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A quantum theory of elastic scattering of planarly and axially channeled electrons and positrons in a thin 
crystal is developed. The role of coherent (without phonon excitation) and incoherent scattering by the atoms 
of the plane (chain) is investigated. It is shown that the incoherent scattering, which leads to dechanneling, 
does not amount to scattering by an isolated atom. Allowance for the ordered disposition of the atoms in the 
crystal plane (chain) leads to the suppression of the probability for transition between the states of the 
transverse motion of a particle in the channel, including the reduction of the total width of the levels of the 
transverse motion. It is also shown that, when the particle moves along the plane in directions strongly 
differing from the directions of the principal axes, the scattering is incoherent and is determined by the 
thermal vibrations of the nuclei. As the direction of the particle momentum approaches the directions of the 
principal axes, the role of the process in which the particle is coherently scattered by the nuclei of the crystal 
lattice without recoil increases, and can become decisive. At the same time there occurs a relative increase in 
the probability for large-angle scattering. The coherent scattering becomes resonance scattering upon the 
fulfillment of certain conditions. 

PACS numbers: 61.80.Mk 

As i s  well known, the computer simulation of the 
passage of particles through crystals has led to the pre- 
diction of the effect whereby fast ions moving along the 
principal crystallographic axes of a single crystal have 
anomalously long mean free The phenomenon 
of channeling was discovered e ~ p e r i m e n t a l l y , ~ ? ~  and 
subsequently explained theoretically .' 

To investigate the problem of proton dechanneling, 
Lindhard5 used the approximation in which the energy of 
the transverse motion of the channeled particle i s  as- 
sumed to increase monotonically. More rigorous and 
detailed investigations of this problem by c l a s ~ i c a l ~ - ~  
and methods have shown that the law of 
variation of the energy associated with the transverse 
motion of a channeled particle has a diffusional charac- 
ter .  It should be emphasized that the diffusional law of 
variation of the transverse energy i s  due to the pres- 
ence of a large number of energy levels for the trans- 
verse motion of the ion in the crystal channel. The dif- 
fusion rate for protons is determined largely by the in- 
elastic scattering by the  electron^.^*^ In the case of 
channeling of negative particles, the dominant mechan- 
ism determining the diffusion rate i s  the elastic scat- 
tering by the atoms of the crystal. The existing diffu- 
sion coefficients resulting from the scattering on the 
thermal vibrations of the atoms a re  derived essentially 
under the assumption that this scattering occurs on 
isolated atoms.'' The purpose of the present paper is ,  
in particular, to correctly take into account the effect 
of the periodicity of the disposition of the atoms in (on) 
the channeling plane (axis) on the role of the thermal 
vibrations in the scattering. 

in the presence of channeling a r e  the subject of this 
paper. 

8 1. FORMULATION OF THE PROBLEM 

All the processes of electron (positron) scattering in 
a crystal can be divided into elastic processes, i.e., 
those that do not change the state of the crystal, and in- 
elastic processes, which a re  accompanied by the trans- 
fer of energy from the fast particle to the crystal. Let 
us first  consider the elastic processes of electron scat- 
tering in the case of channeling in a plane. This case 
will be considered in detail, since it seems to us to be 
the most interesting case: in the case of planar chan- 
neling of electrons i t  is precisely the elastic scattering 
that plays the major role in the broadening of the levels 
of the transverse motion (see $7). The characteristics 
of the elastic scattering of positrons a s  compared with 
the elastic scattering of electrons and the case of axial 
channeling of electrons will be discussed below (85  4 
and 5). 

Let an electron enter a crystal at an angle smaller 
than the Lindhard angle with respect to a crystallo- 
graphic plane. We shall assume that the thickness of 
the crystal i s  greater than the distances over which 
complete reconstruction of the wave function of the free 
electron motion into quasistationary states of the chan- 
neled particle o ~ c u r s . ' ~ ~ ~ '  The Hamiltonian for the in- 
teraction of the electron with the crystal is given by the 
sum of the Hamiltonians for the interaction with each of 
the charged particles forming the crystal (with allow- 
ance, generally speaking, for the retardation). For the 
elastic processes, the interaction Hamiltonian reduces 

Furthermore, in the case of light charged particles to a sum of the energies associated with the interaction 
(electrons and positrons) the classical diffusion approx- with the individual atoms of the crystal1): 
imation breaks down at low energies, when the number 
of levels in the channel i s  small. The question of the i (r)=z V(lr-rail. (1.1) 
stability of these levels and, in a more general sense, 
the theory of the elementary acts of quantum scattering For an electron energy E 2 1 MeV, O(r) << E in the im- 
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portant interaction region; therefore, the relativistic 
Dirac equation for an electron in the external potential 
~ ( r )  can be reduced up to terms O(@'(~)/E~) (see, for 
example, Refs. 13 and 14) to an equation of the form 

As the zeroth approximation to the interaction Hamil- 
tonian ( l . l ) ,  let us take the continuous potential of the 
plane (near which the channeled electron moves), aver- 
aged over the transverse thermal vibrations of the nu- 
clei: 

where n i s  the density of the atoms in the plane under 
consideration; the y and z coordinates a r e  measured 
along the plane, while the x coordinate is measured in 
the transverse direction; the angle brackets with the 
subscript th here and in the subsequent formulas per- 
taining to plane channeling denote averaging over the 
thermal vibrations along the x axis. The vibrations of 
the various atoms a re  assumed to be independent of 
each other. Each of the coordinates i s  assumed to be 
distributed according to the law , 

where xa i s  the coordinate of the nucleus of the atom, u 
is the amplitude of the thermal vibrations, and xaO i s  
the equilibrium position. Then 

