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We consider the theory of the optically induced Freedericksz transition (OFT), i.e., the reorientation of the 
director in a homotropically oriented cell with a nematic liquid crystal (NLC) under the influence of a 
normally incident light beam, with a threshold dependence on the light power. It is shown that for a beam of 
width a much larger than the cell thickness L the threshold power is proportional to 1 + 11, where 4, is the 
degree of linear polarization of the beam, 0 g1 5 1. For beam with finite transverse dimensions, we discuss 
the nonplanar director perturbations due to the difference between the Frank constants, and their influence 
on the polarization of the transmitted radiation. The asymptotic laws of the decrease of the perturbations 
outside the beam are obtained. Expressions are presented for the stationary amplitude of the perturbation, 
which is proportional to the square root of the excess above threshold. These laws hold in the general case of 
transversely bounded beams. The question of OFT in a planar cell is considered. In the Appendices we 
present geometrical-optics data on inhomogeneous nematics and discuss the question of the correct form of 
the variational equations for NLC. 

PACS numbers: 64.70.Ew, 61.30.Gd, 42.10.41 

1. INTRODUCTION 

The orientational optical nonlinearity of liquid crys-  
t a l s  is being intensively investigated of late, see  Refs. 
1-7. Following the giant optical nonlinearity (GON),' 
an  optically induced Frgedericksz transition (OFT) was 
observed.' The theory of th is  phenomenon was later  
developed in Ref. 9 and has  a number of features that 
distinguish it from the theory of the Fre'edericksz 
transition in a static electr ic  o r  magnetic field. A few 
other experimental papers on the OFT were  published 
most recently.''-" The discussion of the OFT theory in 
Refs. 11-13 contains may substantial inaccuracies and 
simplifications. 

In this  paper we consider a number of new aspects of 
the OFT theory, which touch principally on the polar- 
ization of a light beam and on the three-dimensional 
character  of the perturbations of the director. 

2. SYSTEM OF BASIC EQUATIONS 

We describe the light beam by a complex amplitude 
E(r) ,  which is connected with the rea l  electr ic  field 
E,,,(r, t) by the relation 

1 E,,,(r, t )  = - [E (r) e-'"'+E' (I) e'"'] . 
2 

chromatic field E ( r ,  t) is determined in  self-consistent 
fashion from a solution of Maxwell's equations with 
c,n(r, t) from (3). We emphasize, however, that when 
variational equations a r e  obtained for  the director  
n(r, t ) ,  the fixed quantity should be taken to be the 
amplitude of the electr ic  field E(r , t )  and not, e.g., the 
induction D = 2E o r  some other quantity (see Ref. 14 
and Appendix 2 of the present paper concerning this 
question). The density of the dissipative function R 
(erg/cm3 sec) is assumed in the form 

where the relaxation constant 77 has  the dimension of 
poise (77-10"-1 P). The variational equations for  
n(r, t) a r e  of the form 

The operator II,, projects on a plane perpendicular to 
the local direction of the director  n( r , t ) ;  this ensures  
satisfaction of the equation In(r, t) I = 1. 

The boundary condition for a rigid homotropic orien- 
tation of the director  on the walls can be assumed in the 
form 

n(x, y, a=O) =n (x, y, z=L) =e,, (6) 

The f r ee  energy per unit volume of a nematic liquid Where is the thickness- 
crystal  (NLC) in the presence of a field is assumed in Maxwell's equations can be reduced to the form 
the form ma 

1 rot rot E - --̂ eE=O. c2 (7) F[T]  cm = ~ ~ , , ( d i v n ) ' + - - ~ . , ( n m t n ) '  2 2 

1 (2) A geometrical-optics approximation for  the solution of 
+- K , , [ ~ x  rot n]' - L ( ~ E )  (nE') - A ( E E . ) .  

2 16n 16n Eq. (7) is discussed in Appendix 1. 

Here K , ,  a r e  Frank's constants. n is a unit vector in 
the direction of the director ,  the dielectric tensor of 

3. DEPENDENCE OF THE OFT ON ca AND ON THE 

the NLC a t  the frequency w of the light field i s  given by 
POLARIZATION OF THE INCIDENT LIGHT (BROAD 
BEAMS) 

eth=~16ik+ (e,,-e,) n,nk. (3)  We consider a beam with t ransverse  dimension a 
In addition, we have introduced in (2) the symbol much la rger  than the cel l  thickness, a>> L, incident 

- - E,, - E,. The complex amplitude of the quasimono- from outside strictly along the z axis. The quantities 

656 Sov. Phys. JETP 55(4), April 1982 0038-56461821040656-11$04.00 O 1982 American Institute of Physics 656 



n(r) and E(r) can then be regarded a s  dependent only on 
z .  The perturbed state of the director i s  written in the 
form 

We then obtain from (5), with accuracy linear in cp in- 
clusive, 

d2v ,  e. -tllP,+KSS -; = - - { (EIEks+EI.EI) 9 . f  (E,Ez'+EI.Ez) -2 (EzE..) q I } .  
dz  1611 

(9) 
where i = x,y .  The unperturbed field of the wave inci- 
dent along the optical axis of the unperturbed NLC has 
nonzero components E, and E,, while E, = 0. If we 
leave out of (9) all the terms aE,, the problem of the 
OFT threshold becomes completely analogous to the 
problem of the FT in a static magnetic o r  electric 
field. An approximation of this type was used in Refs. 
11 and 13. Actually, however, in a distorted NLC, 
a nonzero value of E, appears even in the first  order in 
cp, and must be taken into account in Eq. (9). To de- 
termine this value we note that at E = E(z) and = z ( z )  
it follows from (7) that 

whence, with accuracy linear in cp, we have 

Ez = - e , ( c p ~ z + c p , ~ u )  +0 ( (p3 ) .  (lob) 
ell 

The last term of (9) can be omitted, and we obtain as 
a result 

Thus, allowance for a field perturbation E,cc cp leads 
so to speak to a multiplication of the unperturbed field 
intensity by a factor 1 - c , /&, ,  2 &,/E,,. Under typical 
conditions, this factor i s  &,/&,,=0.65, i.e., the correc- 
tion to account for E ,  is quite discernible. This correc- 
tion increases the threshold power by c , , /~ ,=1 .3  times 
compared with the results  of the primitive theory. To 
determine the threshold, it suffices to represent the 
solution of Eq. (11) with boundary conditions (6) in the 
form - 

mnz 
q (z ,  t )  = C ~ i n - ~  (etcplm ex*(-r lmt)  +e2cpzm exp (-rrd)), (124  

- 1  

Here I, a r e  the eigenvalues of the symmetrized matrix 
made up of the x and y components of the unperturbed 
field: 

0.5 (EfEk'+E;Eh)cp=lf~~,  (13) 

and cp,,, a r e  the corresponding eigenvectors. It i s  con- 
venient to represent the polarization density matrix 
E*,E, in the form 

(E~'EA)='/Z(EE') ( ~ + b L b , + g z b 2 + ~ t 6 n ) ,  (14) 

where a, a r e  Pauli matrices and 5 is the Stokes vector, 
I ( 1 S l .  Then 

I , , ,=~I , (EE'> ( k t  (p,Z+:,Z)'is). (15) 

The quantity I, corresponds to the intensity of the 
strongest of the linearly polarized field components. 

