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An isomorphous equation of state is obtained on the basis of an expanded scaling-theory state equation for 
binary mixtures near liquid-gas critical points. The equation is theoretically analyzed and numerically 
verified. Critical phenomena in dilute solutions and concentrated mixtures are considered in detail, and the 
normalization of the critical exponents in the investigated systems is made more precise. The possibility of a 
universal description of critical phenomena in such systems is considered. 
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1. INTRODUCTION comparison with experiment and for  the calculation of 
The fluctuation theory of phase t ra~ls i t ions  (see  Refs. the thermodynamic quantities. 

1 and 2) has yielded not only numerical values of critical 
exponents, but also the equation of state near cri t ical  
points. Moreover, allowance f o r  the non-asymptotic 
t e rms  expanded greatly the region of applicability of 
the scaling-theory equation of state. 

The scaling-theory equation of state, however, can 
be rigorously calculated only for  sys tems with isolated 
transition points describable by two independent vari- 
ables, whereas in rea l  objects, transitions proceed 
mainly on critical lines o r  surfaces. The problem of 
extending scaling theory (ST) to include more  compli- 
cated systems is  solved on the basis  of the isomor- 
phism which has  been further corrobor- 
ated and developed in recent yea r s  ( see  Refs. 5 and 6 
and the l i terature cited therein). 

In Refs. 4 and 7 they not only determined the condi- 
tions for the choice of the isomorphous variables, but 
also verified experimentally the isomorphism hypothe- 
s i s ,  using a s  an example the isochoric heat capacity in 
the vicinity of liquid-gas cri t ical  points of two systems: 
ethane + carbon dioxide and ethane + heptane. At that 
time, however, the lack of an equation of s tate in ex- 
plicit scaling form made a comparison of theory with 
experiment difficult, and the analysis of the experimen- 
tal  data in Ref. 7 was qualitative in character .  

In this paper we use an expanded scaling-theory equa- 
tionof state for a pure substance to obtain an isomor- 
phous equation of s tate of binary mixtures near the line 
of liquid-gas cri t ical  points. The derived equation i s  

2. ISOMORPHOUS EQUATION OF STATE 

An analysis, based on the isomorphism hypothesis, 
of the conditions under which the system i s  stable to a 
change of the corresponding order  parameter  shows4 
that the form of the thermodynamic potential does not 
change on going from a pure liquid to binary solutions 
if one fixes the chemical potential of the solution 

p=p2-eLt, (1) 

i n  which case  the isomorphous thermodynamic potential 
is 

F ( T ,  p ,  p ) = P ( T ,  p, x ) - w ( T ,  p, P ) ,  (2) 

where F* i s  the f r ee  energy of the solution per mole, 
and x = N,/(N, + N,) i s  the concentration of the solution. 

Assuming the expression arr ived at  in the ST (see  
Refs. 8 a i d  9) for  the free energy a s  a function of the 
temperature T and of the density p in the vicinity of the 
liquid-vapor cri t ical  point of a pure substance, the 
isomorphous thermodynamic potential per  mole of the 
binary solution is of the form1) 

where r and 8 a r e  polar coordinates connected with the 
dimensionless density ~ p ( j l )  = p/p,,(fi) - 1 and tempera- 
t u r e  r(P) = T/T, , (~)  - 1 by the relat ions 

theoretically analyzed and numerically verified. Criti- while the scaling function * ( r ,  B), with account taken of 
cal  phenomena in dilute solutions and concentrated the following ST approximations obtained in Ref. 10, i s  
mixtures a r e  considered in detail, and the renormali- 
zation of the critical exponents in the investigated sys-  
tems is made more precise. The influence of the asym- 
metry of a rea l  liquid on the behavior of binary critical 
mixtures is analyzed and the possibility i s  considered 
of a universal description of cri t ical  phenomena in such 
system. Since the expressions a r e  unusually cumber- 
some and the solution of the system of transcendental 
equations necessitates a change from experimental to 
isomorphous variables, the equation of s ta te  for  mix- 
tures  cannot be represented in an explicit analytic 
form. Numerical methods a r e  therefore used for  the 

Here y, P,  and a a r e  respectively the cri t ical  expon- 
ents  of the isomorphous coefficient of isothermal com- 
pressibility, of the coexisting-phase line in t e rms  of 
the isornorphous variables, and of the isomorphous 
isochoric heat capacity, and A i s  the cri t ical  exponent 
that determines the behavior of the nonasymptotic 
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terms 

