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The two-parameter soliton solutions of the one-dimensional equations for the magnetization in a biaxial 
ferromagnet are obtained and analyzed. The parameters of the localized wave are its velocity of propagation 
and the precession frequency o of the magnetization vector. It is shown that in a certain region of the 
parameters the obtained solution describes the scattering of two domain walls. The energy and momentum of 
the solitons are computed, and a quasiclassical quantization of the localized wave is camed out. The 
quasic1assi.d energy spectrum of the soliton is found to be identical to the purely quantum spectrum. The 
possibility of using the sine-Gordon equation to describe magnetic solitons in the limiting cases of neareasy- 
plane ferromagnets is discussed. It is found that the equations of the magnetization dynamics can be reduced 
to the sine-Gordon equation only in the case in which o > 0. For o < 0 such a reduction is not possible. 

PACS numbers: 75.60.Ch, 75.60.Ej, 75.30.G~ 

INTRODUCTION rameter E. The parameter I, i s  the magnetic length, 

There has in recent years been a significant upsurge 
in interest in the theoretical study of nonlinear mag- 
netization waves in magnetically ordered structures, 
and definite success has been achieved in the theory of 
magnetic ~ o l i t o n s . l * ~  The strong (nonlinear) excitations 
of real three-dimensional magnets a r e  described by 
quite complicated dynamical equations, the solution of 
which i s  extremely difficult even in the particular 
cases. Therefore, it i s  important and urgent to 
analyze the simplest models and, possibly, obtain the 
exact solutions to the nonlinear dynamical equations, a t  
least in the one-dimensional case. 

The system of macroscopic equations describing the 
long-wave magnetization dynamics of a ferromagnet i s  
the well-known set  of Landau-Lifshitz equations. We 
shall study the spatially one-dimensional solutions to 
these equations without allowance for the dissipative 
processes. 

We shall describe the state of the ferromagnet with 
the aid of the magnetization vector M treated a s  a func- 
tion of the coordinates and the time. Using the usual- 
for a ferromagnet-condition M' = M;, we represent the 
magnetization vector M in the form 

.&f==Al, sin 0 cos cp, Jfv=W, sin 0 sin 9, M,=M,  cos 0. 

Let the ferromagnet possess a magnetic anisotropy 
characterized by two preferred axes (the x and z axes), 
the z axis being the axis of easiest magnetization. In 
the ground state of such a magnet, the vector M i s  
oriented along the z axis. A perturbation propagating 
along the x axis i s  described by the system of equa- 
tions 

This system is characterized by three physical param- 
eters: the length-dimension parameter lo, the frequen- 
cy-dimension parameter w,, and the dimensionless pa- 

the square of which i s  equal to the ratio of the exchange 
constant to the constant characterizing the anisotropy 
along the axis of easiest magnetization. The param- 
e ter  E in a one-dimensional ferromagnet characterizes 
the biaxiality of the anisotropy (it i s  assumed in this 
case that c >  - 1). If, on the other hand, the system 
(1) describes the dynamics of magnetization excitations 
of the plane-wave type in a three-dimensional uniaxial 
ferromagnet, then the parameter E allows us to take the 
magnetic-dipole interaction into account. The param- 
eter w, i s  the frequency of the homogeneous ferromag- 
netic resonance for c=O. The object of the present 
paper i s  to analyze the localized solutions to the sys- 
tem of equations (1). The equations (1) can be derived 
with the aid of the principle of least action if we intro- 
duce the following Lagrangian density of the physical 
field under investigation (the magnetization field): 

Since the Lagrangian does not explicitly depend on the 
time, the equations (1) possess an obvious integral of 
motion, which coincides with the magnetic energy: 

(2) 

where M, is the length of the magnetization vector, P i s  
a constant characterizing the anisotropy along the axis 
of easiest magnetization (P > 0), and a i s  the atomic 
distance. The frequency o, i s  connected with ,6 by the 
relation Rw, = 2P b O M O ,  where ko i s  the Bohr magneton. 
To the ground state of the magnet corresponds either 
8 = 0, or 8 = r. We shall call the solutions to the system 
(1) that behave a t  infinity in the following manner: 

0=0 for Z=*m, 

localized solutions (solitons). Since the coefficients in 
the differential equations (1) do not depend explicitly on 
x and t, parameters connected with the coordinate 
origin and zero  time may appear in the solution of the 
equations. But the dependence on these parameters i s  
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not important, and we shall not make mention of them 
below. 

