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The energy levels on the top of the potential bamer are considered for a hydrogen atom located in an electric 
field. The critical field intensity, the level energy position, and the level width are calculated in the 
quasiclassical approximation. 
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(1.6) 
The energy levels of a hydrogen atom in an electric 

field, which lie exactly on the top of the potential bar- 
rier,  and which can be called top levels (see, e.g., Ref. 2. TOP LEVEL 
1 and the references therein), have attracted much at- 
tention recently. In this article these levels a r e  con- The top level correspondsZ to z, = 1. In this case v/n 
sidered on the basis of a quasiclassical approximation and T become functions of a single quantity S and a r e  
in the parametric form developed in Ref. 2. We con- expressed in parametric form in terms of 2,. Recog- 
fine ourselves to zero projection of the angular mo- nizing that F(-8, 8, 2 , l )  = 8/3n, we obtain from (1.4) 
mentum on the field direction, m = 0. an equation for z, in terms of the given S: 

We use the atomic system of units. We introduce the 
effective quantum number v connected with the electron 
energy E by the relation 

and denote by n the principal quantum number into 
which v goes over when the field intensity vanishes. 
As shown in Ref. 2, the ratio v/n is  a universal func- 
tion of two quantities: 

where n, and n, a re  parabolic quantum number, and in 
our case (m = 0) n =n, +n, + 1. The quantity S has a sim- 
ple physical meaning: it describes the well-known 
asymmetry of the distribution of the charge of the ex- 
cited atom (in the absence of the field) which takes 
place at  n, # n, (Ref. 3). 

The use of the quasiclassical approximation pre- 
supposes that n,,, >> 1, and we put therefore approxi- 
mately n = n, + n,. 

In this approximation we have 

The dependence of v/n on S and T i s  expressed with 
the aid of two parameters, z, and z,, which range from 
0 to 1. They a r e  determined from a system of equa- 
tions, which we represent in the form 

As seen from (2.1), positive S that a r e  close to 1 cor- 
respond to values of z, likewise close to 1, while nega- 
tive S close to -1 correspond to small z, close to zero. 

Equation (1.5) for T takes at  z, = 1 the form 

Finally, Eq. (1.6) takes at  z, = 1 the form 

In the limiting cases of small n,/n or small n,/n we 
can obtain in explicit form approximate equations for 
z, in terms of n,/n and for 1 - z, in terms of n,/n, re- 
spectively. At small n,/n it suffices to retain in the 
left-hand side of (2.1) the factor z,, put z, = 0 in the 
remaining term, and replace (1 + S)/(1 - S) in the right- 
hand side by n,/n. We obtain 

At small n,/n we expand in the left-hand side the 
hypergeometric function in powers of 1 - z,, retaining 
terms not higher than linear. 

In the right-hand side we replace (1 +S)/(l  -S) by n/ 
n,. Using the known expression for the derivative of 
the hypergeometric function, we get 

where F is  a hypergeometric function. An approximate solution of this equation with respect 
By obtaining z, and z, from the given S and T, we de- to 1 - z,, in which account i s  taken of the leading term 

termine v/n from the relation and of the most significant correction for it, i s  
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where 

The hypergeometric functions contained in a, and a, can 
be expressed in terms of gamma functions by using 
Eqs. (15.3.3), (15.1.21), and (15.1.22) of the Abramovitz 
and Stegun handb~ok .~  The gamma functions in Eqs. 
(15.1.21) and (15.1.22) can in turn be expressed, using 
known relations, in terms of r(1/4) and r(3/4). With- 
out dwelling on these elementary operations, we pre- 
sent the final expressions for the coefficients a, and a,: 

Equation (2.5) i s  valid a t  ~ , ( n , / n ) ~ ' ~  << 1 or n,/n<< 0.4. 
With the aid of (2.4) and (2.5) we can now use (2.2) and 
(2.3) to calculate T and v/n for both limiting cases. 

Small nl/n. We consider f i rs t  the quantity T defined 
by expression (2.2). 

To first  order of smallness in z, we have 

which equals, according to (2.4), 

Representing 1 - S in the form 2(1- nl/n) and calculating 
(1 -S)-4 we obtain, accurate to terms of f irst  order in 
n1/n, 
T=b,(l+ b,n,ln) ; b,=(8/3n)'=0.519.. . , b,=4-16/lyn=0.398.. . 

(2.8) 
We turn now to the quantity v/n defined by (2.3). We put 
in the first  term zl = 0, since 1 + S  i s  proportional to 
n,/n and i s  small by assumption. 