(2, is the value of the parameter z = T / I  ~ ~ 1 ; ' ~  on the 
coexistence curve). In Eq. (31, Fo(T, p, ji) i s  an analy- 
tic function of the temperature, density, and chemical 
potential, and goes over at constant into the corre- 
sponding functions for a pure substance; with this taken 
into account, Fo can be represented a s  a series in pow- 
e r s  of A;: 

where a,c,f,, f,, m,,m, are  constants, xcr= x(T,(ji), 
p,,(,ii), (GI. Thus, relations (2)-(6) determine in fact 
the equation of state of a binary mixture in the critical 
region. 

To calculate the singularities of the actually mea- 
sured thermodynamic quantities [at a fixed concentra- 
tion x =  - (~~/a , i i ) , ,~ ] ,  we use a method proposed in 
Refs. 3 and 4. Expanding F(T,p,ji) in a ser ies  about 
the critical point ,ii = ,ii ,, T = Tcr(x), p =  pc,(x) and rep- 
resenting T,( jl), pc,(jl) in the form 

we obtain, taking into account (6) and the condition 
X -xc,= 0, 

Equation (8) is basic in the analysis of critical binary 
solutions, since it is used for the transition from the 
surface ji = const to x = const at each fixed value of the 
density and temperature, and to calculate the singulari- 
t ies of the actually measured quantities. In particular, 
to calculate the heat capacity C,,, = T(8S/aT),,, we 
separate from (2) the terms connected with the entropy, 
and obtain from (3) and (8) 

We have taken into account here the fact indicated by 
Gorodetskii and ~ikul inski l ,"  that the isomorphous 
path i s  determined by the equation p = + clT, and not 
by expression (1), and this leads only to the appearance 
of a term -x in the expression for the entropy 

leaving the remaining relations unchanged. We shall 
therefore write simply p in place of ,li, taking Eq. (10) 
into account. 

Analysis of (9) with allowance for (3), (7), and (8) 
shows that at 

the critical exponent of the heat capacity reverses sign, 
and the heat capacity has the asymptotic value 

+O(yr'-"-"yz,2-"-' ) 9 (12) 

Y= (Talpcr)  (dpcrlh) (dTa/h) -'. 

3. RENORMALIZATION OF THE CRITICAL 
EXPONENTS 

For  a quantitative analysis of the renormalization ef- 
fect we consider the solution of Eq. (8) on the isochor 

= 0. In the case z( p) >> l(O(p) << 1, r( p) = r( p)) and 
y s 1 Eq. (8), with allowance for (5), then takes the form 

and at 

which also corresponds to the condition (11), we have 

r(p)-(ir(z))'/(l-a~; A=- aky(y-1) 
2abz ' 

(15) 

T,, dT, dTc, -' - 4-a dT,. -' 
P ( ) (  , E = - p C  ( )  z-At] .  

T (x) ab-lla (16) 

we obtain from (12), with allowance for (151, 

This means that when condition (16) i s  satisfied a re- 
normalization -or - a / ( l  - a) of the critical exponent of 
the heat capacity takes place, and when ~ ( x )  tends to 
zero the heat capacity C,,, of a binary solution remains 
finite rather than tend to infinity a s  does C, in pure 
substances. 

In the region T(X) >> 5(a-1)1<-1 the condition (11) i s  not 
satisfied, T( p) = T(X) and 

c,, ./T-z-" (x) +eonst, (19) 

i.e., there is no renormalization and the heat capacity 
behaves in analogy with the heat capacity in a pure sub- 
stance. 

The case of dilute solutions (x<< I ) ,  which is of in- 
terest  from the practical point of view, can be regard- 
ed a s  a particular case of the equations obtained. In- 
deed, putting according to Ref. 4 

dxcrIdp==Mx/RTcr (20) 

( R  i s  the universal gas constant and M is the molecular 
weight), we find from (16) that at 
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a renormalization of the type (17) i s  observed, and the 
solution cannot be regarded a s  dilute at any x .  In th is  
case,  taking (17) and (18) into account, we have 

i.e., a s  the cri t ical  point of a pure substance i s  ap- 
proached along the cri t ical  line of the solution the heat 
capacity C,,, tends to infinite like l /x .  

