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A theory is developed of the reflection of fast electrons normally incident on a surface; the theory is valid in a 
wide range of initial energies from several keV to several MeV. The results are valid when the total range R, 
of the electrons in the substance exceeds greatly their transport length I,,. The main idea of the solution of the 
problem is that an effective isotropic elastic-interaction cross section, equal in size to the transport cross 
section, is introduced for the description of the multiple scattering of the electrons by the atoms of the 
medium. Since the ratio R ,,/I, exceeds unity for nonrelativistic electrons even in the case of beryllium, the 
theory developed is applicable at nonrelativistic energies to practically all the elements of the periodic table. 
The expressions obtained for the energy and angular spectra of the reflected particles, as well as for the total 
reflection coefficients, agree well with numerous experimental data. 

PACS numbers: 79.20.K~ 

1. INTRODUCTION sought by iteration. Confining himself only to the first-  

Inelastic scattering of fast electrons by a solid sur-  
face i s  a constituent of the secondary electron emission 
and plays an important role in many problems of modern 
physical electronics. In addition, electron reflection 
from the surface of a material is of undisputed interest 
in problems of the radiation endurance of the surface 
and in flaw detection. 

Inelastic reflection of fast electrons (with initial ener- 
gies higher than several keV) has been the subject of 
rather prolonged and quite thorough investigation. 
The main law governing the backscattering of normally 
incident beam electrons reduce to the following: 

1. The total reflection coefficients and energies of 
the particles increase monotonically with increasing 
atomic number Z of the scatterer.  

2. At nonrelativistic initial electron energies, the 
total reflection coefficients a re  practically independent 
of the particle energy, whereas those of relativistic 
electrons decrease with increase in initial energy. 

3. The energy spectra of backscattered electrons take 
the shape of domes whose peaks a r e  reached at energies 
close to the initial incident-particle energy. 

4. The half-widths of the energy distributions de- 
crease rapidly with increasing 2. 

5. The angular distribution of the reflected particles 
is close to cosinusoidal. 

Some of the noted features of the reflection process 
admit of a qualitative explanation. 24 However, the de- 
velopment of a unified theory capable of quantitatively 
describing the phenomenon has met the fundamental dif- 
ficulties until most recently. 

The theoretical research into electron backscattering 
followed mainly two directions. The first  approach was 
based on a proposed model of single collision with de- 
flection of the electron through a large angle. 25 Subse- 
quently Dashen,'= using the method of invariant switch- 
ing, obtained for the differential backscattering coeffi- 
cient a nonlinear integral equation whose solution he 

order approximation, Dashen obtained in fact a solution 
corresponding to the single-collision model. Kalashni- 
kov and  ashi in in"*^^ analyzed the backscattering pro- 
cess on the basis of a quantum-mechanical formalism. 
The expression for the differential coefficient in Ref. 27 
was represented in the form of an infinite series,  each 
term of which corresponded to a definite number of 
large-angle scatterings. In contrast to Ref. 26, i t  was 
recognized in Ref. 2 f t h a t  between two large-angle scat- 
tering events a particle undergoes multiple small-angle 
scattering. Taking the ratio of the second term of the 
iteration ser ies  to the f i rs t  to be small, an assumption 
valid for sufficiently light media, Kalashnikov and Mas- 
hinin28.29 likewise confined themselves to first-order 
approximation. The important question of the rate of 
convergence of the ser ies  was left thereby open. The 
expressions obtained in Refs. 25-28 for the total albedo 
of the electrons have a common shortcoming: they in- 
crease without limit with increasing 2. 

A different approach was developed by Archard'' and 
Tomlin30 on the basis of the "diffusew model of reflec- 
tion. According to this model the electrons move in the 
medium along straight lines up to a certain depth I,, 
after which they diffuse in all  directions, i. e . ,  they a re  
multiply scattered through arbitrary angles. Unfor- 
tunately, in view of the far-fetched simplifying assump- 
tions, the results of Refs. 29 and 30 can be regarded 
only a s  approximate. 

It must be emphasized that the foregoing does not per- 
tain to the case of grazing incidence of a beam on a tar-  
get, when the angles, reckoned from the surface, at 
which the particles enter the medium, a re  small. The 
solution of the reflection of fast charged particles a t  
grazing incidence was obtained in Refs. 31-33, whose 
results  a r e  equally valid for relativistic electrons pro- 
vided that the scattering angles of the reflected particles 
a r e  small. 