In the zeroth approximation, Eq. (1.2) has the form 

The wave functions of the zeroth approximation that 
satisfy Eq. (1.6) can be represented in the form of a 
product of the wave function of the free motion in the 
(y ,z )  plane and the wave function of the transverse mo- 
tion $$x) satisfying the Schr'ijdinger equation with a rel- 
ativistic mass: 

Let us introduce the two-dimensional coordinate p 
= ( y ,  z) and the two-dimensional momentum p = (p , ,~ , ) ,  
and write q(r) in the form 

The normalization condition has the form 

where d(p - pl) i s  the Dirac delta function and b,,, i s  the 
Kronecker symbol. 

For a channeled electron the relations p22 m2 >> cnZ 
are  satisfied; therefore, the total electron energy E 
can be represented in the form of a sum, E = E,, + E,, 

of the energies of the longitudinal (El, = (pa+ m2)1rz) and 
transverse (E,,)  motions. 

A graphic model for the zeroth approximation of the 
channeling is the peculiar one-dimensional single-elec- 

tron "atom" uniformly and rectilinearly moving in a 
definite direction. In such an approach the difference 
between the true interaction potential (1.1) and the con- 
tinuous potential (1.3) should be treated as a perturba- 
tion leading to the shift and broadening of the energy 
levels of this "atom." In the first approximation the 
level width with respect to elastic scattering is deter- 
mined by the probability for transition of the electron 
from the initial state i into any other state f in unit 
time: 

Here 9 is the scattering angle in the channeling plane; 
drf  is a range of final transverse-motion states, the in- 
tegral over which includes a sum over all the levels 
(except the initial level) of the discrete spectrum and 
integration over the energy of the continuous spectrum. 

The square of the matrix element (1.10) should fur- 
ther be averaged over the thermal vibrations of the 
crystal atoms (see, for example, Refs. 15-17). Such 
averaging of the square of the matrix element i s  entire- 
ly equivalent to the consideration of the inelastic pro- 
cesses  of phonon production (annihilation). Indeed, in 
allowing for the excitation of the phonon state of the 
crystal, we should introduce into the formula (1.10) for 
the transition matrix element additional variables de- 
scribing the phonon state of the crystal lattice. Since 
the final state of the crystal is not fixed in channeling 
experiments, we must sum the expression (1.9) over all 
the final states of the lattice. The phonon energy of the 
crystal excitation is of the order of a fraction of an 
electron volt, and therefore it can be neglected in com- 
parison with the characteristic change in the transverse 
energy of the channeled electron. This means that the 
integral over the variables of the channeled-electron 
state does not depend on the crystal-excitation energy. 
In that case we can use the completeness of the system 
of phonon-state functions for the crystal, finding a s  a 
result that the procedure for taking the phonon excita- 
tion of the crystal into account is equivalent to the aver- 
aging of the square of the matrix element M t f  over the 
initial state of the crystal, i.e., the averaging over the 
thermal vibrations of the atoms.15 In this case each 
displacement coordinate of a nucleus is distributed ac- 
cording to the law (1.4), and the averaging is performed 
with the aid of the formula (1.5). 

Thus, the assertion that in the present paper we in- 
vestigate only the elastic processes of channeled-elec- 
tron scattering should be understood in the sense that 
we do not consider the processes of excitation of the 
electronic states of the crystal (the excitation and ion- 
ization of the bound states of the inner and outer shells 
of the atoms and the valence band, .the heating up of the 
conduction-band electrons, etc.) . 

8 2. COHERENT AND l NCOHERENT SCATTERING 
UNDER CONDITIONS OF PLANAR CHANNELING 

Let us average the square of the matrix element over 
the thermal vibrations of the atoms. We shall, for sim- 
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plicity, assume that the dechanneling of the electron is 
brought about by i ts  interaction with the atoms of one 
plane. In actual fact this approximation is a fairly good 
one, since the mean distance from the electron to the 
plane near which the electron oscillates is smaller than 
the distance to the other planes. The generalization to 
the case in which the other planes a r e  taken into account 
is trivial. 

Using the fact that the longitudinal and transverse 
thermal vibrations of the atoms of the crystallographic 
plane a r e  independent of each other, we obtain, omit- 
ting the tedious intermediate calculations (see the Ap- 
pendix), the following result: 

where 

is the incoherent part, due to the thermal vibrations of 
the crystal-lattice atoms, of the square of the scatter- 
ing amplitude, while 

is the coherent (without phonon excitation) part, due to 
the periodicity of the potential ( l . l ) ,  of the square of 
the scattering amplitude. Here g denotes the various 
reciprocal-lattice vectors in the plane; n, the density of 
atoms in the plane; A, the a rea  of the unit cell, equal 
to  the product of two translation vectors; u,  the ampli- 
tude of the thermal vibrations of the atoms of the plane; 

the two-dimensional Fourier transform of the potential 
of a single atom of the crystal; and q = p, - p,, the mo- 
mentum transfer in the longitudinal direction; the 
brackets with the sign if denote the corresponding ma- 
t r ix  element: 

