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A model of two-dimensional incommensurate crystals that describes the incommensurate structures formed 
in submonolayer films through compression of the commensurate structures along one of the substrate's 
crystallographic directions is considered. A self-consistent solution to the problem of the incommensurate 
crystal on an elastic substrate is obtained. It is shown that the interaction between the solitons via the elastic 
deformations of the substrate is determined not by the amplitude of the potential relief, but by the ratio of the 
elastic constants of the film and the substrate. The mechanism underlying the melting of the soliton lattice is 
investigated, and it is shown that the substrate-mediated elastic interaction alters the phase diagram. The 
dependence of the melting point and the Debye-Waller factor of the soliton lattice on the coverage is found. 

PACS numbers: 68.60. + q 

Two-dimensional incommensurate crystals a r e  the 
subject of intensive experimental and theoretical in- 
vestigations (see Ref. 1 and the references therein). 
Theory predicts the presence of an acoustic mode in 
the vibrational spectrum of such a crystal despite the 
presence of the potential relief of the substrate. The 
experimental investigations of submonolayer films on 
metallic substrates have shown that the excitation spec- 
trum of incommensurate structures indeed contains a 
gapless branch2 The number of different adsorbate- 
metal surface systems in which structures incommen- 
surate with the substrate a r e  observed i s  extremely 
large. Among them can be distinguished an entire 
class of systems in which the incommensurate struc- 
ture i s  produced through the compression of the com- 
mensurate structure along one of the crystallographic 
directions of the ~ u b s t r a t e . ~ - ~  Such incommensurate 
structures can be described with the aid of a simple 
model of a two-dimensional anisotropic crystal in 
which only the adatom displacements along the direc- 
tion of the compression a r e  considered. 

The behavior of such a model has been theoretically 
studied in various starting from Frank and 
Van der Merwe's classic paper.7 It has been estab- 
lished that a periodic lattice of solitons-compression 
o r  extension regions compensating for the difference 
between the lattice constants of the film and the sub- 
strate-occur in the ground state of such an incom- 
mensurate crystal in the vicinity of the commensurabil- 
ity point. It i s  precisely this lattice that i s  responsible 
for the acoustic branch in the excitation spectrum. (Xlt- 
side the solitons the adatoms reside at the minima of 
the potential relief. Therefore, the properties of the 
incommensurate crystal near the commensurability 
point a r e  in fact determined by the behavior of the 
soliton lattice. The properties of such a lattice a r e  
studied in the present paper. To do this, we systemat- 
ically reduce the problem of the soliton lattice of an 
incommensurate anisotropic crystal to the problem of 
the XY model, whose properties have been studied in 
detail. It i s  shown that, in the long-wave limit, the 
Hamiltonian and the correlation function of the incom- 
mensurate crystal can be expressed in terms of the 

Hamiltonian and the correlation function of the XY 
model. The direct interaction between the solitons 
(because of their slight overlap) decreases exponen- 
tially with distance. But the interaction via the elastic 
deformations of the substrate decreases according to 
a power law, and i s  substantial in the case of large 
lattice constants. Therefore, below we solve the prob- 
lem of the incommensurate crystal on an elastic sub- 
s t ra te  self-consistently. 

It i s  significant that the energy of the interaction of 
the solitons via the substrate i s  determined not by the 
small  amplitude of the potential relief of the substrate, 
but by the ratio of the elastic moduli of the film and the 
substrate, which ratio i s  not particularly small. One 
of the consequences of the interaction via the elastic 
deformations of the substrate i s  the alteration of the 
phase diagram. The question of the phase diagram 
is considered in Refs. 12-14. It i s  shown12113 that, when 
the degree of commensurability i s  equal to, say, unity, 
the melting point of the soliton lattice tends to zero  a s  
the commensurability point i s  approached. But the 
melting point does not decrease a t  higher degrees of 
commensurability.'3 In the present paper we show that, 
even when the degree of commensurability i s  equal to 
unity, the melting point has a finite minimum because 
of the interaction via the elastic modes of the substrate. 
The results  obtained in the present paper allow us to 
predict, besides the phase diagram, the dependence of 
the superstructure reflections of the soliton lattice on 
the temperature and the coverage. Some of the results 
obtained below (the dislocation mechanism of soliton- 
lattice melting) were published earlier." 