The purpose of the present paper is to construct for 
backscattering of normally incident electrons a theory 
free of restrictions on the number of collisions in which 
the electron is reflected through an angle of the order 
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of unity, and valid in a wide range of incident-particle most particles a r e  backscattered by the medium without 
energy and nuclear charge of the target atoms. a noticeable loss of velocity, so that the average energy 

of the reflected particles is close to E,. This allows us  
2. TRANSPORT EQUATION. REFLECTION to confine ourselves to the approximation 

We consider a monoenergetic beam of electrons inci- 0.1 ( E )  =ael(Eo)  =const, oz , ,~ (E)  =a,,., (E , )  =const. (5) 
dent normally on the surface and having an initial energy All the electrons can be arbitrarily broken up into two 
E,. We assume that the particle initial energy satisfies groups. We include in the f i rs t  the particles that have 
the condition traversed in the medium a path s c l,,, while in the 

I keV<E,tZ-'.lo1 keV. (1) second the path is s >I,,. Quantitative estimates show 

In this case the deceleration of the electrons is due 
mainly to inelastic collisions with the target atoms. On 
the contrary, scattering of particles with deviation of 
their trajectory from the initial direction is determined 
mainly by the elastic collisions. "ls4 

We choose a Cartesian coordinate frame with the z 
axis directed into the interior of the medium and the xy 
plane on the surface. We denote by N=N(z, p,  E )  the 
flux density, a t  a depth z ,  of electrons of energy E 
moving a t  an angle 9 =arccos g tothezaxis.  Thetrans- 
port equation for the function N(z ,  p, E)  with allowance 
for condition (I), is written in the form 

where no is the density of the atoms of the medium, o,,(E) 
and o,,,,(E) a r e  the total cross section of the elastic and 
inelastic interactions, respectively, S2=v/v (v is the 
particle velocity), and E,, is the maximum possible en- 
ergy lost by the electron in one collision with an atom of 
the material. Equation (2) must be supplemented by the 
boundary condition 

Here No is the flux density in the incident beam, S(p,  E )  
is the reflection function and characterizes the distri- 
butions of the reflected electrons in energy and in emis- 
sion angle from the target. The explicit form of the 
functions S(p, E )  must be found in the course of the so- 
lution. 

At an arbitrary dependence of the cross  sections of 
the inelastic and elastic scatterings on the energy E, i t  
is impossible to solve Eq. (2) with boundary condition 
(3), To change to a simpler form of the transport equa- 
tion, we consider when the total range R, of the elec- 
trons in the medium greatly exceeds their transport 
length 1,,= 2/(82,(E0))((8:(E0)) is the mean square of the 
multiple scattering angle per unit path of a particle with 
energy E,): 

The inequality (4) means that rapid isotropization of 
the electrons over the directions takes place against 
the background of slow degradation of the particle en- 
ergy. We add that condition (4) is well satisfied over 
the entire energy range (1) for heavy media, and in the 
nonrelativistic case the ratio R&,, exceeds unity even 
for beryllium. 

Taking the condition (4) into account, .we assume that 

that in the case of normal incidence the contribution of 
the electrons of the first  group to the total number of 
reflected particles is small  and does not exceed 1% of 
the total number of those incidenton the target. This 
is easily understood, for to be backscattered from the 
medium a particle must be deflected by an angle 9 2 n/2, 
i. e.  , traverse a path 

The total reflection coefficients of fast  normally incident 
electrons range from 4% for berylliumz4 to 50% for lead 
and uranium. lo This leads to the important conclusion 
that the reflected beam is made up practically entirely 
of electrons of the second group. By virtue of the fast  
isotropization of the particles over the directions, the 
passage of the second group of electrons through the 
medium can be described by a transport equation with 
an effective isotropic elastic-scattering cross  section 
equal in magnitude to the transport cross  section utr 
= (noZtr)-l. 