As is well known, the differential c ross  section for 
elastic scattering of a relativistic particle on a potential 
with finite range a has a forward peak at angles 
0 s (p,a)-'<< 1. Using the law of conservation of total 
energy, the fact that the scattering angle in the plane i s  
small, and the condition E,, >> m, we can derive for the 
momentum transfer q in the longitudinal direction the 
expression 

where A&, is the change in the transverse energy and 
PI " P2' 

The contribution of the coherent part (2.3) to the 
probability for dechanneling will be investigated in de- 
tail in 83. Here we shall limit ourselves to the incoher- 
ent part (2.2) of the square of the scattering amplitude, 
since, a s  will be shown below, in the case in which the 
electron moves in directions strongly differing from the 
directions of the principal axes the transverse-energy- 
level width (as well a s  the probability for transition be- 
tween two discrete levels of the transverse motion) i s  

determined precisely by the incoherent term in (2.1). 

Performing the dp, integration in the expression (l.9), 
and neglecting the quantity ( A E , ) ~ u ~  << 1, we can write 
the expression for the level width r i  in the form 

The first  term of the difference in the curly brackets 
describes the scattering on the "amplitude-smeared" 
transverse oscillations of the density of atoms random- 
ly disposed in the channeling plane. The electron-scat- 
tering probability can then be expressed in terms of the 
cross  section for scattering on an isolated atom. The 
classical analog of this term was considered by Ohtsu- 
ki12 in his investigation of dechanneling caused by the 
thermal vibrations of the nuclei of the crystal. The ap- 
proximation in which the atoms a re  assumed to be ran- 
domly disposed in the channeling plane i s  in fact valid if 
the amplitude of the thermal vibrations of the nuclei i s  
significantly greater than the mean distance from the 
electron to the plane ( x ~ ) " ~  o r  the atom-screening dis- 
tance a. In the self-consistent description of channel- 
ing, when the level widths a r e  smaller thai~ the level 
spacing (see above), the thermal-vibration amplitude u 
i s ,  on the contrary, smaller than (or of the order of) 
the quantities a and ( x ~ ) " ~  even in the heaviest elements. 
In this case the presence of the second term in the inte- 
grand in (2.5) i s  important. For u2/(x2) - 1 or  u 2 / d  - 1, 
this term i s  comparable to the first  term,  and for u2/ 
(x2)<< 1 and u2/d<< 1 it causes a significant reduction in 
the scattering probability. 

The expression (2.5) can be simplified further because 
of the weak dependence of V,(x - x, ) on the energy cf of 
the final state of the transverse motion. The dominant 
contribution to the dechanneling probability is made by 
the final states of the continuous spectrum that lie close 
to the edge of the spectrum (A& = c ,  - E, -u, = 10-100 
eV). The Fourier transform Vdx) of a potential V(r) 
with screening radius a significantly depends on q2 only 
in the region q 2 2  a-', which corresponds to the quantity 
q 2 10 keV. Such a momentum transfer can be given on- 
ly by the second term in (2.4), i.e., by the term pg2B2. 
Thus, we can, with a good degree of accuracy, assume 
that VJx - x') does not depend on the energy of the final 
state of the transverse motion, set q 2 =  p12e2 in (2.5), 
and use the completeness property of the system of 
wave functions If) of the transverse motion: 

It can be shown that the accuracy of such a procedure 
-~((p ,a)-"~) .  We then obtain for the width of the i-th 
level the expression 

Notice that in deriving (2.6) we used neither the explicit 
form of the wave functions of the continuous spectrum, 
nor the explicit form of the averaged continuous poten- 
tial of the planes. The conditions under which we can 
use the completeness property of the system of wave 
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functions of the transverse motion will also be fulfilled 
when we take the periodicity of the continuous potential 
of the crystal planes into account. 

The transition from ordered disposition of the atoms 
in the plane to disordered disposition formally corre- 
sponds to the passage to the limit u.-~o. As has al- 
ready been noted, the first  two t e rms  in (2.6) represent 
the probability for scattering on a single atom displaced 
through a distance x ,  relative to the plane, with subse- 
quent averaging over xa  with the probability density 
P(xa). For a/u << 1 and (x2) 12/u << 1 the third and fourth 
t e rms  a re  small compared to the first  two, and (2.6) 
assumes the form normal for scattering on randomly 
disposed atoms: 

where 

0 

Actually, the considered limiting case i s  illustrative 
a s  a passage to the limit of amorphous targets, and 
does not occur in crystals at normal temperatures. 
Much more real  is the limit of small  thermalvibrations, 
i.e., the limit in which u/a<< 1, u/(x2)'" << 1, when the 
last two terms in (2.6) a r e  comparable to the first  two. 
As a result, we obtain (for u/a<< 1, u/(x2)'"<< 1) 

As u -0, the contribution of the incoherent part to the 
level width decreases according to a square law. But at 
substantial u values the level width for any crystal i s  
determined precisely by the incoherent part of the scat- 
tering even in the u << min{(x2)L'z, a} case,  in which it i s  
quite strongly suppressed (the only exception i s  the 
case considered in $3) .  The incoherent-scattering- 
suppression effect manifests itself most distinctly in 
crystals with a small atomic number Z, since the effec- 
tive screening distance a decreases with increasing Z. 