2. CONSTRUCTION OF THE MODEL 

A s  a rule, two-dimensional anisotropic incommen- 
surate crystals a r e  formed on faces with a fluted poten- 
tial relief of the W(112) type, but there a r e  examples of 
such systems on faces with a relatively isotropic relief, 
e.g., CO-Pt(lll), CO-Ni(ll l) ,  and CO-Pd(111) (Ref. 
4). The majority of the available systems a r e  chemi- 
sorbed adfilms, but there i s  also an example of physi- 
sorbed systems: Xe-Cu(ll0) (Ref. 6). In the case of 
chemisorption on faceted faces,395 the incommensurate 
structures a r e  formed because of the presence of 
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strong repulsion due, for example, to the presence of 
a large dipole moment. As adsorbates we can use 
alkali (Li, Na,K, Cs), alkaline-earth (Sr, Ba), and rare-  
earth (La) elemjnts; a s  substrates, the faces W(112), 
Mo(112), Re(1010), and Ni(ll0). The symmetries of 
these structures may be different: e.g., the unit cell 
may be centered [K-W(112) (Ref. 5)], primitive 
[Li-W(112) (Ref. 5)], o r  of a more complex structure 
[ ~ a - ~ i ( l l 0 )  (Ref. 3)]. 

For the purposes of the present paper (the investiga- 
tion of the general properties of the soliton lattice), i t  
i s  convenient to consider the simplest case of a rect- 
angular primitive unit cell near the point a t  which the 
fundamental lattice constants of the film and the sub- 
strate a r e  equal. The contraction (or extension) of such 
a structure a s  the coverage i s  increased (decreased) oc- 
curs along the troughs of the potential relief. Two-di- 
mensional anisotropic crystals can be described by a 
model in which only the displacements along the direc- 
tion of the contraction a r e  considered. In the case of a 
primitive unit cell the elastic Hamiltonian of such a 
model without allowance for the potential of the sub- 
strate has the form 

where X, and A, a r e  the elastic moduli and ul i s  the dis- 
placement along the direction of the contraction of the 
structure. A term of the type (Bul/ax)(8~!/8~) i s  for- 
bidden by the symmetry of a structure with a primitive 
unit cell. Allowance for such a term can (under cer- 
tain conditions) only lead to the inclination of the soliton 
lattice, and does not al ter  the results of the present 
paper. We shall assume that the potential p(x) of the 
interaction with the substrate (the modulation of the 
potential relief along the troughs) i s  much smaller than 
the interadatom interaction energy. The strong in- 
equality may not be satisfied in an actual experimental 
situation, but the qualitative picture should not change 
if the incommensurate phase indeed exists. As indicated 
above, the problem can be simplified further by con- 
sidering the situation in which the lattice constants, a 
and b, of the film and the substrate a r e  nearly equal to 
each other. The results can easily be generalized to the 
case of arbitrary degrees of commensurability, i.e., of 
arbitrary values of a/b= m/n.  

The Hamiltonian of the described model and the 
properties of the ground state have been well known 
since the publication of Frank and Van der Merwe's 
paper.' Therefore, we shall only write'down the Hamil- 
tonian and the ground state. The Hamiltonian itself has 
the form 

or, in dimensionless variables, the form 

Here we have made the following change of variables: 
for the potential of the substrate p(cp) = p, f (q), where 
po= Iminf(cp)l, f(cp)a - 1; for the coordinates x and y 

and for the displacement 

To find the ground state of the Hamiltonian (3), we must 
vary (3) with respect to q ,  which leads to the equation 

Here the dot denotes differentiation with respect to q. 
We shall seek the ground state a s  a function of only s. 
The method of obtaining the solution i s  described in 
detail in Pokrovskii and Talapov's paper.' The solution 
(i.e., the ground state) cp,(s) i s  given by the integral: 

The energy density i s  given by the expression 

where I1(c) and Iz(c) a r e  defined by analogy with the 
complete elliptic integrals: 

Normally, the quantity c (see Ref. 1) i s  found from the 
condition for the energy to be a minimum. This corre- 
sponds to a system in which the chemical potential (the 
pressure of the gaseous adsorbate) is prescribed. This 
situation i s  realized in the case in which an inert gas i s  
adsorbed on graphite. In the case of metal adfilms the 
lattice constant of the substrate i s  strictly prescribed 
by the deposition conditions. Therefore, in this case 
the quantity c is determined from the condition 