Thus with the approximation (5) taken into ac- 
count, the flux density of the electrons of the second 
group satisfies the equation 

 o or details of the derivation of (6) see the ~ ~ ~ e n d i x . 1  

When formulating the boundary conditions for (6) we 
shall neglect the fact that the electrons of the first group 
go over, with increasing traversed path, into the second 
group in a layer of thickness I,,. The last assumption 
corresponds to the inequality (4). Taking the foregoing 
into account we can write 

where + (I,,, p, E)  stands for the angular and energy scat - 
ter  of the electrons that negotiate a path s = I,, in the 
target. Since the reflection of the electrons of the f i rs t  
group is small, the function +(Itr, k , E )  can in principle 
be obtained by solving exactly the transport equation (2) 
in an infinite medium. 

For  convenience in the calculations that follow, we 
introduce the dimensionless variables 

In the variables (8), Eq. (6) and the boundary conditions 
(7) take the form 
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xlN(E,  P, A-A') -N(E,  P, A) 1, (9 

where 

The function w,,,,(E,IA') is proportional to the probabil- 
ity that the relative energy function lost by the energy 
per unit path amounts to A'. The upper limit of inte- 
gration with respect to the variable A' in (9) is taken to 
be infinity, so  that the following condition is satisfied. 

Equation (9) contains only one dimensionless parameter 
u, equal to the ratio of the total range of the particles 
to their transport length: 

The quantity u can be interpreted a s  the mean number 
of collisions between the electron and the atoms of the 
medium over the entire range, wherein each collision 
deflects the particle trajectory from the initial direc- 
tion by an angle of the order of unity. The larger o, 
the more intense the elastic scattering and the higher 
the probability of backward emission of the particle 
from the target. As seen from (131, the parameter o 
plays here the same role a s  the quantity (82,)~,/45: in 
the theory of reflection of charged particles a t  grazing 
incidence ( 6 ,  is the angle of entry of the particle into 
the medium, reckoned from the surface, 5, << 1). 32 
Moreover, the indicated quantities practically coincide 
in the transition region at 6,  -n/4. 

To solve Eq. (9) we take the Laplace transform with 
respect to the variable A. Multiplying both sides of 
this equation by exp(-PA) and integrating with respect 
to A from 0 to m, we obtain for the function 

the equation 

with the boundary condition 

where 

and the function W(p) is defined with the aid of the re- 
lation 

0 

Equation (15) is the transport equation with an iso- 
tropic complex scattering indicatrix. The role of the 
single albedo is played here by the quantity w(p). The 
solution of Eq. (15), a s  well a s  the corresponding albedo 

problems, has been well investigated. According to 
this reference, the reflection function S(p,fi) can be 
represented in the form 

where H(p, w) is the Chandrasekhar H function. 36 

Taking the inverse Laplace transform with respect to 
the variable p, we obtain a final expression for the dis- 
tribution of the reflected particles: 

We emphasize that the integration contour C in the com- 
plex p plane is chosen such that i t  does not intersect the 
curve segment on which W(P) takes on real  values in the 
interval from -o to 0. 

3. TOTAL REFLECTION COEFFICIENTS. ENERGY 
SPECTRUM AND ANGULAR DISTRIBUTION OF 
THEREFLECTEDELECTRONS 

The spectrum of the backscattered electrons i s  best 
described by the differential backscattering coefficient 
R(p,  A). The quantity R(p,  A) is equal by definition to 
the ratio of the number of particles emitted from a unit 
surface of the target in the direction 9=arccos(-1 CI 1 )  
and losing an energy A, to the number of particles in- 
cident on a unit surface. The differential backscattering 
coefficient is thus proportional to the reflection function 
S(p, A), calculation of which calls fo r  knowledge of the 
concrete form of W(p), a s  well a s  of the function 
( 1  , p). In the case of fast electrons the probability 
that the particle will lose an energy A in one collision 
is  determined by the Rutherford formula 

win., (Eo I A') = (2Li0J1 z ,  - 1 ,  @I)  

where L,,, i s  the ionization logarithm. Substituting (21) 
in (18) and applying a procedure similar to that used in 
Ref. 37 to find the energy spectrum of electrons in a 
thin layer of matter, we write W ( p )  in the form 

In the last  expression 0 =O.  577 is the Euler constant. 

In the calculations that follow we neglect for simplicity 
the angle scatter of the electrons that have traversed 
a path s = lt, (the ensuing e r r o r  in the final results does 
not exceed several percent). We put accordingly 

where W(p) is defined via (22). In the case considered, 
obviously, 

We consequently obtain from (20) and (24) for the dif- 
ferential backscattering coefficient 

R ( ~ A ) = ~ ~ ~ ~ ~ ~ ~ [ ~ ~ - ~ ] ~ ~ [ I , ~ ( P ) I H [ I P ~ , ~ ( P ) I .  