The OFT threshold corresponds to the fact that one of 
the quantities rim reverses  sign, i.e., the correspond- 
ing perturbation increases in experiment. Since I, > I,, 
the OFT threshold for m = 1 corresponds to a power 
density inside the medium 

ceL% C ~ ~ K , , E I ~  2 
S, [%,I= ( E E . ) = S ~ =  -- 

e . e ; h ~ Z  ' I +  ( ~ , B + E , Z ) %  . (lea) 

So far,  the analysis was applicable to the general case 
of partially polarized radiation. If, however, the radia- 
tion is fully polarized, 5,' + 5; + 5; = l, and then 

where 5, i s  a Stokes parameter that characterizes the 
degree of circularity. In particular, 5, = *1 for purely 
circular polarization and the threshold i s  twice a s  
high,') than for linear polarization (5, = 0). For linearly 
polarized radiation (t12+ [,a = 1) expression (16) was 
f i rs t  obtained in our earl ier  paper.' 

We emphasize here the importance of taking into ac- 
count the E, components of the field to calculate the 
threshold, using the following considerations. There 
a r e  no physical principles that contradict the existence 
of media with 

(simply speaking, media with E,,/E,>> 1). It is therefore 
appropriate to consider the dependence of St,, of (16) on 
c ,  at 

This dependence i s  given by curve 1 of Fig. 1. As E, - m, St,, assumes a constant value, which i s  taken in 
this figure to be unity in the vertical direction, and in- 
creases  like &,-' as c ,  -0. 

If no account is taken of the onset of the E, compo- 
nent, a s  was done in Refs. 11 and 13, then the threshold 
is lowered, in the scale indicated, by exactly unity at 
any value of E, (curve 2). As E, - 0 the relative e r ro r  
of curve 2 compared with the correct  curve 1 decreas- 
es .  As c ,  -+ m, however, curve 2 (corresponding to 
the results  of Refs. 11 and 13), yields a radically dif- 
ferent result S,,,a&,-' - 0 instead of the correct 
asymptotic St,, - const. 

FIG. 1.  Dependence of the threshold power St,, ,(in its units 
a s  &,/&, --) on the value of &,/el for broad beams. Curve 1 
describes the correct behavior of the thre~hold,~ curve 2 shows 
the behavior of the threshold according to the equations of 
Refs. 11 and 13. while curve 3 shows the same for Ref. 12. 
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We note also that the value obtained for St,, in Ref. 12 
also differs from the corrector by a factor E,,/E,, but 
now overestimates the threshold. The corresponding 
curve 3 is shown in Fig. 1. 

As E, - 0, the relative difference between all three 
curves is small, and the threshold itself is obtained 
by a trivial substitution from the formulas for FT in 
the static electric o r  magnetic field, cf. Refs. 16 and 
17. At &,2 E,, however, these three curves not only 
yield different numerical results ,  but have also a radi- 
cally different asymptotic behavior. Thus, S-const in 
Ref. 9, S-E,-'- 0 in Refs. 11 and 13, and SKE,'' -Q in 
Ref. 12. An analysis of the e r r o r s  of the theoretical 
part  of Ref. 12 is given in Appendix 2. 

Above the threshold, an orientational effect on the 
NLC is produced only by the projection (cp, E) of the 
incident-field vector. The polarization along CP, then 
propagates in the NLC as an ordinary o-wave, and 
therefore: a) it does not feel the perturbations of the 
director and b) it produces no GON in the OFT. For  a 
justification of the last statement see Sec. 6. We pre- 
sent here also, for reference, an expression for cplm=' 
from Ref. 9 in the case of a small excess above thresh- 
old: 

To obtain this expression it i s  necessary to use the ini- 
tial nonlinear equation (9) and the solution of Maxwell's 
equations in the geometrical-optics approximation,' see 
also Sec. 8 and Appendix 1 of the present article. 

4. LAWS GOVERNING THE DECREASE OF THE 
DIRECTOR PERTURBATIONS OUTSIDE THE LIGHT 
BEAM 

We consider the behavior of the cell near the thresh- 
old of the OFT, with allowance for the limited trans- 
verse dimension of the light beam. Near the OFT (and 
at  any rate,  below the threshold) the distortions of the 
NLC a r e  small  and the light beam is deflected little by 
the perturbations of the director. We shall therefore 
assume that relation (lob) i s  satisfied in the entire vol- 
ume of the cell, and that Ex and E, represent the unper- 
turbed incident field. Then, in the approximation linear 
in cp(r,t), we obtain from (5) 

We have separated here explicitly the transverse ( r )  
and longitudinal (z) coordinates, a/&, denotes differ- 
entiation with respect to the transverse coordinates, 
and I,,= (EiEkf + E , * E J / ~ .  

The factor c i s , ,  in the right-hand side of (18) corre- 
sponds to allowance for the virtual appearance of the 
E, component of the field. 

We seek again the solution by separating the vari- 
ables: - - 

(P ('9 t )  = cp,, exp (-r,t) ~ , , ( r )  sin=. 
m-1 n-0 

L 

The possibility of separating the factor s i n ( m a z / ~ )  i s  
due to the independence of I,, of the coordinate z. We 
then obtain for the vector function Bm(r) an equation of 
the type 

Since the threshold is reached earl iest  for the value m 
= 1, we confine ourselves only to such t e rms  in (19) 
and (20). We therefore obtain the problem of the eigen- 
functions of a Hermitian operator and the correspond- 
ing eigenvalues qT1,+ K,,(~/L)'. The threshold means 
that the smallest of the eigenvalues (n = 1) becomes 
equal to K,,(T/L)', i-e., that rl, vanishes. 

