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Nonlinear-optical frequency conversion in a cholesteric liquid crystal is investigated theoretically under 
conditions of selective reflection of the generated radiation, with the third harmonic as the example. It is 
shown that when the harmonic is selectively reflected the efficiency of nonlinear frequency conversion can 
increase strongly and reach a maximum at the boundary of the selective-reflection region. The requirements 
that the parameters of the cholesteric and of the pump wave must be satisfied to ensure maximum nonlinear 
frequency conversion efficiency are indicated. Third-harmonic generation is described in the given pump- 
wave approximation for collinear geometry and it is shown that the corresponding growth of the increase of 
the harmonic is described by the relation 60, lo-w, I -' (o and w, are the frequencies of the harmonic and of 
the selective-reflection boundary, and 6 is the dielectric anisotropy of the cholesteric) and has a limiting value 
proportional to the fourth power of the sample thickness. 

PACS numbers: 42.65.Cq 

INTRODUCTION deviation limits within which the increase of the frequen- 
cy-conversion effectiveness i s  s t i l l  substantial. 

The study of nonlinear optical phenomena in liquid 
crystals  (LC) i s  of considerable interest  both fo r  the 
physics- of LC and for nonlinear optics itself and i ts  

COLLINEAR GEOMETRY 
. . 

applications.'-' General analysis. We consider nonlinear frequency 

A thorough theoretical and experimental investigation 
of the nonlinear frequency conversion in cholesteric 
liquid crystals  (CLC), using third-harmonic generation 
a s  an example, was car r ied  out by Shen and Shelton.' 
Their experimental results  were confirmed by subse- 
quent i nves t iga t i~ns .~  Principal attention in the cited 
papers was paid,, however, to the study of more  varied 
(compared with a homogeneous medium) possibilities of 
synchronous conversion of frequency, which a r e  due to 
periodicity of the dielectric characterist ics  of the 
cholesterics. In addition, the analysis pertained to the 
case  of a collinear geometry of third-harmonic genera- 
tion, o r  e l se  was limited to  conditions under which 
neither the pumping wave nor the harmonic underwent 
strong diffractive scattering. The main content of the 
present paper is  a study of nonlinear third-harmonic 
generation under conditions when it i s  diffracted by the 
periodic structure of the cholesteric, in which, just a s  
in ordinary periodic media, a more  substantial increase 
of the efficiency of the nonlinear frequency conversion 
can be ~ b t a i n e d . ~  

In the given-pump-field approximation, we analyze 
the angular, frequency, and polarization characteristics, 
a s  well a s  those integrated over the frequency width and 
over the divergence angle of the pump wave, of the 
nonlinearly generated harmonics under conditions when 
they a r e  diffracted by the periodic structure of the 
cholesteric. The conditions that must  be satisfied by 
the parameters of the cholesteric and by the pump radia- 
tion to realize the maximum increase of the effective- 
ness  of nonlinear conversion of the frequency in the 
choles teric ,  compared with a homogeneous medium, 
a r e  indicated. We obtain the dependence of the efficiency 
of frequency conversion on the deviation of the experi- 
mental conditions from the optimum, and indicate the 

conversion in a cholesteric fo r  the case  of propagation 
of the pump wave along the cholesteric axis ,  assuming 
for  the sake of argument that we a r e  dealing with third- 
harmonic generation in a planar cholesteric layer,  i.e., 
in a sample whose surfaces a r e  perpendicular to the 
cholesteric axis (the z axis) (see Fig. 1, putting 0 = n/2). 

Xn the approximation when the pump field E(w) is 
given, linear generation of the third harmonic is des- 
cribed by the equation 

where E i s  the dielectric tensor of the cholesteric, and 
@ ( 3 )  is  the nonlinear polarization vector expressed in 
t e rms  of the cubic nonlinear susceptibility x ' ( ~ ) ( z , ~ w ) :  

9(" (2 ,  30) =ic3~  (z, 30) E ( z ,  0) 
XE(z, o)E(z, 0). 

