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We analyze the conditions for the onset of linear singularities of the anisotropy field of a uniaxial ferromagnet 
with a dislocation. The mechanism that produces domains of a new phase at the dislocations and is due to the 
existence of these singularities is discussed. 
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Crystal-structure defects  a r e  known to  influence w.'=R,a2+K,a~+R;.a,,uz, (2) 
strongly the initial stage of domain-structure formation 
in magnets (see,  e.g., Ref. 1). In c rys ta l s  of the yttri- RI=Ki+B,e,,+B2e.., (3) 

um-iron-garnet type, having a la rge  magnetostriction, Kuu=Baeur, Kyz=B'errr (4) 
this influence can be due to dislocation s t ra ins  c i j  that 
form2-* a local crystallographic magnetic anisotropy. where B,  a r e  the magnetoelastic-coupling constants. 

The  magnetic-anisotropy field i s  in fact produced at  the 
A detailed description of the distribution of the mag- distribution of a o ( r )  at  which w: is a minimum. Far 

netization M in a crystal  with a defect ca l l s  for  taking 
f rom the defect, this  field is uniform (a!,,= i1) and can 

into account (besides the magnetostriction and magnetic- 
be described by a single angle dr) (a,, =O) reckoned in 

anisotropy energies) the exchange, magnetostatic, and 
the y z  plane f rom the z axis, with $ E  [-n, n]. Then 

elastic energies. If, however, the thickness 6 of the 
domain wall in a defect-free crystal  i s  l e s s  than the tg 2$ (r) =-R,,/K,', (5) 
length of the characteris t ic  inhomogeneity connected 
with the strain tensor c i  J r ) ,  the exchange can be ne- 
glected. It i s  also possible to neglect the elast ic  
s t ra ins  due to the inhomogeneity of M. Their  relative 
contribution i s  proportional to the magnetoelastic-inter- 
action constant, which is5 of the order  of to  lo-' for 
most materials ,  and i s  smal l  compared with the mag- 
netic-anisotropy energy. It i s  important to take into 
account the s t ray  fields due to the magnetization gradi- 
ents. Fo r  simplicity, however, we shall a l so  neglect 
them completely. 

The problem reduces thus to a description of the 
(vector) field of the magnetic anisotropy in an inhomo- 
geneous ferromagnet. We consider in this  communica- 
tion the general regulari t ies  of i t s  distribution in ferro-  
magnets with linear crystal-structure defects. We 
show that this  field can acquire linear singularities that 
lead to multidomain states ,  and discuss the conditions 
for  the existence of these singularities with account 
taken of the inhomogeneous-exchange energy. 

where Klt is defined by Eq. (3) in which B, i s  replaced 
by Bl - B,, and r i s  the rad ius  vector in the yz plane: 
in the ca se  considered c i j  does not depend on one of the 
coordinates ( x ) ,  and the problem i s  two-dimensional. 

If the renormalization of the magnetic-anisotropy 
constant i s  weak, namely if the s igns of El1 and K, a r e  
the  same,  then the maximum (a t  lk,, I >> lkI1 I )  deviation 
of $ from $,= 0 and &, = n (the equilibrium value f a r  
f rom the defect) does-not exceed n/4. The  deflection 
angle a! i s  correspondingly likewise smal le r  than n/4. 
The  existence of solutions of this  type was  noted also in 
Ref. 7. 

The situation is different when the magnetic-aniso- 
tropy renormalization is strong. It was shown ear l ie f l  
that the sign of kll can change nea r  the dislocation. 
The intersections of the contour kit= 0 with the l ines 
y  = *z  and y  = 0, on which the sign of k,,,(-E,J changes, 
determine the singular points of Eq. (5) (in three-di- 
mensional space, l ines parallel to the x axis). On trac-  
ing a closed circuit  around each of the singular points 

We consider the simplest case ,  namely a uniaxial 
located outside the dislocation, I,6 acqui res  a coordin- 

ferromagnet of the easy ax is  type, containing a straight ate-independent increment 
edge dislocation. The magnetic-anisotropy energy 
density of a defect-free unbounded crys ta l  i s  A$==$+--9-=*n, (6) 

w.=K,aZZ, K,<O, a=M/ I M I .  (1) where $, and $- a r e  the values of $ at the s t a r t  and end 
of the circuit.  The dislocation line i s  a l so  singular, and 

The dislocation s t ra ins  c,,(r) introduce in the magnetic- 
the value of A$ following a circui t  around this  line does 

anisotropy energy local changes that a r e  comparable in not depend on the shape of the region in which the sign 
magnitude with w, o r  may even exceed it.' Fo r  a dislo- of El1 is changed. If the contour does not enclose any 
cation parallel to the x axis  with a Burgers  vector of the singular points, A$ = 0. 
b I( y the nonzero components a r e  c,,, E,,, and c,, (Ref. 
6). With account taken of the induc-ed magnetic -miso- The shape of the contour Kll = 0, and hence the num- 
tropy, the energy density of the lat ter  in a crys ta l  with be r  and positions of the singular points, depends on the 
a dislocation i s  rat io of the constants B ,  in (3) and (4). Figure 1 shows 

715 Sov. Phys. JETP 55(4): April 1982 0038-5646/82/0407 15-03$04.00 O 1982 American Institute of Physics 715 



FIG. 1. Distribution of a0(r) near the singular line C. 

one of the possible contours 2,' = O(L) , the singular 
points A, B, C, and 0; to be specific, the signs of EYz 
a r e  indicated. The change of a,(r) following a circuit 
around the point C is shown; all the singular points a r e  
equivalent (apart from the sign). If the contour L i s  a 
trifolium? A+ = f371 following a single circuit around 
the singularity 0. 