Equation (15) and all our est imates were obtained un- 
de r  the condition z( y) >> 1. At y >> 1 ,  however, i.e., 
when the cri t ical  density has  a stronger dependence on 
the concentration than the critical temperature,  there 
can exist a temperature region where th is  condition is 
violated. It follows from (15) that the condition z( y) 
>> 1 on the isochor A&) = 0 i s  satisfied (in the region 
of the positive exponent) only at  

s o  that to analyze the character  of the renormalization 
in the case  of large y i t  is necessary to find a solution 
of (8) for  values z(y)<< 1. At z (y )  << 1 (IB(y I =  b-', 
r=(b/k)'lBl APl1'S), and y << 1 Eq. (8) with allowance for  
(7) takes the form 

from which, under the condition 

and taking (14) into account, we obtain 

The renormalization of the cri t ical  exponent of the 
heat capacity C,, , has thus the same form (17) a s  be- 
fore. This differs  from the result  d =  cy/p of Ref. 7. 
It follows from (24) that the solution Ap(y) = YT(X) 
x (2 - a ) / ( l  - a) and the exponent x = nf a r e  obtained un- 
d e r  the condition 

which corresponds to the condition (23), and conse- 
quently contradicts the considered case  z(y)  << 1. 

It i s  seen thus that the character  of the renormaliza- 
tion of the cri t ical  exponent of the heat capacity C,,, 
i n  the region z(y)  << 1 does not differ substantially from 
the result  for  z (p)  >> 1. The only difference is the 
smearing of the renormalization region and the renor- 
malizations of the constants in (17). 

A similar  analysis under the condition ~ ( x )  = 0 on the 
cri t ical  isotherm shows that in the case  z (y )  >> 1, 
y << 1 and under the condition 

AP(X) K ( : y - i ~ ) ~ ~ ( l - o - ~ )  (26) 

the heat capacity takes the asymptotic form 

c,, .- I ~ p ( s )  I al('-a)+const (27) 

and the renormalization i s  therefore of the type -a/j3 - a / ( l -  a). At z (p )  << 1 and y 2 1 the character  of the 
renormalization does not change, and in the density re -  

gion 

the exponent w remains the same a s  before. 

It must be emphasized in this connection that al l  our 
conclusions a r e  strictly speaking valid only for the r e -  
gion defined by the inequalities (16) and (26), inasmuch 
a s  at  higher values of y ,  temperatures,  and densities 
the important t e rms  in (8), (91, and (12) a r e  not only 
-yr'-a-B and -y2?-a-20, but also the higher-order ap- 
proximations of the ST, i.e., the t e r m s  -rA-a. It i s  
precisely the failure to take all the t e r m s  into account 
in  the reduction of the experimental data on the heat 
capacity C,,, which led in Ref. 7 to the overestimated 
value w = 0.37 i 0.08. Consequently, for  a rigorous 
quantitative check on the isomorphism hypothesis it is 
necessary to solve numerically the system (4)-(9) and 
to  compare the calculation resul t s  directly with the ex- 
perimental data. 

4. QUANTITATIVE CHECK ON THE ISOMORPHISM 
HYPOTH ESlS 

F o r  a quantitative check on the isomorphism hypo t~e -  
s i s ,  the complete ST equation (5) together with Eqs. (7) 
and (8) were  combined into a single parameter-opti- 
mization program. We used for this  purpose the al- 
gorithm of the paper of Berestov and Malyshev," which 
not only yields the parameters  of the model and their 
variances and covariations, but can also check the ade- 
quacy of the employed model, using the Fisher c r i te r i -  
on Fo,,(m, n - m) for  this  purpose. 

The calculation resul t s  and their comparison with the 
experimental data on the heat capacity C,,, of pure 
ethane and of two solutions of heptane in ethane13 with 
two concentrations (0.94 and 3.16 mo1.8) a r e  shown in 
Fig. 1. 