It should be noted that such suppression of the inco- 
herent scattering i s  due to the periodicity of the crystal 
lattice, and not to the specific nature of the channeling. 
As calculations in the Born approximation show, a sim- 
i lar  suppression of the scattering through angles 
0 s (pu)-' occurs also in the case of the motion of a fast 
electron in a single crystal along directions strongly 
differing from the channeling directions. But it i s  pre- 
cisely in the channeling regime that small-angle scat- 
tering i s  most important, a fact which explains the very 
strong dependence of the level width on the thermal-vi- 
bration amplitude. 

If we formally neglected the transverse thermal vi- 
brations of the atoms in the plane, then the last term in 
the curly brackets in the integrand in (2.9) would be 
absent. If we took into account the transverse, but ne- 
glected the longitudinal, thermal vibrations of the 
atoms, then the first  term would be absent. It is not 

difficult to see that the two t e rms  have the same order 
of smallness. Therefore, in the case in which electron 
scattering in a planar channel is considered the trans- 
verse and longitudinal thermal vibrations of the atoms 
of the crystallographic planes of the crystal are ,  in 
contrast to the case of axial channeling, equally impor- 
tant (see 85). 

It should be noted that the level widths r, do not di- 
rectly determine the dechanneling probability, since the 
dominant contribution to the width at high energies i s  
made by the transitions between the states of the dis- 
cre te  spectrum, transitions which do not lead directly 
to the departure of the particle from the channel. The 
probability for dechanneling can be close to I?, only 
when there a r e  a small number (one o r  two) of bound- 
state levels for the transverse motion, and the thick- 
ness T of the crystal is sufficiently small, i.e., T<1 /  

rim 

At high energies (i.e., in the case of a large number 
of levels) and in a sufficiently thick crystal, the dechan- 
neling process i s  described by kinetic  equation^.^*^*^^ 
The coefficients in these kinetic equations will be ex- 
pressible, in particular, in terms of the "dynamical" 
probabilities W,,,,, for transitions between the levels of 
the transverse motion. Using the results  of this sec- 
tion, we easily obtain the following relation for the 
W,: 

which reduces, when u2/(x2)<< 1, a condition which is 
well satisfied for the majority of the transverse-motion 
states, to the expression 

In the case of a large number of levels the quasi- 
classical matrix elements (n I V,lm) in the expressions 
(2.10) and (2.11) decrease rapidly a s  the difference 
n - m between the quantum numbers increases (the scat- 
tering becomes small-angle scattering). In the classi- 
cal limit, the probabilities W, a r e  replaced by the dif- 
ferential probabilities d ~ l d c p ,  where cp is the scatter- 
ing angle in the plane perpendicular to the channeling 
plane, while the quasiclassical matrix elements 
( n  1 VJx) I m) with nearly equal quantum numbers (i.e., 
for which n - m << n, m) a r e  replaced, in accordance 
with the general principles of quantum mechanics, by 
the Fourier transforms of the quantity V,[x(t)], which 
depends on the time in accordance with the solution, 
x = x(t), to the classical equation of motion. We can 
also find in these t e rms  ($), the mean-square scatter- 
ing angle in the plane perpendicular to the channeling 
plane, in t e rms  of which the diffusion coefficients in 
the kinetic equations a r e  e x p r e ~ s e d . ~ . ~  

Using the formulas obtained, we can also find easily 
the probability per unit time for scattering of a chan- 
neled electron through a particular angle in the channel- 
ing plane. In doing this, we can distinguish two physi- 
cally interesting cases: 
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a) the probability for scattering without a change in 
the state of the transverse motion; 

b) the scattering probability averaged over the beam. 

For the case b) we obtain 

where Q(x)  = C, C, I $, (XI  1 i s  the transverse-coordinate 
distribution function of the particles; C, i s  the probabil- 
ity for  occupation of the i-th transverse-motion level; 
and q = pa, 8 being the scattering angle in the channel- 
ing plane. 

For the case a) the scattering probability has the form 

For 9% >> 1 the cross  section (dw/dq), can be approxi- 
mately written in the form 

+- 
(dwldq).=nn-'K(q) j Irpi(z.) 14P(z.)d&, 

-- 
where K(q) is the square of the three-dimensional 
Fourier transform of the potential of an isolated atom. 

When the number of levels is small, but the crystal is 
sufficiently thick ( T > l / r , ) ,  we must use the density- 
matrix formalism to derive the quantum kinetic equa- 
t ion~ . '~~ ' '  The coefficients in these equations will be 
expressed in terms of both the probabilities W,, for 
transitions between the discrete levels and the probabil- 
ities for transitions directly into the continuous spec- 
trum (i.e., the r,). 

53. THE ROLE OF THE COHERENT TERM IN THE 
ELASTIC SCATTERING OF ELECTRONS 

Let us investigate the contribution of the coherent part 
(2.3) to the scattering probability. The characteristic 
values of the reciprocal-lattice-vector transfers g in 
(2.3) satisfy the condition 

where Uo is the depth of the well of the planar channel. 