Equation (20) is analogous to the two-dimensional 
Schr'Minger equation, the only difference being that the 
wave function i s  a two-component vector, and the oper- 
a tors  of the potential and kinetic energy have a more 
complicated tensor form. 

Near the threshold and in the stationary state in gen- 
eral ,  a s  already stated, we have r,,- 0. This allows us  
to find the universal laws that govern the decrease of 
the perturbations far  (at distances I A r  12 L) from that 
region where the perturbing action Zi,(r) i s  localized. 
Namely, putting I,,= 0, m = 1, and T,, = 0 in (20), we 
obtain the one-dimensional law governing the decrease 
along the coordinate ( v  r), where v i s  a real  unit vec- 
tor  in the (x, y) plane: 

nz nz 
6n(r, z)=B,,(r)sin-= sin- {c,vexp(-x,(vr) )+c2[e ,~v]exp(-x2(vr))  1. 

L L 
(21a) 

where c, and c, a r e  constants. Since usually K,,<K,,, 
K,,, we have K,< ~2 and n/L<%. In the single-constant 
approximation (i.e., when Kll = K,, = K,,) we have K, = K, 

= r /L,  and the amplitude of the perturbation of the di- 
rector decreases by a factor exp(n) = 23 at a distance 
& equal to the thickness L of the cell. In the case 
when the constants a r e  not equal, the perturbations bn 
t ransverse to the ( v s r )  axis decrease even more rapid- 
ly, since K,> n,. In the general case when m = 1 and I?,, 
= 0, the solution of Eq. (20) can be broken up in the re-  
gion with Iik(r) = 0 into a "longitudinal" (or  "potential" 
V) and "transverse" (o r  "vortical" W )  parts: 

where i = x ,  y; e ik  i s  a two-dimensional antisymmetrical 
tensor, ell = e,, = 0, el, = -e,, = 1; it follows then from 
(20) at Iik= 0 that 

The one-dimensional solutions of these equations 
were obtained above-Eqs. (21); their form corre- 
sponds to representation of one of the subgroups of the 
symmetry of Eqs. (23)-the translation subgroup. In- 
teres t  attaches also to solutions corresponding to the 
subgroup of the symmetry of Eqs. (23) relative to rota- 
tions in the ( x , y )  plane, e.g., about the origin. Using 
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ul = u to designate the function V o r  u2 = u for the func- 
tion W, we obtain in the polar coordinates x = pcoscp, 
y = p sincp the solution - 

U (p, cp) = ~'wH:' (ixp) c,, 
m--OI 

where ~ , ( ' ) ( i u ~ )  i s  a Hankel function. The function 
H,(') has the asymptotic form 

Thus, the main law governing the decrease of the 
perturbation at p 2  xK1 consists also in the radial case 
of two exponentials: 

eo=(cos 9, sin cp) ; %=(-s in  cp, cos cp). 

To determine the actual constants c, of (24) or the 
functions f,(cp) and fJcp) of (26) we must solve Eqs. 
(20) in the region with Z,,(Y) # 0. 

We have assumed so far that the perturbations near 
the OFT are  small. It i s  easily seen, however, that the 
equations obtained and their solutions a re  governed by 
this assumption only under the following three condi- 
tions: 1) rmn= 0, 2) m =  1, and 3) I 6 n l c l .  As for the 
condition rmn= 0, it simply corresponds to absence of 
a time dependence, i.e., it i s  satisfied for any station- 
ary state. Next, the results  with m = 1 can be general- 
ized in trivial fashion to the case of arbitrary rn in the 
z-dependence of sin(mnz/l) by making the substitution 
u-m2x. Thus, the only significant condition for the 
applicability of the foregoing results  i s  the assumption 
that the perturbations a re  small, 1 6n I < <  1. It is clear 
that there i s  always a region far from the illuminated 
part of the beam where this condition i s  satisfied. 

In addition, we have considered so  far normal in- 
cidence of the light wave on the homotropic cell, when 

5. NON-PLANAR PERTURBATIONS OF THE DIRECTOR 
IN  BOUNDED BEAMS 

We consider the problem near the threshold of the 
OFT for linearly polarized radiation E = e$I2(r). The 
linearized equations for the lowest harmonic of the 
perturbations 

Gn= (e,cp.+e,cp,) sin (nz/L) 

a r e  of the form 

We note first  that in the single-constant approxima- 
tion the perturbed director remains in the x , z  plane. 
To elucidate the qualitative features of nonplanar per- 
turbations, it i s  convenient to turn to the case of rela- 
tively broad (compared with a cell thickness) light 
beams. The right-hand sides of Eqs. (28a) and (28b) 
can then be treated by perturbation theory. In addition, 
the differential operator in the left-hand side of Eq. 
(28b) can also be neglected in the case of broad beams, 
and then 

The second expression of (29) was obtained under the 
assumption that qx(r)  can be approximated by the equa- 
tion 

c~ . ( r )  =const  exp ( - ~ ~ / a ~ ~ - y ' / ~ , ' ) ,  

The spatial distribution of the perturbation 6n= %ex 
+ cpyey, corresponding to (29), is shown in Fig. 2. 

In that part of the (x,y) plane where the perturbation 
is appreciable, i.e., at 1x1 -a,, l y /-ay, there follows 
from (29) the simple estimate 

the OFT effect is present, but there is no GON.6 For 
the OFT the t e rms  ccE*,E, enter with a factor 6n, and Thus, for ribbon beams, with either ax- o r  a, 

the equations for 6n turn out to be homogeneous, i.e., - 03, the perturbations remain planar. In the case when 

without a right-hand side. In contrast, as indicated in the light-polarization direction makes an oblique angle 

Refs. 2 and 6, in the case of oblique incidence of the with the ribbon direction, the perturbations a re  again 

extraordinary wave we get GON, and the equations for nonplanar. 

6n have a right-hand side aE,E*,(n,) ,, where n,, is the 
unperturbed direction of the director. In the homo- 
tropic case, for the stationary problem, the equations 
for small perturbations of the director take the form 

For the same reasons, to consider the GON at in- 
clined incidence, the field E can be taken from the so- 
lution of Maxwell's equations for the unperturbed me- 
dium. For the solution of equations of the type (271, 
and also for a theoretical and experimental investiga- 
tion of the GON, see Refs. 2, 6, 7, and 18. 

