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The dynamics of nonlinear electromagnetic waves in a magnetized vacuum are investigated. Equations are 
obtained for interacting differently polarized weakly linear fields. The solutions are obtained in the form of 
plane waves of TE polaxization with an electric-field vector perpendicular to the propagation direction and to 
the stationary magnetic field. It is shown that long TE waves, whose dispersion can be neglected, evolve with 
formation of discontinuities. The structure of the front of a TE shock wave of low intensity is determined by 
the weak high-frequency dispersion and is oscillatory. 

PACS numbers: 41.10.H~ 

I. INTRODUCTION from the exact synchronism (1.1). It is precisely in 

In strong field comparable with B, =m2c3/& (e  and m 
a r e  thecharge and mass of the electron), the nonlinearity 
of the electrodynamics equations in vacuum becomes 
significant. In particular, the magnetic field influences 
the propagation of the electromagnetic radiation1: the 
vacuum becomes a birefringent and absorbing medium 
(the latter because of production of electron-positron 
pairs by y quanta of energy hw > 2mc2). In the case of 
propagation a t  an angle O #  0 to the uniform magnetic 
field Bo there exist two normal waves (modes) with 
high-frequency dispersion. At low frequencies (Ew 
<< mc?B,/IBo 1) there is no dispersion; the phase velocity 
of each of the waves, being smaller than the velocity 
of light c, coincides with the group velocity.' The po- 
larization of the normal waves is linear. In a TE wave 
((1 polarization in the terminology of Refs. 1 and 2) the 
electric field is perpendicular to the plane containing the 
wave vector k and the vector Bo. In a TM mode (I po- 
larization), the perturbation of the magnetic field is 
perpendicular to the indicated plane. 

It should be noted that the phase velocity of a TE mode 
exceeds the corresponding value for a 'I'M mode. This 
makes possible a parametric decay y,, - yT,+yT,, which 
in this case is the only allowed three-wave interaction.' 
For this decay it is possible to sati9fy exactly the photon 
energy and momentum conservation laws o r ,  in differ- 
ent language, the synchronism conditions of the interac- 
ting quasimonochromatic waves: 

Here w,, kl and w, ,3, Ir, are  the frequencies and wave 
vectors of the TE and TM waves, respectively. 

If the weak dispersion a t  frequencies w << m 2 ~ , / K  (BoI 
is neglected, the conservation laws (1.1) can be satis- 
fied also for a nonlinear interaction of collinear waves 
of one type (e.g., y,,- yT,+yTe), This leads to self- 
action of waves of finite amplitude, due to successive 
generation of harmonics, and consequently also to a 
change of the wave profile. Under certain conditions 
such an evolution leads to formation of stationary waves, 
in which the nonlinear deformation of the profile is off- 
se t  by its dispersion spreading. The described evolu- 
tion is possible for finite-amplitude waves under the 
condition that the nonlinear interaction is faster than 
the phase shift of the interacting waves due to deviation 

this case that effective interaction becomes possible 
between those harmonics for which, strictly speaking, 
the synchronism conditions (1.1) cannot be satisfied 
because of dispersion. 

We investigate in this article the dynamics of non- 
linear electromagnetic waves in a magnetized vacuum. 
We obtain equations that describe, in first-order in the 
nonlinearity (in the small amplitude of the field oscil- 
lations), interacting TE and a TM waves propagating 
in a narrow solid angle. One-dimensional solutions of 
these equations a re  obtained in the form of simple TE 
waves1) that evolve with formation of discontinuities. 
The boundary conditions on the TE discontinuity and the 
structure of the front of low-intensity TE shock waves 
a re  considered. 

2. EQUATIONS OF WEAKLY NONLINEAR WAVES 

An electromagnetic field in a vacuum, with account 
taken of the radiative corrections, is characterized by 
a Lagrangian density1 L = Lo + L,, in which 

Here @ and b are  the intensities of the electric and 
magnetic fields, 

In Eqs. (2.1) and (2.2) and hereafter we use a system of 
units in which ti = c = 1. We introduce the dimensionless 
fields 

E-QIB., B=B/B.. ( 2 .3 )  

Expanding the correction L, to the Lagrangian density 
in powers of a and b we obtain for weak fields ( IE I<< 1, 
I B I<< I), accurate to IE 1 - I Ble, the expression 

aB.' 26 4 L~ =- [(E'-B')'+? (EB)'+ -?-(E'-Bz) (EB)' + T ( E z - B 2 ) s  . 
360x' 1 