(25) 
Integrating (25) over the energies and emission angles 
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of the electrons from the target, we obtain the total 
electron reflection coefficient r: 

8 1 

r =  j d p J d ~ ~ ( p , ~ ) .  
-1 0 

(26) 

The quantity 1-Y is equal to the relative number of elec- 
trons stoppped in the target. Substituting ( 2 5 )  in ( 2 6 )  
and recognizing that in the case of fast electrons the 
fluctuations of the energy losses a r e  small  (2L,,,>> I ) ,  
we have for the total reflection coefficient Y 

It follows from ( 2 7 )  that in the approximation ( 5 )  the 
total reflection coefficient i s  a universal function of the 
parameter a .  At a  << 1 the value of Y is exponentially 
small, since the probability of particle scattering 
through an angle r / 2  over the entire range is small. 
In the case o  >> 1 ,  on the other hand, the probability of 
particle emission from the target increases and ap- 
proaches unity like 

A plot of ~ ( o )  i s  shown in Fig. 1 .  

Let us  analyze in greater detail the behavior of the 
total reflection coefficient r a s  a function of the initial 
electron energy E,  and of the charge Z  of the target 
atoms. We substitute in ( 1 3 )  for this purpose the ex- 
plicit expressions for  the mean sqaured multiple-scat- 
tering angle per unit path of an electron of energy E ,  
(Ref. 38): 

and for their total path34: 

In ( 3 0 )  and ( 3 2 )  r4 is the classical electron radius, and 
the energy E,  is expressed in units of m4c2. Making 
this substitution, we arrive a t  the following expression 
for the parameter o :  

The parameter a in the energy range ( 1 )  is thus prac- 
tically proportional to 2 ,  s o  that i t  increases with in- 
creasing atomic number of the scatterer atoms. This 

FIG. 1. Total reflection coefficient r (solid curve, average 
relative energy (E /Eo)  (dashed curve) and total energy re- 
flection coefficient y (dash-dot curve) vs the parameter u. 

leads in turn to a monotonic increase of the relative 
number of reflected particles r with increasing 2. 

The ratio L,/L, ,  depends little on E ,  in a wide energy 
range and is approximately equal to 0 . 5 .  In the nonre- 
lativistic energy region ( E ,  << 1 )  we consequently have 
o = ( Z  + 1 ) / 4 ,  SO that the total albedo of the electrons is 
only a function of 2. On the contrary, in the relativis- 
tic case ( E ,  >> 1 )  the parameters o  decreases with in- 
creasing E,, and o  - (2 + l ) / E o ;  this lowers the yield of 
reflected particles with increase of their initial energy. 

A quantitative comparison of the theory withthe exper- 
imental data1'18*2014 is illustrated on Fig. 2 .  This fig- 
ure  shows the measured reflection coefficients r of 
beryllium, aluminum, copper, silver, and uranium in 
a wide range of initial energies E,. The solid theoreti- 
cal curves were calculated from Eq. ( 2 7 )  with account 
taken of ( 2 8 )  and ( 3 3 ) .  Good agreement between theory 
and experiment i s  observed for almost al l  elements. 
The only exception is aluminum, for which the dif- 
ference between the theoretical and experimental data 
reaches in some cases 25%. With increasing atomic 
number Zof the target the agreement between the theory 
and experiment improves, and the difference between 
the corresponding values of r does not exceed several 
percent. This is understandable, for large Z  >> 1 cor- 
respond to heavy media, where condition (4) is known to 
be satisfied. 

With the aid of the expression for the differential 
backscattering coefficient ( 2 4 )  we can easily calculate 
the total energy reflection coefficient y: 

a s  well a s  the average relative energy of the electrons 
emitted from the target 

The quantity 1-y represents the fraction of the primary- 
electron energy absorbed in the target material, and 
plays an important role in the calculation of the truly 
secondary 6-electrons. 24 

The actual value of the average relative energy 
( E / E d  of the reflected electrons a t  a given value of 
the parameter o is most important from the point of 
view of confirming the theory developed, since all  the 
foregoing results were obtained under the assumption 
( E / E &  ~ 1 .  At 1 arge values o >> 1  the following relation 
is valid 

where p(o)  i s  defined a s  before with the aid of ( 2 8 ) .  It 
follows from ( 3 6 )  that ( E / E d  varies from 0 . 6  to 1 when 
the parameter o  is varied from 5  to =. This means that 
the approximation (5) is perfectly justified in this range 
of variation. Plots of y and ( E / E d  against o, obtained 
by numerically integrating ( 3 4 ) ,  a r e  shown in Fig. 1 .  