The simplest localized solutions to the equations (1) 
a r e  the solutions of stationary-profile wave type 

~ l e o n s k i r  et aL3 have investigated in detail the a s y m p  
totic forms of, and numerically found, such solutions. 
The physical parameter on which the wave of stationary 
profile depend i s  the velocity V of propagation of the 
localized perturbation. The solutions to the system of 
ordinary differential equations to which the Landau- 
Lifshitz equations (1) for waves of stationary profile 
reduce may contain additional parameters of the con- 
stant-of-integration type. As such a parameter, we can 
choose, for example, the maximum value of the angular 
variable 0 in the soliton, or p,, the value of the angle p 
a t  the point where 0 has its maximum value. The depen- 
dence of the form of the stationary-profile waves on 
such a parameter has been discussed by ~leonski i '  et 
nL4 

Earlier5 Ivanov and the present authors had considered 
solitons whose center of gravity i s  at r e s t  (V= O), but 
in which the magnetization vector precesses with fre- 
quency w (this frequency i s  a parameter of the solution). 
In our short communication6 we described two-param- 
e ter  solitons (bions) traveling with velocity V, and 
possessing a temporal periodicity with period 2n/w in 
the moving coordinate system. 

Thus, the two physical parameters to which we draw 
attention a re  V and w. Somewhat later Bogdan and 
Kovalevl constructed n-parameter localized solutions. 
The complete integrability of the equations (1) by the 
method of the inverse problem of scattering theory has 
now been d e m ~ n s t r a t e d , ~ , ~  and a rigorous classification 
of all  the soliton states has been carried out. But the 
methods developed in Refs. 8 and 9 did not allow the 
construction of the explicit form the two- and many- 
parameter solutions, the detailed analysis of which i s  
of indisputable interest. 

ANALYSIS OF THE TWO-PARAMETER SOLUTIONS 

In dimensionless units (i.e., in units of the length I, 
and the time w;') the two-parameter solutions to the 
system (1) that a r e  localized in space and periodic in 
time have the form6 

Q-Q 
~ ( v - - u ) = ( ~ + & ) t g q ~ ,  i g O = - ( ~ ) h B x f ,  (3) 

and 

Here y i s  an arbitrary constant phase," while the quan- 
tities x, A, B, K, and 52, a r e  given functions of w and 
V: 

For fixed V and w, the parameter SZ2 i s  determined a s  
the root of the cubic equation (4), (5). Therefore, the 
analysis of the various specific forms of the localized 
solutions i s  tied first  and foremost to the study of the 
various roots of the cubic equation for 0'. The choice 
of the requisite roots of this equation should be based 
on the requirement that the functions 0(x, t )  and ~ ( x ,  t )  
be real, and that the solutions be localized in space 
(i. e., that B2 2 0, x2 > 0). 

It follows from these requirements that the quantity 
52 should be either rea l  (a2  3 0), o r  pure imaginary 
(52' < 0). In the latter case the condition B2 3 0  requires 
that w and K should also be pure imaginary (i. e., that 
w2 < 0, K' < 0), and this i s  possible only if - c2/4 < 52' < 0. 

Let us rewrite the equation (4), (5) for SZ2 in the form 

Let us consider the roots of Eq. (6) a s  functions of V2. 
For V = 0 these roots are: 52' = w2 and 52' = - c2/4 (multi- 
ple root). For w = 0, to these roots correspond the 
straight lines (Fig. 1) 

For w2 > 0 the roots of Eq. (6) that satisfy the above- 
formulated requirements lie in the region I in Fig. 1. 