FIG. 2. Spatial distribution of the perturbation of the director 
an=exp(-2/ a: - y2/a:)(ex + const(xy/a,a,)e,) near the origin 
x =  0, y = 0. The tangents to the curves show the direction 
of 6n. 
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For a circularly polarized beam, the perturbations 
6 n m  ex and 6n rn e, have equal thresholds, i.e., the sys- 
tem i s  degenerate with respect to the direction of (p 

in the (x,y) plane. Under these conditions, the final 
direction of cp is determined by weak factors that play 
a minor role for linearly polarized beams.') Thus, 
e.g., let a circularly polarized beam with transverse 
dimensions a 2 L, a, r L be not axially symmetrical, 
and for the sake of argument let a, > a,. It is then easy 
to  show that minimization of the free energy fixes the 
direction of (p along the x axis, i.e., cprn ex. 

A curious example is a "ribbon" beam. rolled into a 
"ring" such that the radius of the ring R>> L, and the 
thickness of the illuminated annular region i s  of the or- 
der  of the cell thickness L. Then, owing to the relation 
K,, <c K,,, in the case of a depolarized o r  circularly po- 
larized incident beam, the perturbation of the director 
should be directed along the tangent to the circle and 
not along the radius. 

6. EFFECT OF NONPLANAR PERTURBATIONS ON THE 
POLARIZATION OF THE TRANSMITTED LIGHT 

The OFT produces a lens with bell-shaped profile 
in a beam having a finite transverse dimension in a 
cell. As a result, the plane wavefront of the incident 
radiation likewise becomes bell-shaped. For the one- 
dimensional problem, the shape of the wavefront as it  
emerges from the medium i s  illustrated in Fig. 3(a). 
If the phase shift at the center of the beam, compared 
with i t s  edge, is much larger than the wavelength, then 
the field in the far  zone, in the direction at an angle 9, 
to  the z axis [see Fig. 3(b)], is determined by the sum 
of the contributions of those two points x ,  and x,, in 
which the normal to the wavefront is directed at an an- 
gle 8, to the z axis [see Fig. 3(a)]. The interference of 
these two contributions produces the characteristic 
fringe structure shown arbitrarily shaded in Fig. 3(b). 

In the two-dimensional problem, the wavefront at the 
exit from the medium i s  a two-dimensional bell. Fig- 
ure 4(a) maps schematically the level lines of the wave- 
front surface a s  functions of the transverse coordinates 
x and y. Just as in the one-dimensional problem, the 
field at a point with angular coordinates 8, = (8, , 8,) in 
the far  zone [ ~ i g .  4(b)] is determined by the contribution 
of two points r, and r, [ ~ i g .  4(a)] at which the normal to 
the wavefront surface has the required direction. The 
interference between these contributions produces in 
the f a r  zone the characteristic annular structure dis- 

FIG. 4. Constant-depth lines of the wave-front surface (a) 
and interference pattern in the far zone (b) in the axially sym- 
metrical problem. 

cussed in self-focusing and defocusing problems, see  
Ref. 19. For liquid crystals, this annular structure 
was observed and discussed in the GON-self-focusing 
regime in Ref. 7, while for CFT self focusing'it was 
discussed in Refs. 18 and 13; in the case of OFT, this 
question was recently discussed also in Ref. 20. 

We examine now the qualitative results of the non- 
planar the director perturbation represented in Fig. 2 
(see Fig. 5). It i s  easily understood that there a re  no 
q, perturbations of the director on the x and y axes in 
the (x,y) plane. For this reason, the transmitted wave 
will have in the f a r  zone on the axes 8, and 9, an annu- 
l a r  structure only in the same e, polarization a s  of the 
incident wave. In other words, there should be no e, 
field component in the far zone near the 9, and 9, axes. 
The field in the direction of the middle of the quadrants 
of the (Ox, 8,) plane i s  determined by the contribution of 
the points in the middle of the quadrants of the (x,y) 
plane [cf. Figs. 4(a) and 4(b)]. It i s  precisely for such 
8 that the depolarizing effect of nonplanar perturbations 
should manifest itself. The order of magnitude of the 
amplitude of the depolarized field can be roughly esti- 
mated from (30) at 

E* cp, 
(31) 

and the intensity of the depolarized component can be 
estimated a s  the square of this parameter. The annular 
interference structure of the field in the far zone has in 
general the same character for the e, polarization a s  
for the e, polarization. 

We assume that the foregoing premises explain the 
polarizational features, observed in Ref. 8, of light 
passing through a cell is the case of OFT.=) Unfortun- 
ately, a quantitative comparison of the theory with ex- 

FIG. 3. Wavefront profile (a) and interference pattern in the 
far zone b) for the one-dimensional problem. 

FIG. 5. Schematic picture of the depolarized (e,) component 
in the far zone for OFT in a field with e, polarization. 
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periment i s  difficult, since the parameter  of (30) and 
(31) was not small  under the conditions of the experi- 
ment of Ref. 8. 

7. THRESHOLD AND PROFILE OF PLANAR 
PERTURBATIONS OF THE DIRECTOR I N  BOUNDED 
BEAMS 

In the general case  of t ransversely inhomogeneous 
and nonplanar perturbations of the director ,  Eqs. (18) 
cannot be solved even in the l inear (i.e., near-thresh- 
old) approximation. Part icular  interest  attaches there- 
fore to those ca ses  for  which an  exact solution of the 
problem of the OFT threshold problem and of the unsta- 
ble-mode profile problem can be solved exactly. All 
these ca ses  pertain to problems in which, by virtue of 
the symmetry properties, the perturbations remain 
purely planar. Let us l is t  them in arbitrary sequence. 

Let the intensity of the light beam depend only on one 
transverse coordinate, which we designate by y (ribbon 
beam). The nonzero perturbation will be in the case  
E(y) = e,I1la(y) 

Gnae,cp(y) sin (nz/L), 

and in the case  E( y) = e$"( y ) ,  

Gnae,cp (y)  sin (nzlL). 

Fo r  both cases,  Eq. (20) takes the form 

where K =  K,, for  E a ex and i?= K,, for  E ae,. We now 
obtain the threshold intensity I( y = 0) and the perturba- 
tion profile cp,(y) for  a number of specific I (y )  distribu- 
tions. 