The value of ( E / E , )  was measured in Refs. 3 ,  6 ,  10, 
39,  and 4 0 .  The results of these measurements and 
theoretical curves calculated from ( 3 6 )  with allowance 
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R, rsl. un. 
V .  

FIG. 2. Total fast-electron reflection coefficient r in a wide 
range of variation of the initial energy Eo, for various sub- 
stances. Solid curves--calculated from Eq. (27). points-ex- 
periment1-18~29-24: o-Be, o-Al, * -Xu,  A -Ag, A -U. 

for (28)  and ( 3 3 )  are  shown in Fig. 3 .  As expected, the 
results of the theory agree best with the experimental 
data at large values of the parameter 0. 

The energy spectrum R ( A )  of the reflected electrons, 
regardless of the direction of particle emission from the 
target, can be obtained by integrating (25)  with respect 
to I.I from 0 to -1: 

0 

H(A)= dpR(A, P) 
-1 

Although no simple expression can be obtained for R ( A ) ,  
the behavior of the energy spectrum of the electrons 
can be easily investigated in limiting cases. 

An examination of ( 3 1 )  shows that a t  low energy los- 
ses, A << l / o ,  the character of the spectrum is deter- 
mined to a considerable degree by the fluctuations of the 
energy losses. In this spectral energy-loss region the 
rapidly oscillating exponential factor of the integrand 
in the right-hand side of ( 3 7 )  has a stationary point in 
the complex p  plane. This enables us to estimate the 
integral ( 3 7 )  by the stationary-phase method. We have 
thus for R ( A )  in this case 

1-(AU- (1- [p+ln (2L,..o) -i]12L1,))2Lt~.. (39)  

FIG. 4. Energy distributions of nonrelativistic electrons 
(Eo = 40 keV) reflected from various targets. Solid curves- 
calculated from Eq. (27), dashed-experimente6 

It follows from ( 3 8 )  that the contribution to the energy 
spectrum of the particles that lose a very negligible 
fraction of their initial energy is exponentially small. 

The function R ( A )  reaches a maximum at  the point 
A  = A, = l / a ,  and the maximum, accurate to small 
terms of order (2L,,)" is equal to 

At large energy losses, A  >> l / u ,  the energy scatter of 
the electrons is due entirely to the stochastic character 
of the paths traversed by the particles prior to leaving 
the target. At A >> 1 / u  the R ( A )  distribution decreases 
smoothly like 

oh 
R (A) = - (Ad-2) 

2n" 
(41)  

To verify the validity of the last statement, we ex- 
pand 1  - (1 - w ( f i ) y 1 * ~ [ l ,  w(  p ) ]  in powers of the single- 
collision albedo w ( p ) .  The function R ( A )  can then be 
represented in the form 

R, rel. un. 

FIG. 3. (E/Eo) vs the initial energy Eo. Solid curves-cal- FIG. 5. Energy distributions of relativistic electrons (Eo 
culated from Eq. (36), points-experiment, 0-Pb, e-Cu; =1 MeV) reflected from various targets. Solid curves-cd- 
Eo=20-40 keV-data of Ref. 6. 32 keV-Ref. 2. 380-680 keV- culated form Eq. (37). p o i n t s - e ~ p e r i m e n t ~ ~  : 0 -Au, l -an, 
Refs. 39 and 40, 1-3 MeV-Ref. 10. A-Fe. 
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FIG. 6. Polar diagrams of angular distribution of electrons 
(Eo=10 keV) reflected from various targets. Solid curves- 
calculated from Eq. (45), points-experiment22: o -U, .-Fe, 
A-Be. The arrow marks the direction of incidence of the 
primary beam. 

The expansion coefficients b,  in (42) a r e  defined a s  

The integration contour r in (43) is a circle of radius 
a, < 1 that encompasses the origin of the complex w 
plane. 