It turns out that the existence domain for the localized 
solutions in the (02, V2) plane depends essentially on the 
sign of the frequency w. For w 3 0 this region corre- 
sponds to 0 c V2 C c, and lies above the broken line 
OA B and below the curve d: 

For w < 0 this region lies above the broken line OAB 
when V2 C and above the section of the curve d lying 
to the right of the point B (V2 > ). 

The existence domain of the localized solutions look 
more graphic in the plane, shown in Fig. 2, of the 
parameters w and V. The localized solutions corre- 
spond to the points lying below the curve K(V, (11) = 0, 
whose equation i s  parametrically given by the formulas 

where K runs through all  the values from -* to +a. 

FIG. 1. 

744 Sov. Phys. JETP 55(4), April 1982 I.  M. Babich and A. M. Kosevich 744 



FIG. 2. 

This curve for V>O (K > 0) monotonically decreases: 

do/dV=-K. 

It i s  remarkable, first, that the curve (8) possesses 
no definite symmetry with respect to the sign of the fre- 
quency w and, secondly, that i t  contains a nontrivial 
region of negative frequencies. The latter fact i s  large- 
ly due to the fact that w i s  a precession frequency in a 
reference frame moving with velocity V. In order to 
grasp the physical meaning of the curve (8), let us con- 
sider the spin-wave dispersion law: 

@ ( k )  =[ ( l + k Z )  (I+€+k') I". (9 

Here L(k) is the frequency of the spin wave in the labor- 
atory reference frame and k i s  the spin wave vector. If 
we introduce the group velocity V =  dG/dk of the wave 
and write the dispersion law (9) in the reference frame 
moving with velocity V: 

then we obtain formulas corresponding to the condition 
~ ( v ,  0 )  = 0. 

Thus, the curve U in Fig. 2 gives the graph of the 
dispersion law for the free magnon if we take V to be 
the magnon group velocity. The hatched region contains 
a segment of singular points on the w =  0 axis ( 1  Vl< V-) 
that correspond in the limit to nonlocalized solutions. 
The most interesting limiting solution corresponding to 
the points of this segment i s  obtained when y = nn (n i s  
an integer): 

8 x2/ le l  
tg2 - = - (1+[*1.'1-I'j]2), P=[  (V+?-V2)  ( V - Z - J D )  1 ', 

2 ch2x&+B 

tg(v-11.) =*Ft- V f ,  B,/R= (*F+ V Z ) /  I;+ V- ,  
(10) 

and the signs i correspond to w -* 0. We see that the 
perturbations (10) of the magnetization field do not have 
the form of a wave of stationary profile, and cannot 
therefore be analyzed, using the methods proposed in 
Refs. 3 and 4. 

The solution (10) describes the scattering of two do- 
main walls whose center of gravity moves with velocity 

* 
X 

FIG. 4. 

V, while they themselves have in the center-of-inertia 
system zero velocities a t  infinity. Below we shall con- 
sider the scattering of walls having nonzero velocities 
a t  infinity in the center-of-inertia system (i.e., the case 
w2 < 0). 

In the low-frequency regions around the segment of 
singular points (I V( i V-, w2 > 0) the solution has the 
form of a one-dimensional magnon drop whose dimen- 
sions vary periodically. The center of gravity of the 
localized solution moves with velocity V (see Fig. 3). 

T o  the parameters V and w a t  points far from the line 
of singular points correspond localized magnetization 
perturbations having the standard soliton form with 
amplitude modulated by periodic ripples traveling with 
group velocity 

(see Fig. 4). In the limit w - 0 for V- c V 9 V, we obtain 
soliton solutions of the stationary-profile wave type 
(which depend only on I = x - Vt). The analytical de- 
scription of these solutions i s  in complete agreement 
with the results  of the analysis performed in Refs. 3 
and 4. 