Here and elsewhere the quantities marked by the index 
(3) pertain to the frequency 3 w .  

FIG. 1. Illustrating the geometry of frequency conversion 
under selective-scattering conditions. 
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Jus t  a s  in linear optics of c h o l e ~ t e r i c s , ~  we seek  the 
particular solution of the inhomogeneous equations (1) 
in the form 

g ( z ,  3 0 )  =e-3'YL[E+i+ enp ( iK+z )  +E-i- exp ( iK- z )  1, (2) 

where 6, = (3i $)/a a r e  the unit vectors of the circular  
polarizations, and the wave vectors I? satisfy the rela-  
tion 3- I?- = T ,  where T =471/p is  the vector of the 
reciprocal lattice of the cholesteric and fi i s  the pitch 
of the helix. As a result  we obtain for  the amplitudes 
E* the following system of equations 

where n3 = ~ W [ E ( ~ W ) ] ~ / ~ / C ,  z3 =2(3w) i s  the average value 
of the dielectric constants of the cholesteric a t  the 
frequency 3w; I ,  v n , n = i ,  s = 0 + 1 * 2 * 3  ..., ~ j a r e  the 
wave vectors in an expansion s imi lar  to (2) of the eigen- 
solutions of the system (1) a t  the frequency w (j = 1-4 
number the eigensolutions3), and .??f:c;," a r e  the Fourier  
components of the expansion in the nonlinear-polariza- 
tion ser ies  

The harmonic is most efficiently generated, a s  is  
known, under synchronism conditions, to satisfy which 
the quantities R* must satisfy the dispersion equation 
a t  the frequency 3w and simultaneously cause the argu- 
ment of a t  least one 6-function in the right-hand side of 
(3) to be zero. In the customarily employed approxima- 
tion, where the local linear and nonlinear dielectric 
properties of the cholesteric a r e  identical with those 
of the nematic,' i.e., for  a uniaxial crystal ,  the syn- 
chronism conditions take the form 

where arbitrary combinations of the signs a r e  possible 
in (4), and in addition to km i t  is  possible to have also 
-km in (4), while the values of km(m=+) for  the frequen- 
cies w and 3w a r e  defined by the relation 

(k*) 2 = ~ 2 + Z / 4 r t ~  [ z ~ + ~ ~ x ~ ]  Ih. (5) 

Under synchronism conditions the k?' a r e  expressed in 
the following manner in te rms of k* (3w) = kl 

We note that allowance fo r  the difference between 
the local linear o r  nonlinear dielectric characterist ics  
of the cholesteric and the characterist ics  of the nematic, 
i.e., allowance for  the spatial dispersion6 in the absence 
of an inversion center in the cholesteric, leads to a 
generalization of the synchronism conditions (4), where- 
in there is added in the right-hand side of (4) a t e rm 
ST, where s = * l ,  52, .  . . , a s  well a s  a te rm due to mo- 
lecular g y r ~ t r o p y . ~  However, in view of the usual ne- 
glect of the molecular gyrotropy and absence of central  
symmetry, i.e., of the smallness of the aforementioned 
difference, the most intense generation corresponds to 

the synchronism conditions (4), which will therefore be 
analyzed below. 

Synchronism under diffraction conditions. Concen- 
trating hereafter  mainly on the influence of diffraction 
of the harmonic in the cholesteric on the efficiency of 
the nonlinear frequency conversion and using the fact 
that circularly polarized light (having the s ame  sign a s  
the cholesteric helix) is diffracted in propagation along 
the cholesteric axis, we shall investigate the singularit- 
ies  of the generation of a harmonic having the s ame  
diffraction of the circular  polarization. Recognizing 
that the diffraction scattering is experienced by the 
eigensolution corresponding to k3-, we obtain the syn- 
chronism conditions fo r  the generation of the harmonic 
with the diffracting polarization by substituting in the 
left-hand side of (4) only the quantity be-. 