(2.4) 
where a = 1/137 is the fine-structure constant. 
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The equations of the field in vacuum a r e  of the form1 

div B=O, div ( E f 4 n P )  =0,  

d 
rot ~ = - d B / a t ,  rot(B-4nM)= -(E+4nP),  

at (2.5) 
where the polarization P = B L ' ~  L , / ~ E  and the magnetiza- 
tion M = iYc-'a L , / ~ B .  Fo r  weak fields we have f rom (2.4) 

We consider hereafter weakly nonlinear waves pro- 
pagating against the background of a stationary uniform 
magnetic field Bo = ( B o x ,  &,, 0). We can then retain in P 
and M only the nonlinear t e rms  that a r e  quadratic in the 
amplitude, since the higher-order t e rms  give smal l  (or 
slowly increasing) corrections to the expressions that 
describe the strongest nonlinear effects (parametric de- 
cay and harmonic generation). 

The coefficients in the linear t e rms  will be obtained 
in the f i r s t  nonvanishing approximation in the param- 
e ters  CY << 1,  IBo I<< 1. We note that in the linear approx- 
imation the correction to the phase velocity of the 
waves is  of the order  of CY IB0)'<< 1. The nonlinear cor-  
rection to the phase velocity, on the other hand, will be 
shown below to be of the order  a, 1 Bo I 1 B I , where B is  
the perturbation of the magnetic field. 

Taking into account the possibility of the decay of a 
TE wave into TM waves that t ravel  a t  a smal l  angle to 
it, we shall  assume also that the wave field comprises a 
beam of waves propagating a t  smal l  angles (-alr2 1 Bo 1 ) 
to the x axis. According to Ref. 1 we can use in this 
case,  when calculating the values of P and M that enter  
in the equations of the field with the smal l  parameter  
cr /%I2,  a collinear approximation within the framework 
of which a lay = 8/82 = 0. In addition, it is necessary to 
put in this approximation 

These relations follow from the field equations (2.5) if 
we neglect in them the t e rms  5 (yl" (Bo  1 .  

From Eqs. (2.5) we easily obtain 

AB-aZBIdt2=4n(AM-V ( V M )  -rot ( a P / d t ) } .  

Introducing the operator i of linearization in t e r m s  of 
the amplitude of the perturbation of the field I B I - I E I 
and the operator & that leaves only t e rms  quadratic in 
the amplitude, we obtain fo r  the components of the 
perturbation of the magnetic field B the following equa- 
tions: 

d z ~ , / ~ x 2 - a z ~ , / d t 2 + ~ I ~ B - 4 n ~ ( d ' ~ , l ~ z 2 - d z ~ , l ~ x  d t )  

(2.9) 

where h,=a2/ay2 +a2/az2. From (2.6), taking (2.7) into 

account, we easily find that 
a 

l3  B:) B :  ( i  -+.:)I E., ~ P . = - [ B . : ( ~ -  
90n' 

a 6 LP. = [-8.' + B ) ]  E.. 
90n 

a 6 24 i~~ = - [ B ~ Z ( I  - - B ~ Z )  + B ~ : ( Z  -T~:)] B., 
90n2 7 

a 6 
i M Z  = , [B: - - B.' ] B.; 

- 90n 7 

(2.11) 

i z ~ z = ~ [ ( ~ - - ~ o z  ": B.B.+ 4 - - - B . ~  E.E. 1 . 
In the linear approximation we have from (2.8) and (2.91, 
f o r  waves propagating along the x axis, accurate to 
I ( Y B ~  I 4, 

2a  7 13 dZB, 
+ - B W ' ( ~ - ~ B O ' ) ] ~ = O ,  45n (2.12) 

2a  24 

(2.13) 

From this we easily obtain, with the s ame  accuracy, 
the phase velocities of the TE and TM waves (cf. ~ e f .  1): 

2 a  12 
V ~ ~ = I - - B ~ : ( I -  45n j ~ 2 ) ,  (2.14) 

7 a  26 
v r X = l  - - B ~ :  90n ( i  - = B ~ S ) .  (2.15) 