It must be emphasized that here  and below, in accord 
with the main premises  of the ST and the isomorphism 
hypothesis, the calculations were  performed a t  fixed 
values a =  0.112 and @ =  0.340, obtained by reduction of 
precise experimental da ta  on argon, which agree with 
the calculations (see  Ref. 14). The correction exponent 
was  fixed a t  the value A =  0.45, which follows from the 
theoretical estimates. In addition, the values of a and 
k were  se t  equal to the corresponding values for  pure 

FIG. 1. Comparison of the e~perimental '~ and calculated 
values of C,,/T in an ethane+heptane system on the critical 
isochor [A-x =0.0093, A - x  =0.00315, Q-pure ethane, solid 
lines-calculation in accord with Eq. (9)]. 
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ethane. The values of dT,,./dx and dpcr/dx were taken 
by us from Ref. 7. The parameters c ,  m,, and m, 
were determined by reducing the experimental data. 
Analysis of the calculation result shows that in the 
methodologically reliable temperature range s T(X) 
5 3. lo-' the deviations of the experimental heat capaci- 
t ies  C,,, from the calculated ones do not exceed the ex- 
perimental e r ro r  (AC,,,- 0.5 to I%), and a comparison 
of the calculated values of F0.,, [F0.,,(7.29) = 1.081 for 
x = 0.0094 and F0~,,(6.40) = 1.613 for x = 0.03151 with the 
tabulated ones shows that the proposed equation de- 
scribes the experimental data adequately. An estimate 
of the width of the normalization region shows that in 
the case x= 0.0094, 5 = 4.36, y = - 2 i  1 and in accord 
with (21) the boundary of the renormalization region 
corresponds to ~ ( x )  - 4 X Consequently, all the ex- 
perimental points a r e  in some transitional temperature 
region closely adjacent to the normalization region, and 
i t  i s  this which explains the experimentally observed 
dip in the heat capacity. In the case x = 0.0315, 5 = 2.6, 
Y = 10 and the estimate in accord with (21) yields ~ ( x )  
= 7 lo-,, and, in view of the influence of y on the 
smearing of the renormalization region, it can be stated 
that the experimental points in the temperature region 
T(X) 6 a re  located in the renormalization region, in 
good agreement with the experimental results. 

For an experimental verification of the isomorphism 
hypothesis, particular interest attaches to the ethane 
+ carbon dioxide system, the critical line of which has 
two singular points: a minimum of Tcr(x) and the point 
of intersection of the critical line with the line of the 
azeotropes. At the minimum point of Tc,(x) (43.6 mol.% 
C,H,, see Fig. 2) we have 5 = 0 and according to the 
condition (16) there i s  no renormalization. Since, how- 
ever, dp,/dx # 0 and dxcr/dy # 0, Eq. (8) has a nonzero 
solution Ay whose absolute numerical value increases 
with increasing distance from the critical point. The 
increase of Ay shifts the critical isochor, and this in 
turn should lead to a certain additional dip of the heat 
capacity, described by the last term of (9). 

Thus, at the minimum point of T,(x) the heat capaci- 
ty C,,, of the mixture should increase more slowly than 
the heat capacity of the pure substance. This qualitative 
conclusion is confirmed both by an analysis of the ex- 
perimental data and by exact numerical calculations in 
accord with Eq. (9). The calculation results  and their 

FIG. 2. Comparison of the experimentali3 and calculated 
values of CV, , /T  in the ethane + carbon dioxide system on the 
critical isochor [o-azeotropic mixture, u =0.282, A - x  =0.436, 

- x  =0.72, A -pure carbon dioxide: solid lines--calculation 
in accord with Eq. @)I .  

comparison with experiment a re  shown in Fig. 2. In the 
calculations, the parameters dT,/dx and dp,/dx were 
taken from Ref. 7, and the value of dx,/dy, found by 
t r ia l  and e r r o r  to obtain a best fit to the experimental 
data, was dx,Jdy = 6.193. lo-" mol/J, approximately 
four t imes larger than the estimates based on the equa- 
tions (20) for dilute solutions. It is seen from the figure 
that within the limits of the experimental e r ro r ,  the 
deviation of the experimental C,,, from the calculated 
amounts on the average to 0.5-1% and does not exceed 
2%, while a comparison of the calculated value 
F0,,(6.15) = 0.642 with the tabulated one attests to the 
adequacy of the proposed model. 