For  an  arbitrary pump-wave frequency w we can 
reach satisfaction of the synchronism conditions by 
selecting the corresponding pitch of the cholesteric 
helix, the synchronous value of which turns out to de- 
pend on the frequency dispersion of the dielectric con- 
stant  2 and on the anisotropy 6. The synchronism condi- 
tions a r e  reached in the general  case  outside the region 
of selective reflection of the harmonic, and third-har- 
monic generation for  this situation was investigated by 
Shelton and Shen.' 

Of special interest  is  a situation in which the syn- 
chronism is reached near the region of selective reflec- 
tion. We assume that the third-harmonic frequency 
tends to one of the edges of the region of the selective 
reflection, i.e., k,- =us( ,  where 5<< 6, and a relation 
corresponding to the exact coincidence of the frequen- 
cy with the boundary of the region of selective reflec- 
tion i s  almost  satisfied, i.e., 

We find from (4) that the only synchronism condition 
that can be satisfied in this case  is the equality 

Using for  k* and T expressions (5) and (6), respec- 
tively, we find f rom (7) that the condition for  obtaining 
synchronism a t  the boundary of the selective-reflection 
region of the harmonic (5 =0) is the following relation 
between the frequency dispersion and the anisotropy 
of the dielectric properties of the cholesteric 

where d =E,/(l i B ~ ) < ,  the indices 1 and 3 mark  values 
pertaining respectively to the frequencies w and 3w. 
Relation (3) reduces approximately to c, =E,(l* 6,). 

Thus, assuming the frequency dependences of the 
quantities in (8) to be known, we can obtain from this 
relation the frequency w, and by the s ame  token also 
the pitch of the cholesteric helix fo r  which the frequency 
of the harmonic turns out to be exactly a t  the boundary 
of the region of selective reflection. From the prac- 
tical point of view, however, this means that if, a s  
usual, the frequency w (the laser  frequency) is fixed, 
it is necessary to choose specially the parameters of 
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the cholesterics if the synchronism condition is to coin- 
cide with the boundary of the region of selective reflec- 
tion. 

Solution of the boundary -value problem. In the planar 
cholesteric layer considered by us, the field of the 
harmonic is represented a s  a superposition of the par- 
ticular solution of the system (I), (3) with the eigen- 
waves of frequency 3w. The coefficients in this super- 
position a re  obtained from the boundary conditions. By 
solving the formulated boundary-value problem we ob- 
tain the following expressions for the amplitudes of the 
harmonic fields that emerge through the entry and exit 
surfaces of the layer: 

D+ (E++g-) exp[- i (K+-r/2)  L ]  +2iD- sin(ki-L) 
&- exp(-ik,-L) -f + exp(ik,-L) 

v - L )  -&+ exp (ik,-L) 
D = [ I - ( R + l x s ) Z ]  [ I -  (R-lx,)']-6sa, 

~ + = 9 ' k , [ 1 -  (K-/x3)'1-68',,., ~--9',,[ I -  (K+/xr)'1-68'Ln; 
E,= [ xS- ' (~ /Z*kJ- ) z - l ]  I&. 

The indices l , m , n  =i correspond to the indices that 
enter in the synchronism conditions (4) and (7), while 
the 9:,, are  defined in the Appendix [see (A3)]. We 
note that expressions (9) were obtained neglecting re- 
flections from the sample boundary, i.e., they pertain 
in fact to the case of small 6 and a small difference be- 
tween. and the dielectric constant of the external 
medium. 