We consider now waves that t ravel  a t  smal l  angles to 
the x axis in the positive direction. We seek  a weakly 
nonlinear solution close to a superposition of linear 
waves whose shape var ies  slowly as a result  of the non- 
l inear effects. Introducing the "running" coordinate 
5 = x - t and recognizing that 

Urn= (VTE-I )  -aB2, U,M= (VTM-I)  -aBoZ, (2.16) 

we put a2/8t2 = a2/at2 - 2a2/a(at in the linear t e rms  of 
the left-hand s ides  of (2.8) and (2.9), and 8/8t = 4 / 8 5  
in the nonlinear t e rms  of the right-hand sides,  ac-  
cura te  to aB:. Next, taking (2.7) into account, we put, 
with the s a m e  accuracy, 

E,=B,, E,=-B, (2.17) 

fo r  the calculation of the nonlinear terms.  As a result  
we obtain from (2.8) and (2.9) 

a I az - dE (% + U T E S )  + ArBu=2n - N2(MrPz) aE a E2 
- 2a  a2 13 
- - ( 1 2 ~ :  +-B=Z , 5~ asZ  2 ) (2.18) 

a2 - 
A,B,=2n - N2 (M,+P,) 

dl' 
26a 0' 

=-- Bova7(BvBZ). 
315n dE (2.19) 

These equations describe,  in the collinear approxima- 
tion, nonlinearly interacting waves those spatial spec- 
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trum is concentrated in a narrow cone near the positive 
x axis. 

No really complete investigation of the three-dimen- 
sional system of nonlinear partial differential equations 
(2.18) and (2.19) is possible. We confine ourselves 
therefore to a study of particular solutions correspond- 
ing to one-dimensional waves in which a/ay =a/az =O. 
In this case we obtain nonlinearly coupled TE and TM 
waves traveling along the x axis. Since their phase 
velocities a re  different, no synchronism or  effective 
interaction between waves of different polarization is 
possible. As for self-action of the waves, according to 
(2.19) there is no intrinsic nonlinearity for the TM 
mode, since Eq. (2.19) becomes linear a t  By=O. On the 
contrary, self action is possible for TE waves in which 
B,=O. In this case Eq. (2.19) is satisfied automatically, 
s o  that a solution in the form of TE waves is realized 

, if B, = O  in the initial (boundary) conditions. 

3. PLANE TE WAVES 

We consider a nonlinear TE wave traveling along the 
x axis. Putting B, = O  in (2.18) and introducing the co- 
ordinate x =[ - y,t, we obtain an equation for a simple 
TE wave: 

The solution of this equation is of the form4 

where f(z) is an arbitrary function determined by the 
initial condition. The smooth initial profile of the 
field By becomes distorted in the course of time, since 
the profile points with large By move more rapidly. 
The result is a discontinuity-a jump in the magnitude 
and direction of the magnetic field (see Fig. 1). 

The velocity of such a TE discontinuity is 

where By- and By+ a re  the values of the field behind 
and ahead of the discontinuity. 

We note that whereas the field perturbation ahead of 
the discontinuity is By+=O, i.e., there exists only a uni- 
form magnetic field Bo, behind the discontinuity there 

X 

FIG. 1. TE shock wave. 

appears both a magnetic field Bo +B and a perpendicu- 
larly directed electric field E, the value of which is 
determined from (2.17). Such a field configuration 
ensures an increased energy density of the field behind 
the discontinuity: to produce this density we need a 
constant energy flux determined by a nonzero Poynting 
vector. 

The increase in the slope of the TE wave leads to a 
redistribution of the energy over the spectrum in the 
direction of the higher harmonics. For harmonics with 
sufficiently large wave numbers it is necessary to 
take into account the dispersion (the dependence of 
the phase velocity on the frequency). The refractive 
index for the TE wave can be represented as an expan- 
sion in powers of the small parameter w~,,/2m (Ref. 2): 

At a sufficiently large characteristic scale of the field 
perturbations, such that the following inequality is 
satisfied 

the wave dissipation, determined by the production of 
electron-positron pairs, is  exponentially small. At the 
same time, under the condition (3.5) one can neglect 
also the higher-order terms of the ser ies  (3.4) and 
represent the dispersion dependence w ( $ )  in the form 

The equation (3.1) of the simple wave can be easily 
modified to take into account the weak high-frequency 
dispersion d3w/dk3,+0: 

Relation (3.6) is the Korteweg-de Vries equation, whose 
solutions have been thoroughly in~es t iga ted .~  I t  is 
known, in particular, that an arbitrary initial pulse 
By(%, t =0) decays in accord with (3.6) into a finite 
number of isolated stationary waves (solitons). The 
latter take. in this case the form 

If By,,,<< Boy, the characteristic width of the soliton 

is large compared with the Compton wavelength A =m-'. 
In the case of a strong nonlinearity, however, the dis- 
persion equation (3.6) also becomes incorrect. 