The character of the singularity of the isochoric heat 
capacity near the critical point of an azeotropic mixture 
was considered earlier.4*7*15 Various assumptions 
were made in these references concerning the value of 
dx,/dy at the critical point of an azeotropic mixture. 
From the assumption that dxc,/dy # 0, it follows that 
C,,, is finite at the critical point of an azeotropic mix- 
ture, but in view of the smallness of T,,-'dT,/dx the 
renormalization region is experimentally unattainable 
( d x )  -S lo-''). In Ref. 7 it i s  proposed, on the basis of 
the condition dxc,/dy = 0, that C,,, increases without 
limit at the azeotropic critical point. It must be stated 
that the available experimental data and the present-day 
experimental accuracy in this region cannot provide an 
unequivocal answer to this question. We have per- 
formed calculations for two cases: dx,,/dy = 0 and 
dx,/dy = 4.386. m o l / ~  (obtained, a s  in the preced- 
ing variant, by trial and e r ro r ) .  Comparison of the 
calculated values of F,.,, [F0,,,(6.30) = 1.2 in the first 
case and F0.,,(6.30) = 0.32 in the second] with the tabu- 
lated values shows that both variants a re  equivalent 
from the statistical point of view. An analysis of the 
obtained parameters has shown, however, that in the 
case dxc,/dy = 0 the obtained values a = 4043 J mol/ 
cm3 and c =  10050 J .mol/cm3 a r e  outside the range val- 
id for pure substances (see Ref. 8). The reason may be 
that the isochoric heat capacity C,,, behaves differently 
in an azeotropic critical mixture than in a pure sub- 
stance, it i s  therefore more justified to use for the cal- 
culation the complete isomorphous equation (9) with a 
nonzero value of dxC/dy. An analysis of the calculation 
results  for the second case (see Fig. 2) shows that the 
difference between the calculation and experiment does 
not exceed 2%. An estimate of the renormalization re- 
gion in accord with Eq. (16) with a value ( = 23 deter- 
mined from the calculated a and dxcJdy yields ~ ( x )  
<< 10-14, and consequently all the experimental data lie 
f a r  from the renormalization region. Interest attaches 
in this connection to the behavior of the heat capacity 
C,,, in a solution that is symmetric to azeotropic: 
x = 0.72 (black circles in Fig. 2), for which the values 
of d~,/dx, dp,/dx, 5, and consequently of the limits 
of the renormalization region a re  practically equal to 
the azeotropic ones. The experimentally observed dip 
in the heat capacity C,,, can likewise not be attributed 
to  the influence of the large value y = 9.3* 1.5, since an 
estimate of the limit of the smearing of the renormal- 
ization region yields, according to Eq. (25), ~ ( x )  << lo-, 
and practically coincides with the estimate for the 
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azeotropic solution. At the same time, a numerical re- 
duction has shown that the isomorphous equation de- 
scribes adequately the experimental data. This con- 
firms the conclusion that, even in the region far  from 
the renormalization region, a physically rigorous and 
correct comparison of the experimental data with the 
theory calls for the use of the complete isomorphous 
equation of state and practically this entire region 
must be regarded a s  transitional. 

From the point of view of a numerical check of the 
isomorphism hypothesis, an important question is the 
estimate of the width of the temperature interval r(x) 
and density interval Ap(x) in which the isomorphous 
equation of state can be used for an adequate description 
of the experimental data. We have used for this pur- 
pose the equation obtained for the description of the ex- 
perimental data on the heat capacity C,,, for three con- 
centrations (10.88, 18.2, and 48.85 mol.% Ar) on differ- 
ent isochors of an Ar-Co, mixture.16 A preliminary 
analysis of the experimental data on the heat capacity 
C,,, from the point of view of renormalization (the 
critical isochor was assumed to be in this case the iso- 
chor with the maximum heat-capacity anomaly, the pa- 
rameter a was calculated using the additive law, and 
dx,Jdp was determined from Eq. (20) for a dilute solu- 
tion) has shown that in the case of low concentrations 
5 = 15.8 for x = 0.1088 and 5 = 7.8 for x = 0.182, and con- 
sequently all the experimental points lie outside the re- 
normalization region [the boundary of the region r(x) 
-10-12-10-8]. At a concentration x = 0.4885 we have 
5 = 3.1 and consequently all the points with ~ ( x )  < 
lie in the renormalization region, a s  i s  well seen from 
the dip of the heat capacity C,,, on the critical isochor 
compared with the preceding case. A numerical reduc- 
tion of the experimental data has shown that for the case 
when there i s  no renormalization (x= 0.109) and the be- 
havior of the heat capacity is determined mainly by the 
form of the singular part of the thermodynamic poten- 
tial, a s  well a s  for the case when renormalization takes 
place and the regular part i s  the principal one (x  
= 0.488), only four constants (fl,f,, m,, m,) a r e  suffi- 
cient for an adequate description of the experimental 
data in Eq. (6), in analogy with a pure substance. This 
indicates that the isomorphous equation offers a physi- 
cally correct description of the character of the renor- 
malization and of the behavior of the heat capacity C,,, 
of a binary mixture in a wide range of the state parame- 
t e r s  [I ~ p ( x )  Is 0.2 and a r(x) a lo-'] near the line of 
the liquid-gas critical points. At the same time, for an 