As follows from (9), the amplitudes of the third har- 
monic a s  functions of the small difference between the 
frequency 3w and the boundary we of the selective-re- 
flection region, defined by relation (6) a t  5 =0,  oscil- 
lates strongly a t  o r  close to synchronism conditions. To 
verify this, we obtain, e.g., the expressions for the 
synchronous values of the amplitudes E* on the sample 
surface: 

It follows from (10) that when the synchronism is 
reached near the boundary of the selective reflection for 
the harmonic, i.e., a t  Ik,'/x3 [< 6,, the efficiency of 
linear conversion of the frequency can greatly exceed 
the corresponding efficiency outside the diffraction 
conditions. Indeed, the expression (10) for the ampli- 
tudes E* undergoes strong oscillations (Fig. 2) a s  a 
function of the synchronous value of the quantity kl, 
being proportional at the minima, a s  usual, to the 
sample thickness, and a t  the maxima to the square of 
the thickness. 

Extremal conversion efficiency. As follows from 
(lo), the maxima of the amplitudes E* are  reached a t  
values &- =2km(w) +k+(w) = n s / ~ ,  ( s  is an integer) and 
a r e  equal to 

where P* = P:-_+P:+, +P:-+, and the Pi,, are  given in 
the Appendix. 

FIG. 2 .  Qualitative dependence of the harmonic amplitude on 
the synchronism frequency near the boundary of the. selective 
reflection. 

It is seen from (10) and (11) that the maximum value 
of at least one of the amplitudes, E+ o r  E - ,  i s  approxi- 
mately equal to the amplitude outside the diffraction. 
The minimum value corresponds to an increase of the 
linear-conversion efficiency in the region of noticeable 
diffractive scattering of the harmonic, and outside this 
region I ki /u3 )>  6 i t  goes over into the known expres- 
sions which a re  proportional to x3L (Ref. 1). It follows 
from (10) that the maxima of the generation efficiency 
a re  reached at the following values of the parameter 
v = (3w - we)/w, that describes the position of the fre- 
quency of the harmonic outside the boundaries we 
=c7[Z3(lf 63)]-1'2/2 of the region of selective reflection: 

1 2ns i (12) 

It is assumed here that for the harmonic frequency 3w 
satisfying the condition (12) the synchronism condition 
is also satisfied. From a comparison of (11) and (12) it 
is seen that the maximum generation intensity decreases, 
with increasing distance of the synchronous generation 
frequency from the boundary of the region of selective 
reflection, like 

where the frequency 3w assumes discrete values deter- 
mined by Eq. (12), and I ,  is a quantity approximately 
equal to the intensity of the synchronous generation of 
the harmonic in the same sample far  from the selective- 
reflection region. 

Relation (13) can be represented in a different form 
if it is assumed that the light frequency is fixed, while 
the variable is the pitch of the helix, and the synchron- 
ism near the boundary of the selective reflection is 
reached by varying the pitch: 

where p, =411/7, is the helix pitch corresponding to 
equality of the frequency 3w to the boundary of the 
selective-reflection zone [see ( 6 ) ] ,  while the discrete 
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values of 7 a r e  determined by Eq. (12) in which 3w is 
replaced by T and we is replaced by 7,. 

We point out that the amplitude of the harmonic is 
proportional to 6,(x3L)' near the selective-reflection 
region not only when the determinant D of the system 
(3) is  exactly equal to zero ,  and in particular the quan- 
tity when 

coincides with k3-', but also near these conditions at  

2k- (o) +k+ (a) =nq/L, k,-=nnlL. 

In this case  the amplitudes a t  the maxima reach 

where n is an  integer and q is  a number of opposite 
parity. I t  is  seen  from (11) and (14) that the absolute 
maximum of the intensity of the harmonic (q =O,n = A )  
i s  reached practically on the boundary of the selective- 
reflection region. In the case  of exact satisfaction of 
the synchronism conditions (7), the maximum corre-  
sponds to the value s = 1 in ( l l ) ,  meaning a very  smal l  
deviation of the frequency from the boundary of the sel-  
ective-reflection region. 