Let us consider the case of the simplest lattice: 

where m,n = 1,2 , .  . . and d is the distance between the 
atoms. To each value of m and n corresponds some 
axis with a direction vector perpendicular to the given 
g,. The final electron momentum in the plane i s  con- 
nected with the initial momentum by the relation p, = p, 
+ g,; therefore, in the initial (final) state the electron 
moves in a direction making a small angle 0+(0-) with 
the corresponding axis: 

All the formulas of the present paper have meaning only 
when the initial and final states of the longitudinal mo- 
tion can be represented with a sufficient degree of ac- 
curacy by plane waves, which is possible only when 

where i s  the critical Lindhard angle for the given 

axis.5 In the opposite case the effect of the strong po- 
tential of the axis completely distorts the picture of the 
planar channeling. 

In the region of low energies (E = 1-10 MeV), the 
critical angles of the axial channeling a re  quite large; 
therefore, when the particle moves in the region al- 
lowed by the condition (3.3), the coherent scattering i s  
accompanied either by a transverse-energy change sig- 
nificantly greater in magnitude than the depth of the 
well of the planar channel, o r  by momentum transfers 
by a reciprocal lattice with high Miller indices ((n2 
+ rn2)112 2 10). In the first  case (I A E ~ I  >> Uo) the final 
state of the transverse motion l ies far from the edge of 
the continuous spectrum. Transitions into such states 
a r e  of low probability because of the smallness of the 
matrix element (f 1 V,I i). Physically, this is due to the 
fact that the longitudinal motion of a channeled electron 
is a high-energy motion (El, 2 m), while the energy of 
the transverse motion is small (E,-U,= 10-100 eV), 
and therefore even a small change in the longitudinal 
momentum leads-because of the conservation of the 
sum of the energies of the longitudinal and transverse 
motions-to a relatively large change in the transverse 
energy. In the second case the change in the transverse 
energy can be small, but this process corresponds to 
large-angle scattering (0 >> (p,a)-') in the channeling 
plane, and is substantially suppressed by the smallness 
of the Fourier components VAx)  of the potential. Thus, 
when the electron moves along directions strongly dif- 
fering from the directions of the principal axes, the co- 
herent part in (2.1) i s  strongly suppressed in compari- 
son with the incoherent part. 

But because of the fact that, a s  the energy E!, in- 
creases,  the critical Lindhard angles decrease (like 
E , , - ~ ' ~ ) ,  there a re  among the directions allowed by the 
condition (3.3) those for which the above-adduced argu- 
ments a r e  invalid. Classical estimates show that, when 
the electron motion occurs in a narrow range of angles 
near the capture boundary for any of the principal axial 
channels, the situation is possible in which the coherent 
part (2.3) is comparable to the incoherent part (2.2). 
The contribution of the coherent part to the level width 
r, becomes dominant upon the fulfillment of the condi- 
tion 

where 

g and A&,(g) should satisfy the condition (3.3). 

The condition (3.4) was derived under the assumption 
that the final state of the transverse motion belongs to 
the continuous spectrum. The case in which ~ c , ( g )  is 
exactly equal to the distance between two discrete levels 
of the transverse motion requires special treatment; 
the scattering in this case i s  resonance scattering. 
Formally, the coherent part (2.3) is infinite in this case 
( I  M i f  lL,- 6(0)). Actually, the appearance of the infinite 
factor i s  due to the fact that we neglected the finiteness 
of the crystal and the finiteness of the lifetime of the 
discrete quantum states. In reality, the magnitude of 
the effect will be determined by the number of centers 
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acting coherently over the smaller of the distances T 
and l/r, where T i s  the crystal thickness measured in 
the direction of flight of the electron and l? = I?,+ Tf is 
the total width of the initial and final states. The large 
factor that ar ises  at resonance compensates for the 
smallness, discussed above, of the matrix element 
(i l V, l f ). In this case the contribution of the coherent 
term to the probability W for transition between the 

'f. levels i and f becomes declsive upon the fulfillment of 
the condition 

(2n/d)'uLmI, exp (-gau2) >l, Lml,=min(l/r, T). (3.5) 

The condition (3.5) can easily be satisfied. This is due 
to the simple fact that, when the condition (3.3) is satis- 
fied, only levels of the transverse motion that a re  suffi- 
ciently far apart can be in resonance, whereas the 
probability for incoherent scattering is highest for the 
closest levels, and decreases rapidly a s  the difference 
between the quantum numbers increases. 

The total level width l?, can be determined by the 
i-f resonance transition probability upon the fulfillment 
of a condition similar to (3.4) [much more rigid that 
(3.5)]: 

where(xfZ) is the mean square of the coordinate x in the 
state f.  

As the total energy of the particle increases, the 
number of energy levels of the transverse motion in- 
creases,  and their disposition approaches the equidis- 
tant one. Therefore, the resonance condition can be 
fulfilled not only for a certain pair of levels, but at 
once for many pairs of levels along the entire depth of 
the well for the transverse motion. This circumstance 
can lead to a resonant increase in the probability for 
the dechanneling of the entire stream of channeled par- 
ticles (see also Ref. 24). 

Thus, a s  the angle between the direction of the longi- 
tudinal momentum of the channeled electron and the di- 
rection of any of the principal axes of the crystal de- 
creases,  the role of the process of coherent elastic 
scattering by the nuclei of the crystal lattice without 
phonon excitation (i.e., without recoil, since the lattice, 
a s  a whole, absorbs the momentum) increases, and can 
become decisive. In this case the role of the large- 
angle scattering in the plane perpendicular to the chan- 
neling plane increases, and that of the low-angle scat- 
tering decreases. Let us note that the increase in the 
role of the large-angle scattering in the absence of 
planar channeling but under conditions when the angles 
between the particle momentum and the crystal chains 
a r e  small i s  shown in Refs. 18 and 19. 