Thus, a linear defect in an  elastic subsystem (edge 
dislocation) can "induce" linear singularities in a mag- 
netic subsystem if the magnetostriction i s  large 
enough. Since the condition (6) is satisfied for certain 
contours around the points, the a,(r) directions parallel 
and antiparallel to the z axis (as  I r I' m) a r e  found to 
be coupled. This  is illustrated by the solid curves in 
Fig. 2(a). The solid lines in Figs. 2(a) and 2(b) charac- 
te r ize  the position of a, (of the easy-magnetization axis) 
in a defect-free crystal  ( 1  i s  the distance along the cor- 
responding contour from an arbitrari ly fixed point). 

If now the magnetization direction is fixed f a r  from 
the dislocation (e.g., a 11 z), this direction should follow 
a,(r) near a singular line, since the magnetostriction is 
(by assumption) strong. Since a, acquires an increment 
(equal t o  -2a,) on going around the linear singularity, 
and a,  unlike a,, i s  continuous, there should exist a 
region of space in which a turns away from a direction 
close to that of ao( r )  to a direction that almost coin- 
c ides  with -u,(r). The 180' domain walls produced in 
th is  manner should obviously have a thickness -6 and 
bear against the singular lines. 

The distance between the singular lines i s  deter- 
mined by the characteristic dimension r, of the region 
in which the sign of KO1 is changed. If yo< 6, the singu- 
l a r  lines a r e  not resolved: the core  of one singularity 
( a  cylindrical region of diameter -6) overlaps the core 
of another. The magnetization distribution should in 
th is  case  be quasihomogeneous. If, however, r, >> 6 
the gradients of a a r e  small  and the singular lines can 
be regarded a s  isolated (and it i s  precisely in this  case  
that one can speak of domain-wall formation). 

To determine the structure of the produced domain 
wall and the location of i t s  center, we must solve the 
exact problem. It is c lear ,  however, that in the ab- 

FIG. 2. 

FIG. 3. One of the possible distributions of a(r) around an 
edge dislocation, with formation of a domain structure. The 
shaded regions are domain walls. 

sence of external perturbations the length of the domain 
wall should be a minimum. It i s  therefore obvious that 
in the absence of other dislocations, the produced do- 
main walls should bear against singular lines having 
opposite sign and induced by one dislocation (and not go 
off to infinity). In addition, even in this  case  one can 
expect a quasihomogeneous distribution of a ( r ) :  the 
magnetization rotation due to the change of ao( r )  i s  al- 
most offset in the region inside L by the rotation due to 
the transition of a(r) from one local minimum of the 
magnetic-anisotropy energy to another. The resultant 
distribution of a ( r )  is illustrated by the dashed curve of 
Fig. 2(a). We emphasize that a domain wall does exist 
for  this  quasihomogeneous magnetization distribution: 
a ( r )  goes over from one local magnetic-anisotropy 
minimum to another. When the domain wall i s  dis- 
placed from the position shown in Fig. 2(a), the mag- 
netization distribution in it becomes the same a s  in a 
domain wall in a defect-free crystal  [see the dashes in 
Fig. 2(b)]. Regions a r e  then produced with almost op- 
posite magnetizations-domains. One of the possible 
domain s t ruc tures  is shown in Fig. 3 for the case  when 
an external magnetic field H is applied antiparallel to 
the z axis. 

Thus, it i s  precisely because of the existence of lin- 
e a r  defects induced in the magnetic subsystem by a dis- 
location that one can expect the appearance of domains 
with opposite magnetizations, o r  of their seeds. Their 
appearance should be expected on dislocations with edge 
components in materials  with large magnetostriction 
and small  6 (e.g., in gadolinium). In materials  with 
large anisotropy (cobalt) a s imilar  effect can be exerted 
by disclination dipoles-high-energy linear defects 
produced at  large degrees of plastic deformation. The 
elastic field of a disclination dipole can be approxi- 
mately regarded a s  a dislocation field with a large (of 
the order  of the grain size) Burgers  vector. 

We note in conclusion that we have used the analogy 
between the behavior of M and of the elastic-displace- 
ment field of a screw dislocation. In addition, our 
analysis of the onset of singular l ines is valid also in  
the case  of an arbitrary vector order  parameter  that in- 
t e r ac t s  with the elastic subsystem in analogy with (2) 
(for example for an antiferromagnet o r  a ferroelectr ic) .  
The problem of a dislocation as a singular line in an 
antiferromagnet was considered in Refs. 8 and 9. It 
follows from our work, in addition to the resul t s  of 
Refs. 8 and 9, that in antiferromagnets with large mag- 
neostriction an edge dislocation can produce several  
linear singularities of the order-parameter  vector 
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field, and each such singularity can be analyzed in ac- 
cord with Refs. 8 and 9. 

The authors thank E.A. Turov for a discussion of the 
work. 
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