FIG. 3. Segment of the liquid-vapor equilibrium line in the 
Ar-C02 system: o - x  =0.1088, -x  =0.182, A -x=0.4885 
[solid line-calculation in accord with Eq. (XI) ] .  

adequate description of the experimental data at x 
= 0.182 in Eq. (6) it was necessary to add a polynomial 
of third degree in the density and temperature. In addi- 
tion, the accuracy of the calculation for the mixtures 
turned out to be somewhat lower than the accuracy 
reached for individual  substance^.^*^ The reason for 
this result i s  that in critical binary solutions, in con- 
t ras t  to pure substances, the use of the regular part of 
the thermodynamic potential influences strongly the cal- 
culation accuracy in the expanded model. An incorrect 
choice of the regular part may even make the model in- 
adequate for use in a wide range of densities and tem- 
peratures. Experimental data in the immediate vicinity 
of the critical point a r e  therefore highly desirable for 
a numerical check on the isomorphism hypothesis. In 
this sense a description of the liquid-vapor boundary 
curve in the vicinity of the critical point i s  of great in- 
teres t ,  particularly that part of the boundary curve that 
l ies  in the temperature region where retrograde con- 
centration is possible. We have reduced the experimen- 
tal data on the equilibrium curve of Ar-C02 mixtures 
with three densities.16 The calculation algorithm was 
the same a s  before, except that Eq. (9) was replaced by 
the equation for the coexistence curve in the isomor- 
phous variables 

It must be noted that in this equation, in contrast to 
Eqs. (4) and (5), account is taken not only of the next 
higher ST approximation, but also the "asymmetry" of 
a rea l  liquid [the terms -(T( y))l-a]. The results  of cal- 
culation using Eq. (29) and their comparison with the 
experimental data shown in Fig. 3. It i s  seen from the 
figure that some of the experimental data lie in the tem- 
perature region T, > T,,(x), which is described with 
good accuracy by an isomorphous equation of state. 
This means that the isomorphism hypothesis makes i t  
possible to describe a phenomenon such as retrograde 
condensation, which is important in practice and in- 
teresting physically. The calculations have also shown 
that the parameters 4 and d&/dp a re  sufficiently 
large statistically significant. As shown in Ref. 17, the 
corrections to the isomorphous equation for the heat 
capacity, necessitated by asymmetry, a r e  of the order 
of -A,Y-"+(~'-'), and the equations that connect the pa- 
rameters  r and 8 with the dimensionless temperature r 
and density Ap in a real  asymmetrical system are  of 
the form 

where r,.,.and Ap,., a r e  the temperature and density of 
the symmetrical lattice-gas model, which a r e  defined 
by Eqs. (4), and the proportionality coefficient is 

As a result of this functional connection between the 
parameters r and 8, on one hand, and r and Ap, on the 
other, the exponents for the correction terms due to 
asymmetry a r e  substantially smaller on the critical 
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isochor (Adz) = 0) than the non-asymmetric t e rms  
( r  - T, 0 - 71-"-9 and a re  proportional to A , T - ~ + ' ~ - ~ ) .  In 
addition, since y - 2a = 1, it is difficult to distinguish 
them from the terms -r(x) that appear when the regular 
part of the heat capacity is expanded in powers of the 
temperature. The situation is different on the critical 
isotherm (T(x) = 0), on which 10 I = l / b , r  = 1 Ap1 ' I 8 .  In 
this case the asymmetric corrections for the heat 
capacity a r e  of the order of A, I A p l - a * ( B + ~ l )  and conse- 
quently become commensurate at IA, 12 c with the non- 
asymptotic t e rms  in Eqs. (5). This means that to  the 
extend the region of description of the isomorphous 
state equation to include other isochore, and for a 
more rigorous check on the isomorphism hypothesis, 
i t  is necessary to take into account in Eqs. (5) and (9), 
besides the non-asymptotic terms, the corrections 
necessitated by the asymmetry. 