54. CHARACTERISTICS OF THE PLANAR 
CHANNELING OF POSITRONS 

For positrons, the Harniltonian for the elastic inter- 
action with the crystal has, a s  before, the form (1.1), 
but the potential V( I r - r, I )  of the isolated atom i s  now 
a repulsive one, and therefore the Hamiltonian in the 
zeroth approximation should be chosen in the form of a 

sum of the continuous potentials of the two neighboring 
planes between which the channeled positron moves: 

where U(x) is given by the formulas (1.3)-(1.5) with xz 
= dp/2, dp being the interplanar distance. 

In all the formulas of the present section the coordin- 
ate x is measured from the midpoint between the planes; 
the coordinates of the closest planes a re  then equal to 
+dp/2. The formula (4.1) determines the shape of the 
well of the planar channel in the region -dp/2 s x  cdp/2. 
The wave functions in the zeroth approximation have the 
form (1.8), where I),,(%) is determined by Eq. (1.7) with 
the potential U+(x)  instead of U(x). 

All the arguments adduced in 83 in respect to the 
smallness of the coherent part when the particle moves 
along directions strongly differing from the directions 
of the principal axes remain valid. Consequently, in 
this case the width l?, of the i-th level of the transverse 
positron motion with respect to elastic scattering and 
the probability W U  for transition between the states of 
the transverse motion will be given by an incoherent 
t e rm similar to (2.2): 

The appearance of the factor 2 i s  due to the fact the 
atoms of the two nearest planes, and not just the atoms 
of one plane, a s  was the case for electrons, effectively 
participate in the scattering. 

The use of expansions, similar to the limiting cases 
(2.7)-(2.9), in t e rms  of a small and a large thermal- 
vibration amplitude allows us to draw the following con- 
clusions about the qualitative characteristics of elastic 
positron scattering. As for electrons, the incoherent 
scattering is suppressed a s  a result of the periodic 
disposition of the atoms in the plane; at the same time 
the magnitude of the effect decreases a s  the atomic 
number Z of the crystal increases. Furthermore, for 
positrons the probability for elastic scattering is fur- 
ther suppressed by the weakness of the field in the re- 
gion where the particle i s  located (especially for the 
lower levels) in comparison with the case of electrons, 
since the scat terers  a r e  located in a region classically 
inaccessible to the positrons. 

As the level approaches the edge of the well, the 
probability for elastic positron scattering increases 
significantly; therefore, in contrast to the case of elec- 
trons, an accumulation of particles at the upper levels 
should not occur (see 86 below). Let us note in this 
connection that the width of the levels of the transverse 
positron motion is determined by the elastic scattering 
only for sufficiently high levels. For the majority of the 
levels the dominant broadening mechanism i s  the inelas- 
tic scattering accompanied by electron-shell excita- 
t i ~ n . ~ r ~  
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As in the case of electrons, a s  the direction of the 
longitudinal momentum of the positron approaches the 
directions of the principal axes of the crystal, the con- 
tribution of the coherent elastic scattering increases in 
comparison with the incoherent scattering. We shall, 
however, not carry out a detailed investigation of the 
role of the coherent term here, since i t s  magnitude 
should be compared not with the incoherent part of the 
elastic scattering, but with the inelastic scattering, 
which, for positrons, is more important. 

$5. AXIAL CHANNELING OF ELECTRONS 

We shall, in considering axial channeling, limit our- 
selves to the simplest case of "well-channeled" elec- 
trons, in which we assume the atomic axes to be suffi- 
ciently far apart and the electron states "deep" enough 
for the continuous potential that describes the electron 
motion in the zeroth approximation to be considered to 
be azimuthally symmetric (the single-chain approxima- 
tion). In the axial case the transverse particle motion 
is two-dimensional; therefore, it i s  most convenient to 
carry  out the computations in the cylindrical system of 
coordinates (p, z ) ,  where the z axis coincides with the 
chosen axis and the coordinate vector p =  ( p ,  q) l ies in 
the perpendicular plane. The continuous potential of the 
axis i s  given by formulas similar to (1.3)-(1.5): 

where d is the distance between the atoms in the'chain. 
The coordinate pa giving the displacement of the atom 
from the equilibrium position i s  assumed to be distribu- 
ted according to the law 

The perturbation operator has, a s  before, the form 
of the difference between the potentials (1.1) and (5.1), 
the sum in (1.1) extending over all the atoms of the axis 
in question. The averaging over the thermal vibrations 
is performed similarly to the planar case. It i s  easy to 
see  that in the axial case, in contrast to the planar 
case, the contribution of the coherent part to the level 
width, a s  well as to the probability for transition be- 
tween the discrete levels, can be neglected. Indeed, the 
maximum depth U,, of the channeling well for all the ele- 
ments does not exceed 1 keV, whereas the characteris- 
t ic frequencies of the perturbation due to the periodic 
disposition of the atoms on the axis a r e  such that the 
smallest of the discretely transferable transverse ener- 
gies A&,-2r/dlz 10 keV. The transitions into states 
with such a large transverse energy a re  of low proba- 
bility (classically, they correspond to scattering 
through angles significantly greater than the Lindhard 
angle); therefore, the probability for transition between 
the various states of the transverse motion i s  deter- 
mined in the case of axial channeling by the incoherent 
part of the square of the scattering amplitude. 