For w2 < 0 (K'<O) the roots of Eq. (6) that satisfy the 
requirement that the solution be  localized and be real  
lie in the region I1 (in Fig. 1 the region I1 corresponds 
to the triangle OAC). If we fix V2 and w2, then this re- 
gion i s  found, generally speaking, to contain two dif- 
ferent 52' roots corresponding to two temporally 
aperiodic solutions. 

In the general case the aperiodic solutions to the equa- 
tions (1) have the form 

where n2 corresponds to either the first  o r  the second 

FIG. 3. 
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root. For V =  0 these roots a r e  equal to 

(na),=oz, (61%) z = - ~ z / 4 .  

The solution correspondingto the first  root in the case in 
which V =  0 i s  fully described in Ref. 5, and the second 
solution i s  given in Ref. 6. 

For w - 0 one of the solutions in (1 I), i.e., the one 
corresponding to the root (a2),, coincides with the 
aperiodic solution (lo), while the second solution goes 
over into a wave of stationary profile: 

The existence domain of the aperiodic solutions in the 
case of purely imaginary w is  bounded by the curve 
(Fig. 5) 

The w = 0 line crossing the region bounded by the curve 
(12) i s  singular, since one of the aperiodic solutions de- 
generates on i t  into a wave of stationary profile. 

QUASICLASSICAL QUANTIZATION OF THE 
LOCALIZED SOLUTIONS 

In a homogeneous magnet the equations (1) always 
possess two mechanical integrals of motion2): the total 
energy (2) and the total momentum of the magnetization 
field 

In auniaxial magnet ( &  = 0) we have an additional integral 
of motion: the number of spin deviations.I0 But a bi- 
axiality (cf 0) leads to the nonconservation of the mag- 
non number in the localized wave. 

In the case of rea l  values of the parameters w and K 
the motion of the magnetization i s  periodic in time with 
period T =  2n/l wl in the reference frame moving to- 
gether with the wave (5 = x  - V t  = const). Therefore, we 
can, using the standard scheme," introduce for the 
magnetization field the adiabatic invariant: 

It can be verified that the following relation follows from 
the definitions (2), (13), and (14) (Ref. 10): 

The quasiclassical quantization of the magnetic soliton 
reduces to the requirement that 

where N is a whole number. But we find in the course 
of the introduction of the adiabatic invariant I and i ts  
subsequent quasiclassical quantization one circumstance 
seldom encountered in mechanics: the energy of the 

localized excitation formally turns out to be a periodic 
function of the adiabatic invariant I. This means that 
the physically different magnetization states correspond 
to a finite range of values of the adiabatic invariant." 
In order to verify this, let us explicitly express the 
energy in terms of I and P. 

The bion energy (2) for rea l  values of w and K i s  equal 
to 

where Eo i s  the energy, referred to the a rea  a2, of the 
stationary Bloch domain wall. The bion momentum (13) 
is equal to 

PQ 8% . P = - arccos - 
n D 

The limiting value of the momentum coincides with the 
limiting momentum value in the case of a uniaxial mag- 
net'o"3: 

Po=nAaZMo/po=2nsA/a, 

where s i s  the spin of the atom. 

After determining the explicit form of the adiabatic 
invariant (14) in terms of the parameters of the solu- 
tion, let us return to the formula (17) and express the 
energy in terms of I and P. For c 2 0 we have for n 
the expression 

(HE)'> nP TP 
x = ----- [sin* (,%) +k2 cosz(%) S I I ~ ( I ~ I , , ) ] " ~  

S l l  ( l / l o )  

x [sin' ($1 + cm2 (-&) s n Z ( ~ / ~ . 1 ]  '" . 

Here sw i s  the Jacobi elliptic sine with modulus k 
= (1 + &)-If and the quantity I, i s  equal to 

We see that all the values of n a r e  covered when I i s  
varied in the interval 

where K(k) i s  the complete elliptic integral of the first  
kind. 

For E =  0 the modulus of the elliptic functions becomes 
equal to unity (k= I), while the range of independent I 
values becomes unbounded from above (I,, = a), and we 
go over to formulas pertaining to a uniaxial ferromag- 
net. 