We then obtain 

2. Small n,/n. Substituting in (2.2) the approximate 
expression (2.5) for 1 - z, and replacing 1 +z,  by 2 and 
1 - S by 2n,/n, we obtain 

Turning to Eq. (2.3) for v/n, we note that the second 
term can be discarded, since i t  contributes only in the 
corrections of higher order of smallness than included 
in this case. As for the first  term, it i s  convenient to 
consider i ts  reciprocal, i.e., n/v. Expanding the hyper- 
geometric function in powers of 1 - z, and proceeding in 
a manner similar to that above, we obtain 

3. LEVEL WIDTH 

The level width r i s  defined in terms of the imaginary 
part of the complex zero  of the Jost  functionzp5 and can 
be represented in accord with Ref. 2 in the form 

Expressions for K(z,) and h(zz) a r e  given in Ref. 2." 

For a level far from the top of the barrier,  expression 
(3.1) coincides with the asymptotic Damburg-Kolosov 
formula6 a t  large quantum numbers, i f  their factorials 
a r e  expressed by using Stirling's formula. 

In the case of a level close to the top of the barrier,  
expression (3.1) agrees with the exact solution of the 
standard problem for a parabolic barrier. 

For the boundary level zz = 1 it  follows from the equa- 
tions of Ref. 2 that 

where 

and J, is the logarithmic derivative of the gamma func- 
tion. Recognizing that 

we have 

r= 1/2v3 (5+ln n,) . (3.4) 

We note also that i t  follows from (3.4) that 

4. COMPARISON WITH THE RESULTSOF REF. 4 .  

We compare now our present results  with the corre- 
sponding equations of Ref. 1. It must be recognized 
here that our n, i s  designated n, in Ref. 1, and our n, 
by n1. 

1. Kadomtsev and Smirnovl calculated a quantity I n 4  
equal to ~ / 4 .  When this is  taken into account, our Eq. 
(2.8) agrees fully with the results  of Ref. 1. Our Eq. 
(2.10) differs from the corresponding result of Ref. 1 
in that it contains the factor 

[l-a, (n2/n)  "'1 

2. In Ref. 1 they calculated the quantity En2, i.e., 
(1/2)(n/v)' in our notation. A comparison of the results  
shows that their Eq. (lob) contains an obvious misprint, 
viz., 27 in place of 26. Equation (11 b) of Ref. 1 does 
not contain the factor 

which follows from our Eq. (2.11). In addition, the co- 
efficient 

'ir 

;[.(;)/ 3 ~ r  ($)I 
contained in Eq. ( l l b )  of Ref. 1 does not agree with the 
indicated numerical value 1.48. Comparison with our 
Eq. (2.11) shows that the literal expression for this 
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coefficient i s  incorrect, but the numerical value i s  
correct  and agrees with that following from our Eq. 
(2.11). 

3. The lifetime calculated in Ref. 1 is 7 = l/r. For 
the top level, according to Eq. (2.1) of Ref. 1, we have 
in our notation 

whereas our Eq. (3.4) yields 

~=2v'(5+ln n,). 

In the particular case n, << n the result of Ref. 1 can be 
reduced to the form 

Our equation can be reduced to the same form. The 
constants, however, differ substantially. 

It follows from Ref. 1 that A = 0.857, B = 3.27, whereas 
our values a r e  A = 5, B = 1.156. It i s  possible that the 
discrepancy is due to the fact that the calculation in 
Ref. 1 i s  with logarithmic accuracy, and in addition, 
cannot be matched to the asymptotic formula of Ref. 6 

in the region where the latter is valid 

I am grateful to M. B. Kadomtsev for a helpful discus- 
s i on. 

')we call attention to the following misprints in Ref. 2: A fac- 
tor 1/8 was left out from the term z (1 +z 2) in Eqs. (5 -4) and 
(5.7). The value 6 in expression (5.13) for h(1) should be re-  
placed by 81n2-4/3. A factor * was left out of the expression 
for the mean distance between the levels. 

'M. B. Kadomtsev and B. M. Smirnov, Zh. Eksp. Teor. Fiz. SO, 
1715 (1981) [Sov. Phys. JETP 53,885 (1981)l. 

2 ~ .  F. Drukarev, ibid. 75,473 0978) [48,237 (1978)l. 
3 ~ .  D. Landau and E. M. Lifshitz, Quantum Mechanics, Non- 

relativistic Theory, Pergamon, 1978, Chap. 5, 037. 
4 ~ .  Abramovitz and I. A. Stegun, Handbook of Mathematical 

Functions, Dover, 1964, Chap. 15. 
5 ~ .  Drukarev, N. Framan, and P. 0. FrSman, J. Phys. A12, 

1 7 1  (1979). 
6 ~ .  Damburg and V. Kolosov, J. Phys. B12, 2673 (1979); B11, 

1921 (1978). 

Translated by J. G. ~ d a s h k o  

808 Sov. Phys. JETP 55(5), May 1982 G. F. Drukarev 808 