Further, the dominant contribution to the level width 
is made by the transitions that a re  accompanied by a 
small change, A&,s  Uo, in the transverse energy, 
transitions for which, with allowance made for the ener- 

gy conservation law, (pf - p,)2u2 << 1 [here p,(pf) i s  the 
longitudinal momentum of the electron in the initial 
(final) state].. This indicates that the longitudinal vibra- 
tions of the atoms of the chain can be neglected, in con- 
t ras t  to the planar case, in which the longitudinal and 
transverse vibrations were found to be essentially of 
equal intensities. Using the completeness property of 
the system of wave functions of the transverse motion, 
as well a s  the fact that the quantity ( A E , ) ~ ~  i s  small in 
the effective domain of integration over the transverse 
energies (a is the dimension of the atom), we obtain for 
the i-th level width with respect to elastic scattering 
the expression 

where 
+- 

V(P-pa) = dzy(z ,  p-pa). 
-m 

In the formulas (5.1)-(5.3) the symbols (. . .),, and 
( . . . ) ,, have the following meaning: 

where $,(p) i s  the wave function of the transverse mo- 
tion. The formula (5.3) can clearly be generalized to 
the case of many chains. To do this, we must include in 
(5.3) terms corresponding to the scattering by the atoms 
of the neighboring chains and replace +,(p) ,  which cor- 
responds to the azimuthally symmetric potential (5.1), 
by the solution to the Schrbdinger equation with a realis- 
tic potential taking account of the requisite number of 
atomic axes. 

Passage to the limiting cases of large and small  
thermal-vibration amplitudes in (5.3) yields a result 
similar to (2.7)-(2.9). Specifically, in the limit of large 
u (5.3) reduces to a sum of c ross  sections for scattering 
on the individual atoms, while in the limit of small u it 
indicates the suppression of the incoherent-scattering 
probability. 

$6. SPECIFIC CALCULATION OF THE LEVEL WIDTHS 

For numerical estimates, one of the most convenient 
approximations to the continuous potential (1.3) i d 4  

where Uo and b a re  parameters depending on the shape 
of the crystal and the channeling plane. 

The energy levels for Eq. (1.6) with the potential (6.1) 
a r e  completely determined by the parameter 

the discrete spectrum being given by 

where E is the energy of the channeled electron; n is 
the level number, 0 9 n < v; E, and +,(x) a re  the corre- 
sponding energy and wave function, PVu( y)  and r ( x )  be- 
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ing the Legendre and the gamma function respectively. 

As the model potential of the atom, we can take the 
screened Coulomb interaction 

where Z e  is the nuclear charge and y is the reciprocal 
screening distance. The potential (6.4) is one of the 
three terms of the MoliGre potential, which is extreme- 
ly close to the real  potential; therefore, all the results  
obtained with the potential (6.4) can be trivially carried 
over to the case of the Molibre potential. 

The wave function of a bound state in a potential of the 
type (6.1) near x = 0 has the oscillatory form: 

where the "amplitude" A,(x) and the "frequency" WAX) 
change little over distances of the order of the distance 
between the nodes of the wave function (perhaps the only 
exception i s  the level with n = 0, at which the wave func- 
tion does not have zeros at all). Thus, when the condi- 
tion wJO) S Y<< u-I i s  satisfied, we can use the approxi- 
mate expression for the wave functions of the discrete 
spectrum of the transverse motion: 

$, (5) =A,  cos ('I2nm+omz) ; 

then the integration in, for example, the formula (2.9) 
can be performed explicitly: 

where a = 1/13? i s  the fine-structure constant. From 
the explicit form of $,(x), (6.3), we find 

The formula (6.5), although it is based on the model po- 
tentials (6.1), (6.4), demonstrates a general property of 
the scattering probabilities r,, which depends only on 
the parity of the functions U ( x ) ,  V( l r 1 ), and P(x,): the 
even-parity states are  scattered somewhat more 
strongly and live for a shorter time than the odd-parity 
states, and the greater the atomic number Z of the 
crystal is ,  the stronger is this effect. In the limit of 
high longitudinal-motion energies, when the number of 
levels in the well is large, the indicated dependence of 
the scattering probability on the parity of the level dis- 
appears. The formula (6.5) then goes over into the ex- 
pression 

(the term with (-1)'" is retained in order to observe the 
order of magnitude of the effect of the level parity). 

Let us note here the following important circum- 

stance: at high energies the level width is determined 
by transitions to several nearest levels; therefore, r, 
in fact determines the diffusion coefficient in the kinetic 
equation describing the dechanneling process. The ex- 
pression for rm contains the factor I A, 1 ', which de- 
creases  a s  the level approaches the edge of the well; 
therefore, the ra te  of electron diffusion over the levels 
of the transverse motion also decreases a s  the well 
edge i s  approached (see also Ref. 20). In such a situa- 
tion the particles can collect at the top levels, a s  a re- 
sult of which the dechanneling rate for the entire elec- 
tron stream will be determined not by the rate of diffu- 
sion over the depth of the well, but by the probability 
for departure of a particle from the top levels into the 
continuous spectrum (it should be remembered that the 
presence of inelastic processes, a s  well a s  of a coher- 
ent part in the elastic scattering can further complicate 
the diffusion picture). 

