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We investigate the connection between the presence of a "ribbon bridge" on the Fermi surface of a rare-earth 
element and the onset, at a certain temperature, of a singularity in the ferromagnon spectrum at excitations 
q = 2k,, which leads to instability of the ferromagnetic phase. It is shown that if the anisotropy in the 
antiferromagnon spectrum is neglected, no singularities due to the presence of the ribbon bridge arise if the 
equilibrium magnetic order is a helix with wave vector q, = 2k,, i.e., the antiferromagnetic phase is stable. 

PACS numbers: 75.30.Ds, 75.50.C~ 

1. lNTRODUCTlON where J is the indirect-exchange integral, S, is the spin 
localized a t  the n-th site, and s(&) is the spin of the 

Rare earth metals a r e  known to have very curious conduction electrons located near the n-th site. 
and diverse properties (Ref. 1,  p. 194 of Russ. trans- 
lation). For example, dysprosium is ferromagnetic up The spin-wave dispersion law for the ferromagnetic 
to 85 K. At T,= 85 K it goes over into an antiferro- phase was obtained by ~ o n s o v s k i r  and Izyumov with the 
magnetic phase, and a "simple helix" magnetic struc- aid of the Green's function method, by summing a "lad- 
ture i s  established. Holmium and terbium have simi- fer" sequence of diagrams of the form 
lar  properties. At the same time, gadolinium goes 
over directly from the ferromagnetic into the paramag- 

--.4--- - - --- - -. 
netic state. It is known that the Fermi surfaces of Dy, 
Ho, and Tb have flat sections-the so-called "ribbon 
bridgesw-and the wave vector of the simple helix coin- 

where the dashed lines correspond to the magnon 
cides with the thickness of this ribbon bridge (Ref. 1, Green's functions, and the solid lines correspond to the 
p. 148 of transl.). In addition, the Fermi surface of 

electron functions4: 
gadolinium has no such ribbon bridge and has no anti- - - 
ferromagnetic phase. It is natural to assume (Ref. 1 ,  J 

E , = E . + I I ( ~ ) ,  E,,= ('kt-n14), 
p. 214 of transl.) that the appearance of the antiferro- L 

magnetic phase i s  due to the presence of the ribbon 
bridge. 

A phase transition from the paramagnetic into the 
antiferromagnetic phase of a r a re  earth metal, due to 
the topological features of the Fermi surface, was con- 
sidered earl ier  by ~ z ~ a l o s h i n s k i r .  ' 

The purpose of the present paper is to investigate the 
connection between the presence of a ribbon bridge on 
the Fermi surface of a rare-earth metal, on the one 
hand, and the transition from i ts  ferromagnetic into the 
antiferromagnetic phase, on the other. In Sec. 2 we 
investigate the spin-wave spectrum in the ferromagnetic 
phase, with account taken of the anisotropy, and show 
that at a certain temperature T* there appears in the 
spectrum a singularity at q= 2k,, meaning instability of 
the ferromagnetic phase. In ~ e c .  3 we obtain and in- 
vestigate the spin-wave spectrum in the antiferromag- 
netic phase, neglecting anisotropy, and show that this 
phase is stable i f  the wave vector q, of the simple helix 
is equal to the thickness of the ribbon bridge 2k,. 

2. SPIN-WAVE SPECTRUM OF FERROMAGNETIC 
PHASE 

The magnetic order in rare-earth metals i s  due to 
s-f exchange. The Hamiltonian of this interaction is 
given by 

E, is the dispersion law of the electrons in the para- 
magnetic phase. Allowance for the anisotropy, which 
is comparable in r a r e  earth metals with J (Ref. 4) 
and decreases rapidly (as  the tenth power of the mag- 
netization) with increasing temperature,'p5 adds to Eq. 
(3) a positive constant B(T) proportional to the aniso- 
tropy constant and decreasing rapidly with increasing 
temperature: 

In the derivation of (7) i t  was assumed that the aniso- 
tropy separates the %asy planev and separates also 
in this plane the direction of the magnetization vector. 
Our basic assumption is that the antiferromagnetic or- 
der  in a rare-earth metal se ts  in because of the pres- 
ence of a flat section on the Fermi  surface. We shall 
therefore assume in this paper that the conduction- 
electron dispersion law is one-dimensional, since the 
flat section makes an additive contribution to the mag- 
non energy, and i t  is precisely this contribution that we 
wish to examine. 