1) L e t I ( y ) = I ,  at - a s y ~ a a n d I ( y ) = O a t  l y I > a  
(rectangular profile with total width 2a). The threshold 
condition can then be written in the form 

%= (pz-x2)'" tg  (p2-x2) "a, 

(we recall  that ~ , [ e r ~ / c m '  sec]  = cc,"V0/8?r). 

Since K,,< K , ,  , the threshold for ex polarization along 
the ribbon i s  somewhat lower than for e, polarization. 

At a>> L and a<< L we have the asymptotic expres- 
s ions 

parameter  L/a; this  statement is specifically applica- 
ble t o  a flat-top type of distribution. 

The unstable mode i s  of the form 

cos (pa-x2) "y, lyl<a 
cos[ (p2-x2)'"a]exp[--x(l yl-a)], lyl>a. 

In particular, at  a>> L, 

A characterist ic  feature of (36b) is that for  a rec-  
tangular intensity distribution the perturbation cp( y)  
h a s  a cosine distribution and fal ls  off practically to 
z e r o  (more  accurately, to the smal l  quantity ~ / 2 n a )  at  
the  beam boundaries y = *a. Fo r  a>> L. even a t  a rela- 
tively small  excess  over threshold, (S- s,,,)/S,,, 
-(xu)", modes with higher t ransverse  indices a r e  add- 
ed to the lower mode (36b), see  Sec. 8. As a result ,  
the  perturbation inside the illuminated region tends to 
a constant value typical of an  unbounded beam. The 
law governing the fall-off of cp( y) outside the beam re-  
mains the s ame  a s  before, i.e., exponential, see  Sec. 
4. 

2) Let I( y) = I, c o ~ h - ~ ( ~  /b), with the beam half-width 
a t  half-maximum intensity a t  the maximum 
a(HWHM) = 0.9b. The threshold is then determined by 
the equation 

and the unstable mode is given by 

At a<< L everything coincides with the case  of a 
square top provided the integrals !I( y)dy coincide. 

At b>> L ,  the correction to the threshold i s  linear in 
~ / b ,  and the profile of the instability mode takes the 
form 

cpo (y) mexp (-y21a'), a= (261%)". (39) 

Both profiles, the Gaussian profile of the mode with 
width a a ( ~ b ) ' "  and the correction to the threshold in 
f i r s t  order  in ~ / b < <  1, a r e  typical of any broad distri- 
bution Z(Y) with a smooth dependence near  the origin, 
I(y) =Zo(l - y2/b2+ . . .). For  broad distributions that a r e  
smooth at  ze ro  i t  is possible to solve in the single- 
constant approximation also the two-dimensional prob- 
lem with I(x, y) in the form 

We point out that in a narrow ribbon beam, in the limit 
a<< L ,  the threshold value is the "runningJ' power 

the higher t e r m s  in x2 and y2 have been left out of (40) 
a t  a polarization E a e,. The threshold is determined - 

2ce: 1,a n 2cell (K,,R) 'v, (35) 
he re  by the expression 

j ~ . ( ~ ) d ~ = - = -  8n L e.8,' , a<L. 
-- ~ R E  K ?C L 

=- (T)'[ I + - ( ~ - ~ + b ~ - ~ )  +O 
eoel 

(41) 
At a<< L the last  statement does not depend a t  all on 

the concrete form of I( y). In broad beams, the cor- (we recall  that by assumption 4 >> L and by >> L), and 
rection to I,,, turns out to be quadratic in the smal l  the perturbation takes the form 
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9-e. exp ( - ~ ' l ~ ' - y ' l a ~ ) ,  

a,=(%b,Lln)'", a,= (2b&ln)"'. (42) 

We note that at b >> L the half-width of the unstable 
mode from (38) at the 1/2 level of cp is proportional at 
the maximum to the geometric mean of the beam width 
b and the cell thickness L: 

We present for reference an equation for the thresh- 
old in the case of a two-dimensional round flat top in 
the single-constant approximation: 

I - I o ~ ( a - ~ r ~ ) .  (44) 

The profile d r )  is expressed in terms of a Bessel 
function, see Ref. 9. At a>>L we have, just for a one- 
dimensional flat top, a correction of order (~/a) ' :  

where K,, is a modified Bessel function of order v. At 
a << L we have 

Thus, accurate to logarithmic corrections, the thresh- 
old value i s  the total beam power lo$. Unfortunately, 
we do not know a s  yet whether this conclusion i s  valid 
for narrow beams (a<< L) in the approximation with 
more than one constant. 

8. OFT IN A PLANARLY ORIENTED CELL 

We consider in NLC cell with planar orientation of 
the director and with E ,  > 0. If a wave with polarization 
of the extraordinary (el type is incident on such a cell 
at an angle such that the unit vector e, of the electric 
field of the wave makes an angle with the unperturbed 
director n,=e,, then the GON regime is realized (see 
Refs. 2 and 6). If the e-type wave is normally incident 
on the cell, then e, 11 n, and the free-energy minimum i s  
realized at the same unperturbed position of the direc- 
tor. When the incident wave has a polarization of the 
ordinary (0) type, there i s  no GON, since (eon%) = 0 
and, in first order in the field, the torque acting on the 
director is zero: 

It may seem at f irst  glance that under these condi- 
tions OFT will.take place, i.e., when an o-wave of suf- 
ficient intensity i s  incident the detector n will be ro- 
tated in such a way that (n- E,) $0, and a s  a result the 
f ree  energy 

F,=-s.(nE) (nE')116n 

i s  lowered. Actually, a s  noted in Ref. 9 and later in 
Ref. 12, when the director varies smoothly in space 
the wave polarization follows adiabatically the changes 
of the director (the Mauguin limit). In particular, the 
o-wave remains an o-wave, inasmuch a s  (n.E) is al- 
ways zero for it. 

In the present section we obtain equations for the 
general case of perturbations of a director, with ar- 

bitrary degree of roughness. For such perturbations, 
the OFT in the o-wave takes place. I t s  threshold, how- 
ever, is exceedingly high. 