The formula (6.6) allows us to draw another very in- 
teresting conclusion: in the limit El,-m, &,= const, the 
level width rCL-EO. In fact, such a limit corresponds to 
v - a, m/v - const. Only the factor IAml ' in (6.6) then 
depends essentially on v. But i t  follows from the explic- 
i t  form of IAm12 that IA,I2-u0 for u--. It is easy to 
realize that this result is not a consequence of the model 
potentials (6.1)-(6.4). Indeed, for Ell--, when the 
quasiclassical approach i s  valid, the matrix elements in 
the formula (2.6) can be replaced by time integrals of 
the quantity VJx(t)), where x(t) i s  the solution to the 
classical equation of motion: 

The dependence on Ell is determined by the equation 

Ell (d'zldt') =-VU(z) 

with the initial condition 

The dependence v,(Ell) is determined from the condition 

whence vo - E,,-"~. By going over to the new variable T 

= t ~ - l / ' ,  we can easily verify that the magnitude of the 
matrix element does not depend on Ell. 

Thus, the width of the levels remains constant, while 
their spacing decreases like E,,-~'' a s  El l  --. Conse- 
quently, starting from some electron energy, the level 
spacing is smaller than the level width. This result 
implies that we a re  outside the limits of applicability of 
the weak-binding approximation, a s  a result of which 
the quantity r, can no longer be interpreted a s  the level 
width. To find the true level width in this case, we 
must solve the system of quantum kinetic equations with 
the coefficients W, obtained in the present paper. 

§ 7. OTHER LEVEL-BROADENING MECHANISMS 

All the formulas of the present paper were derived 
with allowance for only the processes of elastic chan- 
neled-electron scattering by the atoms of the crystal. 
In actual fact three other mechanisms contribute to the 
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broadening of the levels of the transverse motion: the 
inelastic scattering (i.e., the processes accompanied by 
electron-shell excitation), the radiative transitions be- 
tween the levels of the transverse motion, and the band 
broadening. All these mechanisms act additively, and 
can be considered independently. 

The inelastic-scattering processes may play a de- 
cisive role in the scattering of sufficiently high levels of 
the transverse motion, when the electron on the average 
moves far away from the plane (at a distance greater 
than the screening radius for the atoms of the crystal 
lattice), a s  a result of which the elastic scattering turns 
out to be suppressed. 

The radiative transitions a r e  investigated in detail in 
Refs. 21 and 22, where it is shown that they begin to 
play an important role at energies E 2 10 GeV. In the 
energy region 1-100 MeV they make a negligible con- 
tribution to the level width a s  compared to the scatter- 
ing by the electrons and nuclei of the crystal. 

The band broadening of the levels, which is due to the 
periodicity of the continuous potential of the planes, 
does not, in contrast to the scattering, lead directly to 
a decrease in the lifetime of the electron at the level in 
question. But in fact in experiments in which level life- 
t imes a r e  measured (say, by measuring the line width 
of the spontaneous y emission) the splitting of a level 
into a band will give r ise  to a large number of transi- 
tions with nearly the same frequency, which will be re- 
ceived by the measuring apparatus a s  one broad line. 
The magnitude of the band splitting is ,  a s  is well known, 
determined by the probability for tunneling through the 
potential barrier separating neighboring wells of the 
crystal planes. In the vicinity of x = dp/2, where dp is 
the interplanar distance, the potential barrier i s  well- 
described by the parabola 

where IJ is a constant of the order of 0.03-0.05. Quasi- 
classical estimates with the potential (7.1) show that, in 
the case of planar channeling of electrons, the band- 
broadening effect can be neglected in the case of levels 
lying below the limit 

where the coefficient of tunneling through the barrier 
and the band width do not, a s  a percentage of the level 
spacing, exceed 5% (see also Ref. 23); E ,  and v a r e  giv- 
en by the formulas (6.2) and (6.3) respectively. 

In the case of planar channeling of positrons, the po- 
tential barrier between the channels is well-described 
by the formula (6.1). Here we obtain for the limit below 
which the band broadening can be neglected the estimate 

where 6c, is the distance to the edge of the potential 
well of the channeling. 

The authors a r e  grateful to 0. B. Firsov, M. A. Kuma- 
khov, and V, V. ~ e l o s h i t s k i i  for well-meaning and useful 
discussions. 

APPENDIX 

Let us represent the square of the matrix element 
(1.10) in the form 

where V J x  - x,) is the Fourier transform of the potential 
of a single atom. Averaging over the coordinate xa  with 
the aid of (1.3)-(1.5) with xz=O, we obtain 

where N is the number of atoms in the plane under con- 
sideration. The averaging over pa is performed analyti- 
cally, after which we have 

Here the p t  a re  the coordinates of the crystal-lattice 
si tes in the plane. Let us represent p: in the form p: 
= {dxn,d,m), where dx and d, are  the lattice constants 
along the x and y axes, and go over in (Al) from sum- 
mation over a to summation over m and n. A sum of 
the type 

is a sum of the terms of a geometric progression; 
therefore, 

In the limit N>> 1 we obtain 

lim I exp (i9.d.n) 1 = - A 6 \ 9 = - x i ) .  
N1'- n-0 & ;--- 

As can be seen, (Al) with allowance for (A2) splits up 
into a sum of two terms, which a re  denoted in P2 by 
IM,,I:,, and IMif12,,,. 
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