In that case 
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goes to -- at  q, = 2kF (Refs. 6 and 7). If we obtain 
graphically the solutions of (7), we find that a t  q, =2k, 
a solution E,,<O exists a t  any temperature. If, how- 
ever,  we take into account the renormalization of the 
vertices in the diagrams (2), which make up a ladder, 
by solving the Dyson equation for the vertex part: 

the polarization operator in (7) takes the form 

where g:= J'S and 

Here f(k) is a smooth function of k, i. e. , fi (9) does not 
go to -0oat q=q, and Eao=O, but it can be shown that 

n ( q O )  +EO<O, (12) 

s o  that at T > T*, when 

n ( q O )  +E,+B(T) <o, (13) 

there exists a solution Ezo<O, and a t  T < T*, when 

n (go)  +Eo+B ( T I  =-0, (14) 

this solution vanishes. Consequently a t  T <T* all  the 
solutions of (7) a r e  positive and the ferromagnetic 
phase is stable, while a t  T >T* a solution E,, <O exists, 
i. e . ,  the ferromagnetic phase is unstable. 

3. SPIN-WAVE SPECTRUM I N  THE 
ANTI FERROMAGNETIC PHASE 

To find the spin-wave spectrum in an antiferromag- 
netic phase with a magnetic order of the simple helix 
type (Ref. 8, p. 261, two circumstances must be taken 
into account. 

1. The Holstein-Primakoff transformation must be 
carried out in a l'rotatingU coordinate frame. As a 
result, the initial Hamiltonian breaks up into two terms, 
H = H, + H,,, where all  the terms containing magnon 
operators a r e  included in Ha,, while H,, which contains 
no magnon operators, describes the system in the 
"ground state," when i t  has no spin waves. 

2. Since the crystal has a magnetic structure of the 
simple helix type, the conduction-electron spectrum is 
renormalized. A split and an unsplit spectrum modes 
appear, and subbands a re  produced. To find the spin- 
wave spectrum i t  suffices to take into account the exis- 

tence of only the two lowest ones. We denote the unsplit 
branches by &: = &,, &: = &,,,, and the split ones by 

e:'= ( ( E ~ + E ~ - ~ ~ )  T[ (ek-ek-qo)z+ (2JS) 2]"}/2. (15) 

The renormalized electron spectrum is the result of 
diagonalization of H, with the aid of the Bogolyubov 
transformation (Ref. 8, p. 111). To find the spin-wave 
spectrum we use the Green's function method. H,,, is 
replaced in our case by H,,. Summing a ladder se-  
quence of diagrams of the type (2) and finding the pole 
of the magnon Green's function, we obtain the spectrum 

II ( q )  = 2 a' (Ajj-Afikq) n (82)  -n  EL-^) 
EI . -E:_~+E.  ' 

k.f.i  

where 

az=IZS/4N, p=J/2N, n (e r ' )= [exp  ( ( E ~ ' - ~ ) / T ) + I ] - ' ,  i, ] = I ,  2, 3, 4, 

B: and A$ a re  smooth functions of E: and &:-,. It is im- 
portant that 

As a result, the denominator of (17) can contain only 
differences of the split and unsplit energies. No di- 
vergences of II(q), a s  in the spectrum of the ferromag- 
netic phase, ar ise  therefore at E, = 0, if q, (the wave 
vector of the simple helix) is such that the Fermi energy 
lies between the split branches &; and c:, i. e. , q, = 2k,. 

It can be shown that E, >O for any q f 0, and for q << k, 
there exists an acoustic solution E, -9, if no account is 
taken of the presence of anisotropy, which is small a t  
high temperature. Allowance for the anisotropic terms, 
a s  i s  clear from consideration of the ferromagnetic 
phase, should lead to the cnset of an instability of an 
antiferromagnetic phase with decreasing temperature. 
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