Assume that a linearly polarized wave E(z = 0) = Eoe, 
is normally incident on a planar cell with n,= e . In 
the absence of perturbations, this is an o-wave. We 
consider the wave to be homogeneous over the cross  
section. We assume the director perturbation in the 
form 

n ( z )  =e. cos cp  ( z )  +e, sin cp ( z )  =e, (I-0.5cp2(z) ) +e,cp ( 2 ) .  (46) 

The equations for d z ,  t )  and for E a re  

6 E z  o' - 0' + T(e,+e. cos") E.+ - e. sin cp cos cpE,=O, (48) 
dz' c cZ 

d'E, oZ o2 - + - e. sin cp cos cpE,+ -(e,+e. sinZ c p )  E,=O. 
dz' cZ e1 (49) 

Equations (47)-(49) were written without assuming 
the perturbation cp to be small. They have the trivial 
solution 

cp(z, t)=O, E,(z, t)=O, E,(z, t )=EO exp ( ik , z ) ,  

where k,= WE,"'/C. 

To check on the stability, the system (47)-(49) must 
be linearized, with cp and E, assumed to be quantities 
of f irst  order of smallness: 

From the last equation we obtain, a s  before, that at the 
accuracy sufficient for us 

E, ( z )  =E,eib~'. (53) 

The field E,(z) is sought in the form 

where A(z) i s  a function that i s  slow in the scale (2k)-', 
but i s  perhaps not very slow in the scale (k, - ko)-', 
where k, = w,,"'/c. It i s  then convenient to reduce (50) 
and (51) to 

We assume first  that at d z )  is a smooth function 
even in the scale p-' = X/(n, - no). It follows then from 
(55) that A(z) - - d z ) .  Thus, in the case of very small 
perturbations of cp(z) the o-wave field follows adiabati- 
cally the inclinations of the director, and the right- 
hand side of (56) vanishes identically. This corresponds 
to the statement that there is no OFT in the adiabatic 
Mauguin limit. 
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If we forgo the assumption of such a smooth z-de- 
pendence of the angle p, then the solution of (55) can be 
written in the form 

A ( z )  =ip j" cp (z ' )  exP ( i p  (z-z ')  ) dzr (57) 
0 

and the equation for p(z, t )  takes the form 

rl acp --=_ "' + x z { q ( z ,  t )  -pj q ( z r ,  t )  sin p(z-zr)  dzl 
Kzr at azz  

0 

Unfortunately, the integral operator in the right-hand 
side of (58) is not self-adjoint. Therefore the instabil- 
ity of the trivial solution p ro ,  even if i t  exists, can be 
more complicated than a simple exponential growth of 
one eigenfunction, a s  was the case  of OFT in a homo- 
tropic cell. 

We consider now limiting cases.  Let the cell thick- 
nes s  be small, L s k0/(ne - nJ = 2n/p; here  A,, i s  the 
light wavelength in vacuum; a typical value is A,,/(n, 
- no) -(2.5 - 5) cm. At such a small  thickness, 
the field does not manage to follow the rotation of the 
director .  In the language of Eq. (58) this  means that 
the integral operator can be neglected, and then we 
have CFT in i t s  classical  form 

Since the parameter  X,/(ne - no) is smaller  by approxi- 
mately two o rde r s  than the customarily employed cell 
thickness, the CFT threshold from (59) turns  out to be 
higher by about four o rde r s  (in t e rms  of the power 
density per cm2). 

At pL<< 1 the action of the integral operator in (58) 
can be treated by perturbation theory. As a result  we 
obtain that the true CFT threshold i s  higher than given 
by (59): 

It must be remembered that Eq. (60) was obtained only 
for p L < < l .  

At a la rger  thickness, L 2 A,,&, - no), the smooth 
perturbations of p(z), a s  already mentioned, do not 
cause instability. As  for  perturbations with the small  
scale Az, we have here  two quite strong effects de- 
scribed by the system (59) and (60), o r  even by the ini- 
tial system (50)-(52). Foremost  i s  the lattice optical 
nonlinearity (LON), which consists  in the f ~ l l o w i n g . ~  
In the zeroth approximation, the waves Ex and E, 
propagate each with i t s  own wave vector 

E,=E, exp (ik.z) , E,=E, exp (ik.z) . 

Their interference aE,E,* exp(ipz) + C.C. produces in 
the medium a perturbation 

The scattering of the initial wave by such perturbations 
[the right-hand sides in Eq. (51) and (52)lgives r i s e  to a 
positive increment in the refractive index of the Ex  
wave; this  increment i s  proportional to I E, 1 '; converse- 
ly, 6k for  the E, wave i s  proportional to IE,I2. These 

effects cause mutual focusing of the waves with the e, 
and e, polarizations. 

In addition, if the waves E, and E, have frequencies 
that differ little, by E,E,*m exp(-iSlt), then 

6 q ( z ,  ~)=E.E,E,' exp (ipz-iQt)l16nK2,pZ(l+iPlr), (62) 

where r = ~ , , p ~ / r ]  is the damping constant in reciprocal 
seconds. The same effect of rescattering of the E, 
wave by the perturbations (62) leads  a t  0 > 0 to  an  expo- 
nential amplification of the E, wave: 

Fo r  NLC, th is  process was  f i r s t  considered in Ref. 1 
and i s  called stimulated scat tering of light. 

It is easy to verify that at  a power density corre-  
sponding to the OFT threshold in a thin cell [ E ~ .  (59)] 
a n  increase of the cel l  thickness leads to an  increase of 
the role of the LON self-focusing and of stimulated 
scattering. We note that the LON and stimulated scat- 
ter ing should take place in the case  of normal incidence 
of an e-wave on a planar cell. It i s  necessary in this  
case  to make in (54), (55), and (58) the substitutions 
p - pk$,-' and x2 - - x2 .  The nonlinear stage of develop- 
ment of this  process  will not be considered here. 

9. CONCLUSlON 

From our point of view, grea t  interest  attaches to an 
experimental verification of the deductions drawn in 
th is  paper. These include: an exact quantitative exper- 
imental determination of the threshold in broad beams, 
dependence of the threshold on the dimension, shape, 
and polarization of the beam, the nonplanar character  
of the perturbations, and the law governing their de- 
c r ease  outside the beam, and many others. It is a lso  
of interest  t o  observe the LON and OFT in other types 
of liquid crys ta ls ,  such a s  smect ics  and cholesterics. 

The authors a r e  deeply grateful t o  E.I. Katz and 
Yu.S. Chiligaryan for  discussions. 