Conditions for  increase of efficiency. It is natural 
to seek the conditions under which the maximum har-  
monic amplitude is  obtained in a r ea l  experiment if the 
dispersion differs from the limiting value (8). Bearing 
in  mind the experimental possibility of easily varying 
the pitch of the cholesteric, we assume in this search  
that the f r ee  parameter  of the problem is in fact the 
pitch of the helix, i.e., 7 ,  while the remaining param- 
e ters ,  particularly the frequency w, a r e  fixed. By 
varying 7 we can, e.g., satisfy the synchronism condi- 
tions (7), which now no longer correspond to the bound- 
ary  we of the region of selective excitation, o r  e l se  
make the frequency of the harmonic coincide with we, 
o r  more  accurately with the position of the f i r s t  maxi- 
mum, deviating thereby from the synchronism condi- 
tions. The f i r s t  possibility may mean that the amplitude 
of the harmonic i s  described by Eq. (11) with 1s (2 1, 
while the second means that i t  is described by Eq. (15) 
with n =*I and q =O. An analysis of expressions (9)-(15) 
shows that if 6- ' (~/2 L)' i s  less  than v = (7' - re)/re,  
where ra corresponds to the synchronous pitch of the 
helix, and 

an  absolute maximum of the harmonic amplitude, pro- 
portional to ~ , ( U , L ) ~ ,  is  reached under the synchronism 
conditions (7) and is determined by expression (11). 

The maximum values of the intensity of the synchron- 
ous generation, determined by formulas ( l l ) ,  (13), and 
(15), pertain to a str ict ly monochromatic wave. An 
effect of the s ame  order  for  a wave with finite frequency 
line width AW/W is  reached if this line width is less  than 
the frequency width of the maxima of the harmonic 
generation, which turns out to be of the order  of (ns/6)' 
x (x,L)', and determines the "sharpness" of the syn- 
chronism under diffraction conditions. 

On the other hand, if the line width is of the order  of 
the frequency period of the oscillation of the amplitudes 
of the harmonic in (lo), i.e., -S/~(U,L)', then the gen- 
erat ion efficiency turns out to be less  than the maximum, 
and is described by the squared modulus of (10) aver-  
aged over the frequency width of the line, and is deter- 
mined by 

where w is the meaning of the frequency position of the 
line center  and can vary continuously, satisfying the 
condition 

I t  is seen  from (16) that the increase in the efficiency 
of the nonlinear conversion of the frequency takes place 
if the deviation of the frequency 3w f rom we and the 
pump line width do not exceed 6,. 

In analogy with the foregoing, we can write down the 
amplitudes of the harmonic field without assuming that 
the dielectric anisotropy 6 is sma l l  and that 2, is equal 
t o  the dielectric constant ce of the external medium. 
In  this  case  an  important role can  be played by the re-  
flection of the fields from the boundaries of the choles- 
te r ic  layer and the ensuing transformation of one c i r -  
cular  polarization into the other. The polarization of 
the harmonic that emerges from the cholesteric then 
turns  out to be generally speaking elliptic. Without 
writing down the cumbersome general  expressions for  
the field of the harmonic, we confine ourselves only to 
expressions for  the intensities of the circularly polar- 
ized components of the harmonic field a t  the exit from 
the cholesteric a t  the maximum frequency conversion 
efficiency [q  =O,n =*l in (l5)]: 

where the Pi a r e  defined in ( l l ) ,  and we put a l so  z3 
= e,. 

NONLINEAR FREQUENCY CONVERSION IN  
OBLIQUE INCIDENCE OF THE LIGHT 

We proceed now to consider third-harmonic genera- 
tion in cholesterics when the pump wave propagates a t  
an  angle to the cholesteric axis. As for  the physical 
aspect  of the problem, the harmonic-generation picture 
remains he re  qualitatively s imi lar  to the ca se  of pro- 
pagation of light along the cholesteric axis ,  but the 
polarization characterist ics  of the generated waves turn 
out to be in the general ca se  to be more  complicated, 
owing to the more  complicated l inear optics of the 
cholesterics for  this case. An additional factor  that 
may play an important role in experiment is that sa t i s -  
faction of the synchronism conditions a t  a fixed f re-  
quency w of the pump wave can be obtained generally 
speaking not only by changing the characterist ics  of the 
cholesteric, but a l so  by changing the pump-wave 
propagation of direction. 