The solution (5)-(8) describes a periodic superlattice 
formed by the adatoms. Over the period 1 of this lat- 
tice ( 1 =  2n/p) the function q, changes by 2n. This 
change i s  concentrated in a region (i.e., in a soliton) 
of dimension 1, [I, - 1 in the measurement units used 
in (4)]. Outside the soliton the change in q, is expo- 
nentially small. The most important property of the 
solution (5)-(8) i s  the presence of a continuous trans- 
lation group. This allows us (when 2 >  1,) to speak of a 
soliton lattice and i ts  elastic properties. The inter- 
soliton interaction energy decreases exponentially with 
increasing I in the solution (5)-(8). But it turns out 
that there also exists a power contribution to the soli- 
ton repulsion energy. Although this contribution i s  
small compared to the characteristic energy of a soli- 
ton, it is decisive in the case of large soliton-lattice 
constants. One of the causes of the power-law decrease 
of the intersoliton interaction energy i s  the deformation 
of the substrate. 

3. THE ELASTIC SUBSTRATE 

The adatoms undergo displacements from the minima 
of the potential relief during the formation of the soli- 
ton, and this leads to the deformation of the elastic 
substrate. These deformations decrease according to 
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a power law, and guarantee the power-law weakening 
of the interaction between the solitons.15 To carry  out 
an accurate analysis of this intersoliton interaction 
mechanism, we must solve the self-consistent problem 
of the incommensurate crystal on an elastic substrate. 
For simplicity of analysis, we shall assume that the 
substrate is elastically isotropic. Furthermore, we 
shall assume that the substrate i s  significantly more 
rigid than the adfilm (the criterion will be derived be- 
low), which corresponds to the experimental situation 
for adatomi on metallic substrates. In this case the 
substrate deformations will be considerably smaller 
than the adfilm deformations, and the interaction be- 
tween the film and the substrate can be taken into ac- 
count by considering in the film-substrate interaction 
energy the displacement wt  = w - us (where us is the 
deformation of the substrate along the x axis) instead 
of the displacements w. As a result, the Hamiltonian 
of the adfilm will have the form 

(9) 
Since in the system under consideration the solitons 

a re  oriented along the y axis, it i s  sufficient to con- 
sider only the substrate deformations in the xz plane. 
To the surface of the crystal corresponds z = 0; to the 
substrate, z >O. Then the Hamiltonian for the elastic 
deformations of the substrate can be written in the 
form16 

where the a,, a r e  the elements of the s t ress  tensor and 
the u,, a re  the elements of the strain tensor. To find 
the elastic-deformation energy of the substrate for a 
given u,(x), we must solve the equations of the two-di- 
mensional elasticity theory with the boundary conditions 
uSx(x, 0) = Bu, /~x ,  u,,(x, 0 )  = 0. The corresponding equa- 
tions have the form16 

do, ao,. - + - ao.. ao,. 
az 

, t = O  
ax az . 

The solution to these equations has (in the Fourier 
representation with respect to the x coordinate) the 
following form: 

Here E i s   young'.^ modulus and u is the Poisson coeffi- 
cient. Substituting the solution (12) into (lo), and per- 
forming the integration over z, we easily obtain an ex- 
pression for the elastic-substrate-deformation Hamil- 
tonian a s  a function of the adfilm-induced deformations 
of the substrate: 

Making the substitution $= q,(ul - + (k, - q,)x in (91, 
and minimizing the elastic energy a t  a fixed value of $, 

we easily obtain an expression for the Hamiltonian of 
an adfilm on an elastic substrate: 

where 

Here A, i s  the effective contribution to the rigidity of 
the adfilm a s  a result of the elastic deformations of the 
substrate. The requirement that the substrate be rigid 
implies that X, >> A,. An important characteristic of the 
expression obtained i s  the renormalization of the 
parameters of the adfilm's Hamiltonian [besides the a p  
pearance of a nonlocal substrate-mediated interaction 
(see also Ref. IT)]. This is the difference between the 
above-obtained solution and the solution given in Ref. 
15. In contrast to the results obtained in Ref. 15, the 
above-presented self-consistent solution allows only 
soliton repulsion (in the case of an elastically isotropic 
substrate). The quantity B$/Bx i s  nonzero only in the 
region of the soliton; outside the soliton $ varies ex- 
ponentially slowly. Therefore, in the f i rs t  approxima- 
tion in A,/x, the contribution to the energy density from 
the substrate-mediated interaction can be taken into 
account by substituting the solution q, (with the re- 
normalized constants X l  and p') in place of $. 