The representation (42) is useful in many cases for 
the understanding of the backscattering process as a 
whole. Indeed, writing the transport equation with the 
effective elastic-scattering indicatrix (61, we have re-  
placed by the same token the real  substance by a med- 
ium filled with certain effective particles that scatter  
the electrons isotropically. Allowance for the decelera- 
tion has led to the appearance of a complex single-scat- 
tering albedo w(p). This makes clear the physical 
meaning of the coefficients b,: they a r e  proportional to 
the probability of the electron being emitted from the 
medium a s  a result of n-fold scattering by the effective 
scattering centers. Electrons losing an energy A >>om' 
obviously leave the target after experiencing a large 
number of collisions. The law-energy part  of the spec- 
t rum receives therefore the main contribution from 
those terms of the ser ies  (42) which have large numbers 
n >> 1. Inasmuch a s  a t  n >> 1 

b,,=- (n+3)-%, on(p)= exp -- ( "7"'' 2nK 

i t  follows that by substituting (44) in (42), integrating 
with respect t o p ,  and summing over n we arrive at 
(41). It is of interest to note that in the case of grazing 
incidence the reflected-particle energy distribution cal- 
culated in the approximation (5) decreases like A'5 
(Ref. 32), which is very close to (41). 

The electron energy spectra calculated from (37) for 
various targets a r e  shown in Figs. 4 and 5. Figure 4 
shows the energy distributions of the backscattered 
electrons with initial energy E,= 40 keV bombarding 
aluminum, copper, silver, and platinum targets. Fig- 

ure  5 shows the analogous distributions for relativistic 
electrons (E, = 1 MeV) reflected from gold, tin, and 
iron targets. The same figures show the spectra mea- 
sured in Refs. 6 and 19, respectively. For convenience 
in comparison, just a s  in Refs. 6 and 19, the abscissas 
represent the relative energy E / E ,  of the emitted elec- 
trons. We note that in this case the "tie-in" between 
the theoretical and experimental curves is no problem, 
since the total reflection coefficients r (equal to the 
areas  under the corresponding curves) have approxi- 
mately equal measured and theoretically calculated 
values. It follows from Figs. 4 and 5 that Eq. (37) de- 
scribes correctly both the position of the maximum in 
the energy spectrum and the decrease of the intensity 
peak of the reflected particles on going from heavy to 
lighter targets. 

A disparity between the experimental and theoretical 
spectra is observed in the low-energy part  of the distri- 
butions, where the approximation (5) is generally speak- 
ing inapplicable. 

To find the angular distribution of the reflected parti- 
cles, we integrate the differential backscattering coef- 
ficient (25) with respect to the variable A: 

a IpI 
R ( d =  jdAR(p, A ) = ~ ~ H  ( 1 . k ) ~  ( l ~ l , & )  e-''''. 

0 

(45) 
In the derivation of (45) we have neglected the fluctua- 
tions of the electron energy losses, since their influ- 
ence on the angular spectrum i s  negligible. Taking 
into account the weak dependence of the product 
(1 + I p J)-'H( 1 p I, u(1+ 0)-' on the variable 1 p I in the in- 
terval from 0 to 1, we arr ive  a t  the conclusion that 
actually R ( p )  - 1 I. The angular distribution of the re- 
flected follows thus approximately the well known 
cosine law.24 Figure 6 shows typical angular spectra 
of the reflected electrons (initial energy E,  = 10 keV), 
calculated theoretically from Eq. (45) and measured in 
Ref. 22 for the case of uranium, iron, and beryllium 
and targets. The good agreement between the theoreti- 
cal  and experimental data is due in this case both to the 
correct  functional dependence of (45) on the variable CL 
and to the fact that the experimental and theoretical 
values of the total reflection coefficients a r e  approxi- 
mately equal. 

4. CONCLUSION 

The theory expounded above is based on the idea that 
a t  sufficiently long paths the scattering of an electron 
beam in a medium can be described with the aid of an 
effective isotropic elastic-scattering cross  section. As 
applied to the reflection problem, this approach is jus- 
tified if the contribution to the emerging flux of particles 
that have experienced only small-angle multiple scatter- 
ing in a thin surface layer of the medium is small. This 
is precisely the case for normal o r  near-normal inci- 
dence of a beam of fast  electrons on a target. 