Assuming that the pump-wave propagation direction 
is arb i t ra ry ,  and that the field of the harmonic consti- 
tutes a superposition of two plane waves (Fig. 1)  
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we obtain from Maxwell's equations the following sys-  
tem: 

where % and E,, a r e  the only nonzero Fourier  com- 
ponents of the Taylor expansion of the dielectric tensor 
of the cholesteric, Lo, and &, a r e  the wave vectors in 
the eigensolutions of Maxwell's equations a t  the pump- 

0 11mns wave frequencies, j = l-4,p,;,2,3 a r e  the Fourier  com- 
ponents of the expansion of the nonlinear polarization of 
the form used in (3), 1,m,n =0.1, s=O*1*2*3. .  . . The 
explicit form of the matrix and of the determinant of the 
system (18) a r e  given, e.g., in Ref. 3. 

Ju s t  a s  for  the collinear geometry, we find that the 
synchronism conditions a r e  

The synchronism conditions (18) can be satisfied, de- 
pending on the concrete experimental conditions, both 
for  cases  when the field of the waves can be represented 
with sufficient accuracy by a single plane wave,' and 
when the diffraction of light is substantial and i t  is  nec- 
essary  to take into account in the eigensolutions their 
difference from plane waves. 

Ju s t  a s  in collinear generation, the more  interesting 
situation is the one in which the harmonic experiences 
diffraction by the periodic s t ruc ture  of the cholesteric. 
In this case,  a t  all permissible values of s in the syn- 
chronism condition (19), the character  of the harmonic 
generation differs from the case  of a homogeneous 
medium. Generally speaking, for any s, contributions 
to the generation a r e  made both by the spatially homo- 
geneous and spatially inhomogeneous components of the 
nonlinear susceptibility. However, just a s  in the col- 
linear case,  the maximum efficiency is  reached when the 
synchronism frequencies (directions) coincide with the 
edge of the selective-reflection band. In this  case  the 
generation intensity in the directions k0(3w) and k1(3w) 
turn out to be of the s ame  order.  

The sought solution of the system (18) constitutes a 
sum of the partial solution of the inhomogeneous system 
with superposition of the eigensolutions of the homo- 
geneous problem, in which the coefficients a r e  deter-  
mined from the boundary conditions. 

Without writing out here  in explicit form the cumber- 
some  solution in question, which, just as for the col- 
linear geometry, can be obtained in standard fashion in 
analogy with the homogeneous we discuss 
f i r s t  in greater  detail the synchronous generation con- 
ditions. 

Recognizing that $,(3w) in (19) satisfies the disper- 
sion equation, we can write the synchronism condition 
in the cholesteric, i.e., the condition for  the vanishing 
of the determinant of the system (18), in the form 
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D= (q2-mz) (az-mz) - (q-m2) (a-m2) =0, 
q=[I-koZ/x,2(1-6 cosz 012) ] (l+m)/6, 

~=[2-k,~/x,1(1-6 cosz 012) ] (If m)/6, m=cosa 0/(2+sin2 0 ) ,  
(20) 

where ko and k, a r e  defined in (18). 