APPENDIX 1 

GEOMETRICAL OPTICS OF AN INHOMOGENEOUS 
NEMATIC 

Maxwell's equations for  a monochromatic field 
E(r) exp(-iwt) of frequency in a medium with a dielec- 
t r i c  tensor ? = c iL(r )  will be written in the form 

0' 
grad div E-AE - - ~^E=o. 

ca (Al. l)  

To obtain the equations we need, we represent  the 
field E(r)  in the form 

E(r) = l P v ~ ( r ) .  (A1.2) 

It i s  convenient to introduce the vector 

which coincides for  a homogeneous medium with wave 
vector k divided by (w/c), i.e., the length of the vector 
p is equal t o  the "phase refractive index." In the zeroth 
approximation in (w/c) it follows then from (A1 . l)  that 
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Equating to zero the determinant of the linear homo- 
geneous system (A1.4), we get the known Fresnel  equa- 
tion for p(r) for  the local value of the tensor ciJr) .  We 
a r e  interested in the case of a nematic in which the di- 
rector l ies  in the (x,z) plane: 

and the inclination angle cp(z) does not depend on the co- 
ordinate x and y;  the z axis i s  chosen here normal to 
the planes of the cell. 

The dielectric constant is 

where c,= c,, - c,. The Fresnel  equation takes the form 

( p .  sin cp+p. cos p)' + (p. cos cp-p, sin p)' 
- 1 =O. (A1.7) 

eu I 
We are  interested in the second of the roots of this 
equation, namely the one corresponding to the extraor- 
dinary wave. Assume that an e-polarized wave i s  in- 
cident on the cell from the a i r  at an angle u,,, to the 
normal in the (x,z) plane. By virtue of the translation- 
a l  invariance of the problem to displacements along the 
x axis, 'we can seek a solution inside the medium in the 
form 

9 (x, z) =sx+$, (z), s=sin a.i, . (A1.8) 

It follows then from the Fresnel  equation (A1.7) that 
s 

(E~~E,)"'(E~-s'+E. COS' ( ~ ) ' ~ - s e .  sin cp cos cp 
9, (z) = j  p,(z')dz', p(z) = 

eI+eD COS' (P 
a 

(A1.9) 
where cp = d z ) .  

The direction of the field vector E(r) is determined 
from the equation (A1.4): 

E, sp. (p) +e. sin cp cos cp -= 
E. sz-el-e.cos2cp . 

(A1 .lo) 

The Poynting vector S  = cEx H*/8n can be expressed in 
t e rms  of the vector E with the aid of the equation 
H = p x E; this yields 

In the problem with 2 = t ( z ) ,  for a propagating plane 
wave, the Poynting vector S(z) i s  itself far  from con- 
stant. This statement can be verified in trivial fashion 
with a scalar medium having E = ~ ( z )  a s  the example. 
In the absence of absorption, however, div S =  0, and 
for  the problem homogeneous in x ,  y it follows there- 
fore that S,(z) is constant. It is easy to verify that a 
field in the form 

s (ellel) "+e. sin p cos cp (e,-sz+e. cosZ cp) E, ( 2 , ~ )  =-A 
(e,+e. cos2 rp) (el-sz+e. cosa cp) 

x u p  i-(sx+p, (z)) ] [ ': (A1.12) 

is the solution, of interest to us, of Maxwell's equa- 
tions in the geometrical-optics approximation. In this 
case A is constant and 

We shall need in what follows double the value of the 
contribution made to the f ree  energy by the interaction 
with the field: 

~Z=~FE=-ZE,~E,E*' /~~Z 
=-ellel 1 A I2/8n (e,-s2+e. cos2 cp)" -- (elle,)HS./~ (el-s2f ee cosZ p)  %. (A1.14) 

We recall once more that s = sina,,, = const and S, 
= const. 

APPENDIX 2 

HOW TO USE THE VARIATIONAL PRINCIPLE 

It is known (see, e.g., the book by Landau and Lif- 
shitzZ1) that the forces acting on a mechanical,subsys- 
tem in an electric field can be obtained by varying the 
f ree  energy 

at a fixed value of the field E (but not, e.g., the induc- 
tion D, = E ~ ~ E ~ ) .  As shown by PitaevskiI,l4 for  high- 
frequency fields Ere,,= 0.5(Ee-,Of + E*eiWt), with ac- 
count taken of the frequency dispersion cik(w), Eq. 
(A2.1) retains the same form apart from the natural 
substitution E ,  ,,,, E ,,,, , - 0.5EiEkf. This result of Ref. 
14, which by itself is not trivial, was obtained with ac- 
count taken of the action of both the dispersion and of 
the contribution of the energy of the magnetic field that 
accompanies the time-varying electric fields. We 
emphasize once more that the correct  expression 

corresponds, a s  it were to account taken of only the 
contribution of the electric part of the energy. In prob- 
lems involving the physics of liquid crystals, bc,, is 
usually taken to mean 

where n i s  the liquid-crystal-director vector. 

It is easy to verify that the following relation holds 
in a plane electromagnetic wave in a general anisotrop- 
ic medium 

It is tempting therefore to choose in place of @, the 
quantity 

and use it for the calculations. As shown in Ref. 14, 
the use of the expression for Q, at  fixed fields E 
yields a result that i s  twice a s  large (and is by the 
same token incorrect! ). 

In nonlinear optics of liquid crystals ,  the situation i s  
additionally complicated by the fact that in the case of 
propagation through a liquid crystal the complex-ampli- 
tude vector E(r)  itself can be strongly changed a s  a re-  
sult of distortions of the field of the director n(r) com- 
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t i e s  of the director, the field E(r,) at the point r, is a 
functional of the entire distribution of n(r) in the cell: 

FIG. 6. NLC cell with perturbed director orientation, on 
which a light wave is incident from air at an angle a. 

pared with the unperturbed field Eo(r). For  a Free'der- 
icksz' transition in a static field E, these effects a r e  
well known; they modify the expressions for the above- 
threshold stationary amplitude of the perturbation, see  
Ref. 17. Both in the static and in the optical field the 
expansion for E(r)  - Eo(r) begins with terms ox,, 
therefore a s  E,- 0 the difference between E(r) and 
Eo(r) can a s  a rule be neglected. In the visible band, 
however, &,= 1 at &,=2, i.e., the parameter E,/E, i s  
far  from small. Therefore, besides using the correct  
expression for 9, and the correct  method of i t s  varia- 
tion (A2.2) and (A2.3), it is necessary to substitute in 
the equations obtained for the director the fields E(r) 
from the solutions of Maxwell's equations in the dis- 
torted structure. 