In the case in which 1 >> lo, we can replace the integra- 
tion in (14) over the entire x and x' by integration over 
the lattice constant and summation over the solitons. 
As a result, we easily obtain the contribution to the 
energy density from the interaction of the solitons: 

The power-law character of the dependence (16) and, 
what i s  more, the magnitude of the exponent play an 
important role in the thermodynamics of the soliton 
lattice. It should be noted that the interaction mediated 
by the elastic modes of the substrate is the only inter- 
action between the solitons that falls off a t  T =  0 ac- 
cording to a power law. The presence of long-range 
interactions (i.e., interactions that fall off according 
to  a power law) between the adatoms does not change 
this assertion, since this circumstance in no way 
manifests itself in the calculations performed on the 
basis of the theory of elasticity. At T # 0 there is 
another reason for the appearance in the energy density 
of a contribution that is a power function of 1: the colli- 
sions between the solitons. The magnitude of the con- 
tribution of this nonlinear process is computed in Ref. 
1, and i s  equal to 

where c, is the density of the energy in the soliton: c, - 
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4. THE SOLITON LATTICE IN THE X Y  MODEL 

The soliton-soliton interaction energy decreases a s  
the soliton spacing increases. On the other hand, the 
energy connected with the destruction of the soliton it- 
self is not small, and does not decrease with increasing 
I .  As follows from the Hamiltonian (3), this is, in 
order of magnitude, equal to 

qa-"A,?.,) "lo'-q,-2 (?",A,) ". 

Thus, we can, in the case of excitation energies much 
lower than q ; ; 2 ( ~ l ~ ) 1 1 2 ,  consider only the elastic de- 
formations of the soliton lattice (flexure, compres- 
sion). To describe such long-wave excitations, i t  is 
convenient to use the effective Hamiltonian for the 
soliton-lattice displacements, which i s  obtainable 
from the Hamiltonian (3) through averaging over the 
period of the soliton superlattice. The elastic moduli 
of the soliton lattice i s  most simply obtained by av- 
eraging Eq. (4) for the case of deformations with a 
long wavelength over the period of the soliton struc- 
ture. For this purpose, we use a perturbation-theory 
expansion similar to the one used in Ref. 1 to deter- 
mine the spectrum of the small vibrations. If p,(s) [see 
(5)-(8)] is the ground state.of the Hamiltonian (3), then 
po(s + u), where u = const, i s  the solution describing the 
displacement of the entire soliton lattice through a dis- 
tance u .  We shall seek the solution cp(s +u) for the in- 
homogeneous deformation in the form of an expansion 
in powers of the derivatives of u. Then in the first ap- 
proximation 

au 
cp(s+u) =cpo(s+u)+ --Ti ( s i u ) .  as (18) 

Substituting (18) into (4), we obtain for pl(s + u )  from 
the requirement that (4) be fulfilled in first order in 
h/Bs the equation (a prime denotes differentiation with 
respect to s): 

cp,"- (cp$/cp0')qi+2qa =o. (19) 

The solution to Eq. (19), that i s  periodic in s with 
period 1, has the form 

In the next order in the derivatives, we have 

The t derivatives in this order should not be included in 
the expansion yet. Substituting (21) into (4), and making 
allowance for (19), we obtain the equation 

Multiplying it by p;, and averaging over the soliton- 
lattice constant (with allowance for the periodicity of 
Po and pz), we obtain the following equations: 

d3 
li ,-i- --- dl ,  - 1 I - I* ( E )  

q o z  d E .  h = I J i ~ r ( z ) ) i l z - - .  I I ( E )  
0 0 

A similar computational procedure allows us to obtain 
the elastic-deformation Hamiltonian of the soliton lat- 
tice: 

In the original coordinates x and y, we have 

where v = u(lJo/~l)llZq;l i s  the soliton displacement ex- 
pressed in terms of the original coordinates, 

The behavior of A, and 4 at large I can be represented 
as follows: 

where A i s  a numerical constant depending on the de- 
tails of the potential f (p). 

