quantity a,,(n,, Z), a s  in the 1 = 0 case, depends 
weakly on n. Let us give its values for Z = 1, n, = 1: 

The expressions obtained above for the charge-trans- 
fer cross sections contain terms of different orders in 
V. Since the perturbation theory parameter in the Cou- 
lomb field i s  Z/V, and the above-performed analysis i s  
based on the consideration of only the asymptotically 
leading terms in the amplitude, such a form of the ex- 
pressions needs, a s  does the question of their accuracy, 
to be elucidated. With this aim in view, let us discuss 
the dependence of the differential cross section for the 
process on the scattering angle. For definiteness, let us 
limit ourselves to the case 1 = 1, m = 0. Figure 1 shows 
the qualitative dependence of the quantity V14do/dhl on 
the scattering angle. The dashed curve corresponds to 
the case V-m, and was computed in accordance with 
the expression (49) for the amplitude. A s  noted above, 
for finite values of V>> 1 the divergent expression (49) 
is inapplicable when z - 3: the true differential cross 
section is finite in this region of angles, and i s  depicted 
by the continuous curve. The dotted curve corresponds 
to some other V value higher than the value to which the 
continuous curve corresponds (all the curves differ only 
in the neighborhood of the point z,= 3). 

FIG. 1. Differential cross section for the 1s- np0 charge 
transfer (in relative units); z =4rn282/pf3. 

The cross section for the process can be represented 
in accordance with Fig. 1 in the form of a sum of three 
terms: 

where the values of the 6 correspond to the cross sec- 
tions for scattering a t  angles in the regions 1, 2, and 3. 
The energy dependence of these quantities has the form 

It should be emphasized that the second peak in the dif- 
ferential cross section-in the vicinity of the point z, 
= 3-is distinctly separated from the first: the contribu- 
tion to the cross section from the region between these 
peaks is small (as is the contribution to the cross  sec- 
tion from the region z > 4: 5, >> C3). This remark ap- 
plies also to the differential cross sections for the pro- 
cesses with other quantum numbers. 

Thus, the retention of two terms of different orders 
in V in the asymptotic expressions for the charge-trans- 
fer cross sections corresponds to making separate al- 
lowances for two scattering-angle regions in the total 
cross section, and, if we bear in mind the accuracy of 
such expressions, then they should be written in the 
form 

the validity of the allowance for the term aV-12-2' re-  
sulting from the numerical smallness of the ratio a,/a, 
<< 1. 

We can, bearing in mind the relations (52) and (53), 
propose a simpler method of computing the cross sec- 
tion, in which we do not need, as  we did above, to 
"join" the contributions of the terms (a, + 0,) and a, to 
the cross section. For this purpose, let  us note that 
the magnitudes of the cross sections 5, and 6, can be 
computed directly from the expressions obtained for 
the asymptotic form of the amplitude, while for the 
computation of % we can use the relation 

which describes the asymptotically dominant (m V-") 
term in the charge-transfer cross section [this expres- 
sion follows directly from the formulas (43), (45), and 
(46); the result (54) i s  obtained by a different method in 
Ref. 111. This less laborious method of computing the 
cross section leads to practically the same results a s  
above: the difference consists in a change in the first  
numerical terms in the brackets in the expressions 
(47), (50) for the cross sections by amounts equal re- 
spectively to 0.315, 0.202, 0.635, and 0.264 (the 
limited indeterminacy in the values of these terms lies 
within the limits of the e r ro rs  in the computed expres- 
sions for the cross sections). 

The values of the quantities a,,,,,,, in (53) a r e  com- 
pletely determined by the f i rs t  two terms of the per- 
turbation theory series, whereas the "correction" 
terms in the square brackets in (53) change, when we 
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go over to higher orders, in accordance with the fact 
that the parameter of the perturbation theory i s  1/V. 
The neglect of this fact can lead to a misunderstanding. 
In particular, i t  follows from (53) that 

o(ls+ls) =all'-"+[a,+a,O(l) ]V-'2 .  

According to the foregoing, the third-order perturba- 
tion theory term ( X  V-12) in this expression should differ 
somewhat from the second-order perturbation theory 
result (the difference should be small in accorda'nce 
with the smallness of a2/al << 1; allowance for the 
fourth-order terms should, however, not change the 
result). Such a change in the coefficient has been found 
by Shakeshaft''; i t  corresponds to the replacement of 
the number 0.295 in the formula (47) for the case of 
the 1s - 1s charge transfer by 0.319. But this natural 
circumstance is sometimes interpreted incorrectly a s  
an indication of the divergence of the perturbation 
theory ser ies  for reconstructive collision processes 
(see Ref. 1, a s  well a s  Ref. 13, where the question of 
the convergence of the perturbation theory ser ies  at 
high energies is discussed). 

The computation of the cross  sections for charge 
transfer to states with higher angular momenta can be 
performed in much the same way a s  the cross  sections 
for charge transfer to the p states were computed 
above. But we shall, in conclusion, limit ourselves to 
making the following remark. Comparison of the re- 
sults obtained for the cross sections for charge trans- 
fer to the states with 1 = 0 and 2 = 1 with the OBK approx- 
imation shows that the magnitudes of the terms aV-""' 
in the exact asymptotic expressions (47), (50) a r e  2-5 
times smaller than the magnitudes of the corresponding 
cross sections in the OBK approximation. At the same 
time, the exact asymptotic expressions contain "addi- 
tional" terms a V-11, which increase the cross  sec- 
tions. In view of the slower decrease of these terms, 
their relative role increases with increasing velocity. 
The ratio of the magnitude of the term a V-" to the 
term a V'12-2' i s  equal to 1.3 x 10-ZV in the case 1 = 0 and 
3.3 x 10-4V3 for 1 = 1 (the indicated quantity pertains to 
the total cross  section for the 1s -np charge transfer). 
Thus, in the case 1 = 1 the term a V'll in the cross  sec- 
tion i s  more important, i t s  contribution constituting 
one half of the magnitude of the total cross  section even 
a t  V= 14. Further, in the case of charge transfer into 
states with 1 = 2 the contribution, computed in accord- 
ance with (54), of the term a V'll to the total cross  sec- 
tion u(ls -nd) for n = 3 i s  equal to 

and i ts  ratio to the analogous cross  section in the OBK 
approximation is equal to 3.7 x 10'8V5. For V= 20 this 
ratio is equal to = 12. Therefore, we can, bearing in 
mind the exact results  for 1 = 0,1, expect that, for V 
2 20, the magnitude of the cross  section for charge- 
transfer processes with 12- 2 will be given by the term 
a V-11, which can be  computed with the aid of the formu- 
l a  (54) without any difficulty. 

' ) B ~  LLelementary79 particles we mean particles whose inter- 
action with each other is specified by pair potentials; in this 
sense the nuclei in atomic collisions can be regarded as 
"elementary" particles. 

2 ) v >  -2 is not an even number; the nonsingular part is an ex- 
pansion in integer powers of r2. 

3 ) ~ o r  the process (2) the amplitude has a sharp peak (actually 
there are two of them) in the small-angle region 6 5  m/p  
<< 1. It is precisely this scattering-angle region that is con- 
sidered in the paper. Then in the case when the particle 1, 
like the particle 3, is a proton, the exchange part of the 
scattering amplitude is negligibly small. 

4 ) ~ ( ~ )  =: (O,O ,i(3/47r)'/') and &@I) = (ri(3/8*)'/', (3/8~) ' /~,  0); the 
phase factor of Y,,(n) has been chosen as in Ref. 8. 
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