In a large number of problems Maxwell's equations 
admit of simple explicit integrals of motion. Thus, 
e.g., when an infinite plane wave i s  incident at an ar- 
bitrary angle a (in air)  on a cell with ? = e ( ~ )  (see Fig. 
6), the transverse component of the wave vector i s  
preserved (Snell's law) and the quantity S, i s  concerned, 
where S = Re(E x H*c/8n) is the Poynting vector.' 

Under these conditions there is one more temptation: 
to express the tensor E, ( r )Edr)  in terms of n(r) and 
conserved quantities, after which the obtained expres- 
sion for +,(&,An), E(n)) i s  varied with respect to n: 

It i s  possible to make also another mistake, namely 
vary by the methods (A2.6) not the quantity a, but the 
twice-as-large Q ,  from (A2.5). 

Both expression (A2.6) and i t s  doubled value yield in 
the general case incorrect results. We present the fol- 
lowing illustrative example. Assume that oblique in- 
cidence of the extraordinary wave produces in a cell 
with an NLC, as a result of reorientation of the direc- 
tor by the optical field, external self-focusing of light- 
see the theory and the direct experiment in Refs. 6 and 
7. Let a sphere with a refractive index E:'' > 1 be 
placed in the region r=  r, of the focus produced in a i r ,  
see Fig. 7. Owing to the refraction by the inhomogenei- 

FIG. 7. Illustrating the discussion of the variational principle. 

Thus, perturbations 6n of one type cause an increase of 
the field (focusing), while other perturbations weaken 
the field E(r,) (cause defocusing), etc. The f ree  energy 
a, contains a contribution of the region of the sphere, 
which we write arbitrarily in the form 

Thus, there i s  a nonzero variational derivative of the 
f ree  energy ih, with respect to 6n(r), due to the pres- 
ence of the sphere. At the same time, i t  is perfectly 
obvious that placing a dielectric sphere in the trans- 
mitted beam does not influence in any way the reorien- 
tation of the director in the cell! On the other hand, if 
6 ~ / 6 n ( r )  i s  not taken into account, and the electric 
field E(r) i s  assumed fixed in the derivation of the vari- 
ational equations, then no such paradoxes ar ise ,  a s  ex- 
pected. 

It is possible, of course, to regard a s  fixed not the 
field E(r)  but the induction D(r). To this end, however, 
we must write 

where we assume the fields to be static in order to 
make (A2.9) more compact. A Legendre transforma- 
tion from the independent variables n and E to the vari- 
ables n and D yields then 

- 
where ih,= 9, - E . ~ / 4 a .  Of course, all the equations 
for  n obtained with the aid of (A2.10) coincide at  6D= 0 
with the equations that follows from (A2.9) at 6E = 0. 

We have dwelled on these (generally known) state- 
ments in s o  much detail because many theoretical pap- 
e r s  on optical nonlinearities of liquid crystal  contain 
some o r  other of the e r r o r s  discussed above. 

In Ref. 13 the field E(r) was assumed to have the 
same value a s  in the unperturbed medium. For the cal- 
culation of the GON this would be a legitimate approxi- 
mation. However, it i s  precisely for the CFT problem 
considered in Ref. 13 that this procedure i s  incorrect, 
see  our papers and Sec. 3 of the present paper. As a 
result  the OFT threshold in Ref. 13 is underestimated 
by a factor E,,/E, compared with the correct  calculation. 

In Ref. 12 ,  apparently, the following procedure was 
used. The field was expressed in t e rms  of the Poynting 
vector and the local orientation of the director, charac- 
terized by the angle d z ) .  The obtained expression was 
substituted in the doubled f ree  energy 

[our q, corresponds to K3,G(f?) in Ref. 121. The equa- 
tions for the equilibrium of the director were then ob- 
tained by varying F,,+ q,: 
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where F,, is the Frank energy and lem the Noether theorem for finding nontrivial con- 
servation laws. 

In Appendix 1 we presented expression (A1.14) for q,. 
Direct differentiation shows that 

e5z (eL+e. cos2 (PI-'(el-s2+eD cos2 cp) '" 

(A2.13) 
~{(e, ,e,) '" sin q cos q(e,+e. co? q-2s') 

(crRe,)*S, e. sin cp cos cp =- - 
c (el-bZ+e. cos2 cp)" ' 

(A2.14) 

That (A2.4) is in e r r o r  can be seen already from the 
following considerations. At oblique incidence (s = s ina  
+ 0) the correct expression (A2.13) gives a nonzero 
torque 8FE/8q in the f irst  nonvanishing order in 1 E l a  
and a s  cp-0 in the right-hand side. The last result was 
most unambiguously confirmed by experimental ob- 
servation of the In contrast, dq,/dcp in (A2.14) 
vanishes a s  q - 0  independently of the value of s = s ina ,  
i.e., according to (A2.14) there should be no GON?! 

In the OFT problem the angle or = 0, and by accident 
the different approaches (A2.13) and (A2.14) yield the 
same result in the root. By the same token, the 
authors of Ref. 12, using erroneous reasoning, would 
be able to obtain accidentally the correct  result. 

This, however, did not occur, since in Ref. 12 they 
made one additional e r ro r .  Namely, they assumed that 
when a plane wave propagates in a medium with z-de- 
pendent properties, the length IS I of the Poynting vec- 
to r  i s  preserved, whereas the conservation equation 
div S = 0 requires only that S,(Z) be constant. As a re-  
sult, the equation obtained in Ref. 12 overestimates the 
OFT threshold by E,,/E, times. 

We note that if we take P in the form 

then the variation of (A2.15) with respect to n(r) at  con- 
stant E yields the correct  equations for n, and variation 
with respect to E(r) yields Maxwell's equations (7). It 
is curious that for a field E(r) that satisfies exactly the 
variational equation (7) the sum of the contributions 
-&E2 (from the electric field) and 

(from the magnetic field) yields identically zero  upon 
integration over all of space. The use of a single La- 
grangian (A2.15) makes it possible to use in the prob- 

l'After the conclusion of the present study, a paper was pub- 
lished15 reporting experimental observation of doubling of 
the threshold and a number of ra ther  interesting features of 
OFT for circularly polarized light. 

2 ) ~ h e s e  questions were investigated experimentally in  Ref. 15. 
3)See a lso  the discussion of this question in Ref. 15. 
4 ) ~ t  is appropriate to recal l  in this connection the trivial cir-  

cumstances that neither (Y (2) nor 1S(z) I a r e  by themselves 
conserved. 
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