In the theory of nonlinear waves, Eq. (3.6) has also a 
known solution that describes the evolution of a drop o r  
"step" in the initial conditions (see Fig. 2). In the 

FIG. 2. Evolution of "step" in the initial conditions for a TE 
wave and formation of an oscillatory front structure. 
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course of time solitons of equal amplitude a r e  detached 
from the s t ep  and move ahead. As a result ,  the "step" 
breaks up into a sequence of solitons, whose number 
increases without limit (in the absence of dissipation). 
The front of the drop becomes o ~ c i l l a t o r y . ~  

We note that the one-dimensional soliton (3.7) i s  stable 
to self-focusing (bending o r  pulsations of the wave 
front), since d 3 w / d #  < 0 (see Ref. 5). In principle, how- 
ever ,  it is  possible to have an instability of the decay 
type, s imi lar  to the process yT,-y,,+yTMfor quasi- 
monochromatic waves.' This instability of nonlinear TE 
waves of finite amplitude with respect  to decay into TM 
waves calls for  a special  investigation. The study of 
nonlinear regimes,  however, is  made complicated by 
the fact that with increasing amplitude of the TM wave 
the decay can give way to the inverse process,  coales- 
cence: yT,+ yTM- y,, (Ref. 5). The result  should be non- 
linear waves of mixed polarization, described by the 
system of coupled equations (2.18) and (2.19). 

4. TE WAVES OF FINITE INTENSITY 

Solutions in the form of simple TE waves can be ob- 
tained without imposing the restr ict ion IBI<< J B , ~  that 
the perturbation be small. If only the condition ( B  I<< 1 ,  
IB,(<< 1 a r e  satisfied, then accurate to (Y (B  l 4  we have 
(E. B) = 0 and (E. B,) = 0 for  TE polarization. We then 
obtain from (2.6), taking relations (2.7) into account, 

We consider Eqs. (2.5) for  the field components E, and 

BY 

The system (4.2) is obviously hyperbolic and has 
solutions in the form of simple waves whose velocity 
depends on the field. Consider a s imple wave traveling 
with velocity V(B,) in the positive direction along the 
x axis. In this wave 

Recognizing that (V- 1) - cr IB, +BIZ,  we put a/a t  
= - a / ~ x  and E, = - B y  in the left-hand sides of (4.2). We 
then obtain from (4.1) and (4.2) 

(4.3) 
From this we easily obtain, accurate to u lB  1 4 -  cr IB,) 4, 
the velocity 

This expression is a sum of the linear phase velocity 
(2.14) and its nonlinear correction [see (3.2)], both ob- 
tained in the approximation I B  I<< (B, I .  Now, however, 
we can state that in the region JB(<< 1, JB,)<< 1 i t  is 
valid for  any relation between (B(  and ( B ,  I .  

The velocity of the discontinuity produced a s  a result  
of the evolution of a simple wave is  determined by Eq. 
(3.3). At the same time, the quantity can be obtained by 
using the boundary conditionss on the moving discontin- 
uity: 

Assuming for  simplicity that only a magnetic field B,, 
is  present  ahead of the shockwave front, and that the 
fields behind the front (B, + B  and E) correspond to TE 
polarization, we obtain 

Ez+VoB,=O, B,=O, (4.7) 

B,-4n [M,(B, B,) -M,(O, B,) ] +Vo (E,+&P,) =0, 

where P, and M,(B , B,) a r e  given by Eqs. (4.1). From 
this we readily obtain, accurate to a! IBI4, 

The las t  te rm in (4.8) determines the difference between 
the velocity of a discontinuity of finite amplitude and the 
phase velocity of the linear waves (2.14). This t e rm is 
equal to half the nonlinear correction to the velocity of 
a s imple TE  wave [see the las t  t e rm of (4.4)], in agree- 
ment with Eq. (3.3). 