From the parameter  a, which is not connected with 
the concrete geometry of the experiments, it is conven- 
ient to change over to the parameter  A (see Ref. 3), 
which describes the optical properties of a planar 
cholesteric layer a s  a function of the boundary condi- 
tions. Fo r  a fixed frequency w we have 

A=2(0-0.)sin 2018 (l+sin2 €I), sin 0B==r/2~,(1-8 cos2 0/4), 

and for  a fixed angle 0 (see Fig. 1) 

The connection between the parameters CY and A fo r  
the planar case  a r e  determined by the relation A = ( a  
+v)/2, and by substituting in the lat ter  the synchron- 
ous values of a ,  which a r e  determined by the roots of 
Eq. (20), we obtain explicit expressions for  the param- 
e t e r  A under the synchronism conditions: 

At a fixed frequency and direction of the pump wave, the 
A obtained in this manner determines the synchronous 
pitch. Keeping the other parameters fixed, we can de- 
termine the synchronous angle o r  frequency from the 
obtained value of A. 

Generally speaking, the synchronism condition i s  
reached in this case  not on the boundary of the region 
of selective reflection. 

The condition for  reaching synchronism on this bound- 
ary is that the parameter  A coincide with the values cor-  
responding to the boundaries of the region of selective 
r e f l e ~ t i o n . ~ . ' ~  The dependence of the boundary values 
A, on the direction of propagation of the harmonic k, 
(;ee Fig. 3) is the following. The three  regions of the 
polarization-dependent light reflection a r e  bounded 
respectively by the values A: : -(1+(1 +8m2)'l2)/2, 0 
and ((1 +8m2)'f2 - 1)/2, 1. The expressions for  the 
boundaries of the region of reflection of light of arbi-  
t r a ry  polarization A: depend on the beam incidence 
angle. In the angle range containing the normal inci- 
dence 32" s 0 ~ 9 0 "  ((2 + a 3  3 m2 2 0)/18) the limits of A: 
a r e  ze ro  and ((1 + 8m2)'fl - 1)/2, i.e., the regions of 

2 

FIG. 3 .  Angular dependences of the boundaries AT and A: of 
the regions of selective reflection (the region of reflection 
of light of arbitrary polarization is  shown cross hatched). 
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selective and nonselective reflection of the polariza- CONCLUSION 
tions a r e  in contact with each other. For  25" c 0 c32" 

The presented analysis of the nonlinear-optical (4 2- m2 2 (2 + m ) / 2 ) ~ :  they a r e  equal to ze ro  and ((1 conversion of light frequency in a cholesteric under +8nc2)"2 - 1)/2, i.e., one of the regions of the selective 
conditions when the harmonic i s  close to the region 

reflection is split off, and for  0" c 9 c 25" (1 a m2 z, $) 
of selective reflection demonstrates that light diffrac- 

both regions of selective reflection a r e  spli t  off from 
tion in a cholesteric can influence substantially the 

the region of the nonselective reflection of the polar- 
characterist ics  of the nonlinear processes. In  addition izations, the boundaries of which A: a r e  now 
to the known difference between the synchronism con- 

[m-  (5mZ-4m'-1)'"114m and [m+ (5mZ-4m4-1)"]/4m. ditions of periodic and homogeneous media,'' a substan- 
t ial  increase of the efficiency of the nonlinear process From the solution of the system (18) i t  follows that, 
can  appear. Although we have analyzed above third- just a s  in the case  of normal propagation of the pump 
harmonic generation, it is  c lear ,  in view of the ra ther  

wave, when synchronism is  reached near the boundary 
general  nature of the phenomenon, that a s imi lar  in- 

of the region of selective reflection, i.e., when rela-  
c r ea se  of the efficiency takes place also for  a l l  periodic 

tion (20) is satisfied for  values of A close to those 
media and for  other nonlinear processes,  e.g., second- 

shown in Fig. 3, the efficiency of harmonic generation harmonic generation. 
increases sharply, and i t s  amplitude can be proportional 
to the square of the sample thickness. We indicate a l so  that a s imi lar  increase in the inten- 

The general expressions for  the solutions of the sys-  
tem (18) become s impler  in case  of synchronism near 
the boundary of the regions of selective reflection. In 
particular, if the synchronism takes place exactly on 
the boundary A =A:, the polarization characterist ics  of 
the generated waves, for sufficiently thick samples,  co- 
incide withthe characterist ics  of the correspondingeigen- 
solutions and a r e  described by the polarization vectors 

where u and n, a r e  linear-polarization unit vectors 
perpendicular to the (k,,, k,) plane and lying in the (k,,, 
k,), plane respectively. 