For - 1 < c < 0, when k > 1, the expression for n can 
be  obtained from (19) by the usual method of going over 
to elliptic functions with modulus equal to l/k, e.g., 

k sn (u, k )  =sn (ku,  I l k ) .  

The range of physically different I values for -1 < c <  0 
should be rewritten in the form 

O<Z~Zm,=IoK( l /k ) /k .  

Thus, the number N in the quasiclassical-quantization 
formula (16) i s  bounded from above (EN < I,,,). In a uni- 
axial ferromagnet (c = 0) the number N has the meaning 
of the number of bound magnons, and i s  
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A similar situation (the appearance of a maximum 
adiabatic-invariant value and the quantum number N) 
ar ises  in the quasiclassical quantization of the tem- 
porally periodic solutions to the sine-Gordon equation.'' 
This coincidence i s  not accidental. As has already been 
repeatedly pointed out, starting from Enz's paper14 
(see also Refs. 8 and 15), we can directly derive the 
sine-Gordon equation from the equations (1) in two 
limiting cases: 1 + c << 1 and c >> 1. Both of these cases 
correspond to the conversion of the magnet under in- 
vestigation 'into a ferromagnet with an anisotropic easy 
plane. Since the use of the sine-Gordon equation to de- 
scribe magnetization dynamics i s  extensively discussed 
in the literature, we would like to make some remarks 
apropos of the indicated passages to the limit. An es- 
sential condition for the derivation of the sine-Gordon 
equation from the equations (1) with c >> 1 to be possible 
i s  that there exist a characteristic length-dimensional 
parameter of magnitude of the order of 1,. In the pres- 
ence of such a parameter we can estimate the values 
of the derivatives 

which enables us to simplify the equations. 

We have the exact solutions to the equations (1) for al l  
c, from which i t  follows that the spatial variation of the 
magnetization occurs over distances of the order of I, 
only when w > 0. Consequently, the transition to the 
sine-Gordon equation is justified in the case in which 
w > 0. But the sine-Gordon equation i s  a second-order 
differential equation with respect to the time, and the 
sign of the frequency w i s  not important for i ts  solution. 
Therefore, the question ar ises  whether the equations 
(1) go over into the sine-Gordon equation in the case in 
which w < 0. 

In the w < 0 region, a t  low values of the velocity V, 
the characteristic length parameter 1 determining the 
spatial variation of the magnetization turns out to be 
very small (i.e., 1 << I , )  when c >> 1. Therefore, ~ n z ' s ' ~  
procedure for making the transition to the sine-Gordon 
equation turns out to be unjustified. 

Thus, the solutions to the sine-Gordon equation de- 
scribe only those dynamical magnetization states which 
correspond to w >  0. An entire class of states (for w 
< 0) found in the present paper, and described by exact 
solutions to the equations (1) remain, when the sine- 
Gordon equation i s  used, unaccounted for and uncon- 
sidered. 

THE SOLITON ENERGY AND THE QUANTUM 
ENERGY SPECTRUM OF THE BOUND STATES IN 
THE XYZ MODEL 

The quasiclassical quantization yields the correct  en- 
ergy spectrum when N >> 1. If, on the other hand, the 
quantum number N i s  not high, then the quantum energy 
values may differ from the quasiclassical values. To 
be sure, in the quantum mechanics of an isolated par- 
ticle we encounter cases in which the quasiclassical 
energy spectrum coincides exactly with the essentially 
quantum spectrum. Such a property i s  possessed, for  

example, by the spectrum of the one-dimensional 
harmonic oscillator. 

Similar cases a re  known in the theory of solitons. It 
was shown at  one time1' that the energy spectrum of the 
bion (double soliton) in a system described by the sine- 
Gordon equation coincides with the spectrum for the 
corresponding quantum system. It has also been 

that the quasiclassical energy levels of 
a soliton in a one-dimensional isotropic ferromagnetic 
coincide with the exact quantum energy levels for spin 
complexes in an atomic chain with isotropic exchange, 
which chain i s  the quantum analog of the isotropic fer- 
romagnet. 