The obtained Hamiltonian i s  isomorphic to the Hamil- 
tonian of the XY m ~ d e l . l ~ - ~ ~  Let us consider how the 
adatom-displacement correlation function C(R - Rr) 
can be expressed in terms of the correlation function 
of the XY model. By definition, we have 

G(R-R') =(poa exp [ i q o ( z + w ( R )  - X I - w ( R f ) )  1) 
=poZ exp (ik, (z-x') ) (exp [ i ( q  ( R )  -cp (R') ) ] ). (27) 

Here R =  (x,  y), p, i s  the amplitude of the density wave, 
and the brackets (. . .) denote averaging over the states 
of the Hamiltonian (3). We shall be interested in the 
asymptotic form of G(R - R') at distances much greater 
than the soliton-lattice constant. Then the function 
(P(R) can be represented in the form ( ~ ( R ) = q ~ [ s + u ( s ,  t ) ] .  
The function exp[icpo(s)] can be expanded in a Fourier 
series,  since po(s) i s  a periodic function with period 
I .  We can, in investigating the asymptotic form of the 
correlator (27), limit ourselves to the first  harmonic. 
As a result, we obtain 

Here G ,  is  the correlation function in the Xi' model and 
the subscript s attached to the brackets indicates that 
the averaging i s  performed over the states of the 
Hamiltonian H , ,  (251, of the soliton lattice. Notice 
that the expression (29) for the correlator does not go 
over into the correlator in the commensurate structure 
when we go to the limit I - *, since i t  i s  derived under 
the assumption that the distances a re  much greater 
than the soliton-lattice constant. The above-presented 
results  show that, in the long-wave asymptotic form, 
the problem of the two-dimensional incommensurate 
anisotropic crystal in the vicinity of the commensurabil- 
ity point reduces to the problem of the XY model. 

The behavior of the Xi' model i s  decisively affected by 
the topologically stable defects: the vortices. In the 
present system they correspond to dislocations in the 
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soliton Lattice. Let us consider how these dislocations 
a r e  formed 

The character of defects in systems with a continuous 
symmetry group depends, in the presence of perturba- 
tions that break this symmetry, on the dimensions of 
the region under c o n ~ i d e r a t i o n ~ ~ e ~ ~  The problem con- 
tains three characteristic lengths: the interatomic 
distance a, the soliton width I,, and the soliton spacing 
1; the quantity 1, also determines the scale of the local- 
ization of the perturbations in the adatom lattice. 
Therefore, a dislocation in the adatom lattice in the 
region of distances a < r < 1, will change into a soliton 
with the end a t  the center of the dislocation for dis- 
tances I, < r < I. Such a soliton with the end in the re- 
gion of distances r > 1 can be regarded a s  a dislocation 
in the soliton lattice. In this region of distances we can 
write the solution in the form (18), in which we must 
substitute for the displacement v the standard solution 
for a dislocation: 

Here the lattice constant I plays the role of the Burgers 
dislocation vector. In the case of a degree of commen- 
surability a/b = m/n one extra row of adatoms is equiva- 
lent to m solitons. Therefore, the smallest Burgers 
vector will be equal to ml. This circumstance plays an 
important role in the estimation of the contribution of 
the dislocations to the thermodynamics of the system. 

5. MELTING AND DIFFRACTION REFLECTIONS 

The conclusion that the soliton lattice and the XY 
model a re  isomorphic was drawn above without allow- 
ance for the mechanism underlying the long-range re- 
pulsion (16) and (17). But the isomorphism should re- 
main if the change that occurs in the compression modu- 
lus A, a s  a result of the presence of the interactions 
(16) and (17) is  taken into account. Therefore, the 
mechanism underlying the melting of the soliton lattice 
should also be similar to the underlying phase tran- 
sition in the XY model. 