The maxima of the intensity of the harmonic a r e  
reached when the synchronism condition (19) is  sa t i s -  
fied almost on the boundary of the region of selective re-  
flection for  discrete values of A =A,, defined by the 
relation 

where s is an  integer, k,, a r e  the wave vectors of those 
eigensolutions of the linear optical problem which coin- 
cide a t  A =A,, and L is the thickness of the cholesteric 
layer. Without writing out the expressions fo r  k,, in the 
general case  (see Ref. 9), we present the expressions 
for  the values of A, near the boundary A, =0:  

The frequency of the harmonic coincides with the 
boundary A, = O  if the following relation holds between 
the dielectric anisotropy, the dispersion, and the pro- 
pagation direction of the pump wave ko(w): 

If it is not assumed that the distance of the synchron- 
ous-generation frequency wS, defined with the aid of 
reflection (21), from the boundary of the region of 
selective reflection is small ,  the harmonic-generation 
efficiency falls off in oscillatory fashion and tends to 
the known expressions f a r  from the region of selective 
reflection. 

s i ty of Cherenkov radiation was observed in periodic 
media a t  a frequency equal to the boundary of the 
selective-reflection r e g i ~ n . ' ~ * ' ~  As for  cholesteric 
liquid crystals  and chi ra l  smectic c rys ta ls ,  they a r e  
the most  convenient objects for  the observation of the 
growth, revealed here ,  of the efficiency of nonlinear 
conversion, since they make it possible to vary rela-  
tively simply the parameters that a r e  of importance for  
the problem in question, namely the period of the struc- 
tur; and the anisotropy of the dielectric properties. 

When speaking of the quantitative aspect of the expec- 
ted experimental increase in the intensity, a n  increase, 
say,  of the intensity of the harmonic by a factor 10-100 
imposes ra ther  reasonable requirements on the experi- 
mental conditions and can be reached a t  the following 
values of the parameters:  pump line width and wave- 
length respectively AW/W - X - lo4 and cholester- 
i c  parameters L- 0.01 c m  and 6 =: 0.1. 

The authors thank V. E. Dmitrenko for  a discussion of 
the work. 

APPENDIX 

We write down explict expressions for  the Fourier  
expansion of the polarization in a cholesteric, needed 
for  the solution of Eqs. (3) and (18). We consider the 
c a s e  of propagation of a pump wave %*(z, w) along the 
optical axis. We represent  the eigenwaves in the 
cholesteric in the form1 

Using the periodicity of the properties of the NLC, 
we can expand the nonlinear-susceptibility third-rank 
tensor X(3) (2 ,  3w) in a Fourier  ser ies .  With the aid of 
expression (Al) for  the eigenwaves of the cholesteric, 
we represent  the vector of the nonlinear polarization 
in the form 
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For the case  when the cholesteric can be regarded 
locally as equivalent to a nematic, i.e., a s  a centro- 
symmetric and axisymmetric medium, the only nonzero 
amplitudes in the expansion (A2) a r e  Pi, ,  for s =0 :  

Plmn=~.l~,me.n[cl,~iffl~zl+(-~~t* f.')f."'f~lf.'1 [2(1+lf.'12) 
X(i+lf""lZ) (l+If.mI') I-", (A3) 

where c,, (i, j = 1,2) a r e  the z-independent components 
of the nematic local nonlinear-susceptibility tensor 
x T ( 3 ) :  

TIi) 
C11=X11'1 ; cIz=xZI::1' q::?~ .).~3~:::' =&% . 
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