The physical justification for the introduction of an 
effective isotropic elastic-interaction indicatrix for the 
description of the passage of the electrons is that fo r  
scattering of a beam of particles, starting with a certain 
path length, the important role is assumed not so  much 
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by the characteristic electron deflection angle in a sin- 
gle collision with the target electron, as by the size of 
the characteristic deflection angle acquired by the parti- 
cle on a path segment of the order of l,,. 

The idea of using the methods of linear transport 
theoryS6 to solve particle-backscattering problems is 
not new. ~ornyushkin,~ '  for example, attempted to 
describe the passage and reflection of electrons with the 
aid of an equation of type (6) in the single-velocity ap- 
proximation, i. e. ,  without allowance for deceleration. 
Instead of correctly allowing for  the energy losses, 
Kornyushkin invokes a mechanism of "particle absorp- 
tion along the surfaceu (Ref. 41a). The transport equa- 
tion cited in Ref. 41a without proof differs from our 
Eq. (6) in that the transport cross  section o,, is re- 
placed in i t  by the quantity v,, (w* in the notation of 
Refs. 41a). It should be noted that this last  circum- 
stances contradicts the physics of multiple scattering 
of fast electrons. In addition, a particular solution of 
an integral transport equation [ ~ q s .  (2) and (4) in Refs. 
41a and 41b] is unjustifiably identified in Ref. 41 with 
the solutions of the corresponding boundary-value prob- 
lem. The expression obtained in this manner for  the 
electron flux density does not satisfy the boundary condi- 
tions posed by the author and can be regarded only a s  
an asymptotic part of the sought solution.S5*3s Taking 
the foregoing into account, the results of Ref. 41 cannot 
be regarded a s  correct. 

In conclusion, the author is sincerely grateful to 
M. I. Ryazanov for a helpful discussion of the results 
obtained in the present paper. 

APPENDIX 

Derivation of Eq. (6). The assumption of isotropiza- 
tion of the primary electron beam in direction is equi- 
valent to assuming that the function 

differs substantially from zero, starting with certain 
depths z and a t  arbitrary Q, in the region 0 a ( k 1 5 a < 1. 
Here N(z, Q, E )  is the flux density a t  the depth z of the 
particles moving in the direction Q with energy E. The 
function N(z, 1, E )  i s  obtained from N(z, Q, E )  by averag- 
ing the latter over the azimuth: 

We write down the sum of the two transport-equation 
terms that contain the elastic-interaction cross  section 
in the form 

where 

and account is taken of the form of the dependence of 
the differential cross section of the fast-electron elas- 
tic scattering on the scattering angless4: 

do., (Q'+Q) - 0.1 (q+1) q = - o, ,(q+l)  
d~ ' n [ 2 q + i - m ' 1 ~  2n ln(q-') [ 2 q + i - ~ ~ "  (A51 

In (A4) and (A5), q<< 1 is the screening parameter. 

To check on the validity of the change from Eq. (2) to 
Eq. (6) we must show that the following condition is sat- 
isfied a t  the depths considered: 

We rewrite the integral I in the form 

where the function N ( z ,  P, k, E )  is defined with the aid of 
(Al) and 

The function f(k) is bounded a s  I k (  - 00, and its value a t  
( k 1 s 1, accurate to small terms of order 77, is 

f ( k )  = [In (q-I ) ]  -'[2ik(Ei (2ik)-In (2ik) -p)+i+2ik-d? 
' 

+ (ik)-1[e'"-l-2ik] -2ik=2ik[ln (q-I) ] -I-kZr/,+3 [ln (q-I ) ]  - I ) .  (AS) 

In the last expression, ~ i ( x )  is the integral exponential 
function and fi is the Euler constant. Since, in accord 
with the assumptions made, the main contribution to the 
integral I is made by values 1 k 1 s a, we obtain, taking 
(A l), (A7), and (A8) into account the following esti- 
mate for I :  

Thus, 

IaSN(z, Q', E)dfJ1, 

Taking (A2) into account, we can write 

I 

= - o , , ~ ( ~ .  Ir. ~ ) + ? j  N ( Z ,  pl,  E I ~ P ' .  
- 1  

(Al l )  

Substituting now (Al l )  in (2), we arrive at Eq. (6). 
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