5. POSSIBILITY OF A UNIVERSAL DESCRIPTION OF 
CRITICAL PHENOMENA IN BINARY SYSTEMS 

According to Eq. (16), the behavior of all binary sys- 
tems is determined by the value of the dimensionless 
parameter cp = T ~ ( x )  5 .  In the case of small cp (cp<< 1) a 
renormalization T( p) - (?(~)) l ' ( l -~)  i s  observed and the 
heat capacity on the critical isochor p =  p,,(x) varies 
like c,,,-(T(x))~'(~'~). For larger values of cp (p>> 1) 
there i s  no renormalization: 7( p) - T(X) , and the heat 
capacity varies a s  in a pure substance: C,,,- T-"(x) + B. 
It is seen thus that the character of the renormalization 
depends on the universal dimensionless parameter cp, 
and the heat capacity approaches certain asymptotic 
values. This means that the thermodynamic potential of 
such a system can be written, close enough to the criti- 
cal  point, in the form 

where F,(cp) i s  a universal function of i t s  argument with 
known asymptotic values. At the same time, the indi- 
vidual properties of the objects determine the coeffi- 
cient A, of the singular part, a s  well a s  the regular 
part F,. For a direct numerical check on this conclu- 
sion, we have reduced the data on the isochoric heat 
capacity of the investigated systems in accord with (30), 
using the formula 

- - - 
where A, B ,  and C a r e  fit parameters. The function 
F,(cp) was chosen in the form 

It is easy to show that this choice of the function 
F,(cp) satisfies the asymptotics indicated above. The 
results  of the reduction by means of Eq. (31) a re  shown 
in Fig. 4. It i s  seen from the figure that almost all the 
experimental points obtained for systems with different 
concentrations lie on the theoretical curve calculated 
from Eq. (31). This confirms convincingly the conclu- 
sion drawn from the isomorphism, that the phase tran- 
sitions in various binary systems have a universal 
(isomorphous) character. 

FIG. 4. Universal scaling f u n c t i o n ~ ~ ( ~ " ( x ) ~ )  for the heat 
capacity; A-x=0.0093, A - x  =0.0315 (ethaneiheptane sys- 
tem), o -azeotropic mixture x -0.282, + - x  =0.436, - x  
=0.72 (ethane + carbon dioxide system, see Figs. 1 and 2); 
solid line--calculation in accord with Eq. (21) ; o ( x  =0.1088), 

( x  =0.1558)-eqerimental data for A r  +C02 mi~ture.'~ 

6. CONCLUSION 

We have thus obtained here, for the first  time ever, 
a rigorous isomorphic equation of state for binary sys- 
tems near the line of the liquid-vapor critical points, 
in accord with the isomorphism hypothesis and on the 
basis of an expanded linear model of the equation of 
state of a one-component liquid. A computational-theo- 
retical analysis of the experimental results  on the iso- 
choric heat capacity and on the line of coexisting phases 
has  demonstrated the validity of the isomorphism hy- 
pothesis and the feasibility of a universal quantitative 
description, on i t s  basis, of the thermophy sical prop- 
er t ies  in a broad vicinity of the critical points of the 
mixture. The analysis has shown at the same time that 
with increasing distance from the critical coexistence 
points the accuracy of the calculations i s  strongly 
affected by the asymmetry of the properties of a rea l  
mixture relative to p,,(x), a s  well a s  by the analytic 
form of the regular part of the isomorphous thermody- 
namic potential. 

Unfortunately, for mixtures there a r e  still no joint 
experimental data on the heat capacity and on the de- 
pendence of the pressure on the temperature, on the 
density, and on the concentration in the critical region. 
Such data and their reduction would make it possible to 
describe the thermodynamic properties of mixtures a s  
exhaustively a s  those of pure substances. 

')~tquation (3) was derived under the assumption that the 
chemical potential p @, T) = @pF/ap) ,  for a liquid has a 
singularity of the type 

p(p, T ) - P ( P ~ ,  T) =APIAPI~-~~o(~)P~ I pa .  

The validity of this assumption was investigated by us in de 
tail earlier.'.' 
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