We note that the boundary condition (4.6) is  cor rec t  
only in the absence of surface currents  on the wave 
front. This approximation is  justified if the production 
of electron-positron pa i rs  on the discontinuity can be 
neglected. The same  condition l imits  the possibility of 
using a Lagrangian in the form (2.1) (Ref. 1). We have 
shown above that the width A of the front of a low-in- 
tensity shock wave (I B 1 - IE I<< (B, I) i s  large compared 
with the Compton wavelength A. In this ca se  Ew - E c / A  
<< A C / A  =mc2 (in the usual units) and pair production is  
impossible. 

F o r  an intense TE wave ( I B I - 1  E 1 - 1 B, 1 ) the linear 
dispersion (3.4) becomes comparable with the nonlinear 
correction to the velocity (4.4), if the characterist ic  
scale of variation of the field is A - A. In this case  
production of electron-positron pairs  on the wave front 
is possible. The foregoing analysis does not make i t  
possible to determine the width of the shock-wave 
front a t  1 ~ 1 2  IBol. At A-A and IBI- IB,I<< 1, how- 
ever ,  the probability of pair  photoproduction is expon- 
entially small1 and the boundary condition of the dis- 
continuity (4.6) remains in force. Effective production 
of electron-positron pa i rs  on a shock wave front can be 
expected only a t  I B 1 - I B, I - 1; but then the theory de- 
veloped above is patently inapplicable. 

5. DISCUSSION 

I t  follows f rom the content of the present art icle that 
electromagnetic TE waves evolve in a magnetized 
vacuum with formation of discontinuities. The char- 
acterist ic  time of such a process can be easily obtained 
from (3.2): 

where 9, and x a r e  the characterist ic  amplitude and 
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wavelength a t  the instant of time t = O  (we use here the 
universally accepted system of units). The restriction 
which leads to the discontinuity, on the successive 
generation of harmonics is  determined by the high- 
frequency dispersion of the electromagnetic fields in 
the magnetic vacuum. The result is a shock wave with 
an oscillating front, similar to the collisionless shock 
waves in a plasma2) (Ref. 7). 

The nonlinear TE waves were investigated under the 
assumption that there is no field with TM polarization. 
A monochromatic TE wave, however, is unstable to 
parametric decay into TM waves.' Since the interac- 
tions of the TM harmonics withone another i s  forbidden, 
the process of parametric decay is reversible: i t  
should give way to coalescence of TM harmonics with 
formation of a TE wave, followed by the interactions of 
the TE harmonics with one another, etc. The result is 
a wave of mixed polarization. 

It is  very important that the characteristic times of 
the evolution of parametric instability and formation of 
a TE shock wave a re  comparable, so that at appropriate 
initial and boundary conditions (relatively small 
amplitude of the TM waves compared with the TE - 
polarization wave) a TE shock wave is produced before 
the decay into TM waves se ts  in. An investigation of 
the last process involves the question of parametric 
instability of nonlinear nonsinusoidal TE waves [in par- 
ticular, the solitons (3.7)]. This question is still moot 
and calls for a special investigation. 

In conclusion, we estimate the conditions for the for- 
mation of a discontinuity in a magnetized vacuum sur- 
rounding a neutron s ta r  with a magnetic field 9, - 0.1 B, 
= 4.  1012 G. The characteristic scale of the magnetic 
field in this case is of the order of the radius of the 

s t a r ,  r*= los cm. According'to (5.1), a t  such a dis- 
tance a light wave with characteristic wavelength k -  lo5 
cm forms a discontinuity if its amplitude 9, 2 3 .  10' G. 
The width of the solitons on the front is then 12 lOOA 
-4. lod9 cm [see Eq. (3.8)]. The foregoing estimates 
take no account of the effect of the plasma on the char- 
acter  of the evolution of the nonlinear wave. 

' ) ~ f t e r  this article went to press, we learned of Ref. 3, whers 
it is shown that the field equations in a magnetized vacuum 
have solutions in the form of simple waves. 

')we note that such a structure of the front is not stationary: 
the number of oscillations increases without limit in the 
approximation considered. A stationary structure can be 
realized only in the presence of dissipation, the magnitude 
of which determined the steady-state number of oscillations 
on the front. For  intense shock waves (I B 12 I Bol) the dis- 
sipation mechanism may be connected with production of 
electron-positron pairs. 
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