It i s  interesting, in view of the foregoing, to ascer- 
tain the existence of a similar correspondence in the 
system under investigation here. The quantum analog 
of the above-considered classical magnet i s  the so- 
called XY Z model (spin $). The transition from this 
model to the classical biaxial ferromagnet is well 
known (it is briefly discussed in Ref. 8). The two-pa- 
rameter low-lying energy levels of the bound spin 
states in the XYZ model have been obtained by Johnson 
et al." The formula for the indicated energy levels i s  
given in Ref. 17 for certain relations between the ex- 
change integrals J,, J,, and J,. The transition to the 
classical model requires different relations; therefore, 
we rewrite this formula in the following form (J,> J,, 
> J, > 0): 

K ( k  ) ( 1  =-I E = A - A - L -  [ s i n 2 c +  rm2-- Q ktcz sn2(q.  k,') 
K ( t ' )  SII (q, kt') 2 2 

Q Q 'It x [ s ina ,  + cos2-sn2(q. k g 1 ) ]  , 

I" 
2 (21) 

where K(k) is the complete elliptic integral of the first  
kind; the moduli t and t' of the elliptic integrals a r e  
given by the relations 

t= [ ( jz2-J;) / (Jz2-j*z)]  '&, t'= (I-t2)'h, (22) 

while the modulus k, is defined a s  the root of the equa- 
tion 

~ ( k , ' ) / ~ ( k , )  = [ ~ ( t ) - u / ~ ( t ' )  k,'=(l-kra)%, (23) 

where 6 is, in  its turn, found from the condition 

cn (25, t )  =IJJ,. (24) 

The two parameters on which the energy E depends 
a r e  the continuous quantity Q, which varies in the inter- 
val (-2n, O), and the discrete quantity 

q=NK(k,)51K(t1) .  (25) 

where N < [ ~ ( t )  - 61 /1: is a whole number. 

The procedure for  making the transitions to our model 
corresponds to the assumption that all the exchange in- 
tegrals a r e  close in magnitude: 

lj=4Ma2a~loZ[1+'/21," (a/1,)2], j=s, I/, z, (26a) 

where a i s  the interatomic distance (a<< 1,) and the j3JT 
a r e  three constants determining the single-ion aniso- 
tropy in the continuous model: 

l=IZe-I;, i+e=Jzc-J~c. (26b) 
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Since a / l ,  << 1, i t  follows from (24)- (26) that 

Therefore, in all the formulas (21)-(24) we should, 
leaving the quantiy b in the definition of q, go over to 
the limit 5 - 0: 

The quantity q in (27) coincides with the quantity I/Z, 
[see (20)1 when s = $, i. e., is proportional to the adia- 
batic invariant (I= NE). 

From (22) and (23) we find that in the limit 5-0 

We see that the modulus of the Jacobi sine entering into 
the expression (21) coincides with the modulus k in the 
formula (19). The functional dependence of the energy 
(21) on the two parameters Q and q i s  equivalent to the 
dependence of the bion energy (17) and (19) on the mo- 
mentum P and the adiabatic invariant I(Q = aP/E- n, q 
=Z/I,). It i s  not difficult to verify that all the coeffi- 
cients in these dependences a re  identical. 

Thus, in the case in which the single-ion anisotropy 
of the continuous model i s  of an origin described by the 
asymptotic relations (25) and (26), the quasiclassical 
energy spectrum of the bion coincides with the quantum 
energy spectrum of the bound spin states. 

The authors a re  grateful to M. M. Bogdan for useful 
discussions. 

')1n fact y is a third continuous parameter analogous to the 
quantity cp, in Ref. 4. But when w+O the dependence of the 

solutions on y is  trivial. Below we shall see that such a 
dependence appears only when we go to the w-0 limit. 

2)~klyanid has shown that the equations (1) also possess an 
additional infinite set of integrals of motion that do not have 
a simple and obvious physical meaning. 
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