The mechanism underlying the phase transition in the 
XY model i s  connected with the behavior of the vor- 
t i c e ~ . ' ~ - ~ ~  Below the transition temperature the vor- 
tices form bound pairs; above this temperature these 
pairs break up into separate vortices. In the process 
the power-law decrease of the correlators, which is 
characteristic of the ordered phase in the XY model, 
is replaced by an exponential decrease in the high-tem- 
perature phase. Therefore, in the case of the soliton 
lattice the phase transition (the vanishing of the elastic 
moduli at large distan'ces) will occur a t  the point where 
the dislocation pairs break up into individual disloca- 
tions. The corresponding temperature T, will be given 
by the expression for the transition temperature for the 
XY model: 

The additional contribution to the compression modulus 
from the terms in the energy density (16) and (17) can 
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be computed by using the fact that the compression 
modulus 

As a result, for R, and A, we have: 

Substituting (33) into (31), we obtain an expression for 
the melting point: 

If m2 > 64, then the expression (34) i s  meaningless. 
This means that, for large m, the soliton lattice is 
stable against the production of dislocations because 
of their long Burgers vector and the presence of an 
entropy-governed repulsion.13 If m = 1,2,  then the 
melting temperature has a minimum in the vicinity of 
the commensurability point (1 -m), but it does not 
vanish either. This i s  prevented by the presence of the 
interaction mediated by the elastic modes of the sub- 
strate. The minimum value T,,, of the melting temper- 
ature is given by the following expression: 

Thus, if the ratios F,/x, and x,/x, a r e  not too small, 
then T,,, can be fairly high In the considered case of 
metal-film systems the dependence T,(l) automatically 
gives the dependence of T, on the coverage 0, since 1 - I O - @,I -I, where O, i s  the coverage of the commen- 
surate structure. For example, in the case in which 
the degree of commensurability i s  equal to unity I 
= a l 1 - 8 ) - ' .  

The above-presented results  allow us to compute the 
dependence of the intensity of the superstructure re- 
flections of the soliton lattice on the temperature and 
the coverage. The general form of the diffraction pat- 
tern  in the incommensurate phase i s  derived in Ref. 1. 
In the vicinity of the point where the degree of commen- 
surability i s  equal to unity (i.e., where a/b = 1), the 
diffraction pattern consists of a central peak a t  q, 
= k,, which corresponds to the commensurable struc- 
ture, and satellites a t  q =  k,* 2r/l, where 2n/l i s  the 
reciprocal lattice vector of the soliton structure. At 
low temperatures, i.e., a t  temperatures lower than T,, 
the decrease of the intensity I of the superstructure re- 
flections with temperature will be  described by the 
Debye-Waller factor W: 

nT 'w =- In Rq,. 
P (A+Az) 

Here R i s  the characteristic (minimum) dimension of 
the system. The first  factor in (36) i s  simply the soliton 
density, which tends to zero as the commensurability 
point is approached. The behavior of the second factor 
in the vicinity of the commensurability point is deter- 
mined by the quantity 12(A14)1f2. Using the expressions 
(33) for A, and A,, we obtain for W for I-= the ex- 
pression 
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Thus, W has a finite limit at the commensurability 
point. 

Let us  consider the experimental consequences of the 
resul t s  obtained. The f i r s t  of them i s  the possibility of 
observing a minimum in the melting temperature of the 
soliton lattice at the commensurability point. The 
second i s  the behavior, described by the formulas (36)- 
(37), of the intensity of the superstructure reflections 
at low temperatures. The experimental characterist ic  
determining the feasibility of the observation of the in- 
dicated phenomena i s  the limited resolving power of the 
apparatus (i.e., the coherence length). In the case  of 
the LEED method this quantity -100 A. The above- 
presented results  (e.g., for  T,) were  obtained for  an  
unbounded system, or, more exactly, for a system in 
which the distances between the dislocation pairs  are 
significantly smaller  than i t s  dimension. Therefore, 
the melting point was found not to depend on the dis- 
location concentration. But the energy of the disloca- 
tion center i s  high: of the order  of the interadatom in- 
teraction energy. Therefore, the distances between the 
pa i rs  can be greater  than the coherence length even at 
T,. Therefore, the smearing of the superstructure re- 
flections can occur at temperatures significantly higher 
than the T,, (34), for an unbounded system. 

The quantity 1, (36), should go to ze ro  near the com- 

mensurability point like 1-2. Therefore, as a function 
of the coverage 0, 

I- ( 0 - 9 0 )  =. (39) 
In a real situation the dependence (39) will b e  smeared 
out by the concentration fluctuations in a region of di- 
mension of the order of the coherence length As a 
result,  the intensity I will simply have a minimum, and 
not vanish, at 0 = 8,. 

The author i s  deeply grateful to M. S. Gupalo and V. K. 
Medvedev for a n  explanat io~ of the experimental situa- 
tion and to V. L. Pokrovskii for  numerous discussions. 
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