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Nonlinear effects in the absorption spectra of atoms and ions experiencing stochastic (Brownian) accelerations 
are considered. The absorption of intense radiation by Brownian-moving atoms is considered by two methods: 
1)  by the method of integration over the Wiener-Feynman paths and 2) by the kinetic method with a Fokker- 
Planck collision integral. The two methods are shown to be equivalent. A nonlinear dependence of the 
absorbed power on the electromagnetic field strength, which results in a decrease of absorption in strong 
fields. is found. 
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5 1. INTRODUCTION similar to a known degree to the Feynman treatment in 

The kinetic equation for the density matrix of the 
atom is the basis for the description of the interaction 
of resonant radiation with the atoms of ions in a gas or 
plasma. This equa t io~  contains in its right-hand side 
the collision integral S ( v )  describing the evolution of the 
atomic states in velocity space.'" The sensitivity of the 
absorption effects to the change in the velocity of the 
atom i s  due to the fact that one of the basic mechanisms 
of broadening here is 'the Doppler effect, in which the 
basic contribution to the absorption i s  made by the points 
of resonance kv = Ao (k = w/c i s  the wave vector of ra-  
diation with frequency w , ~  is the velocity of the atom, 
Aw = *3 - uO i s  the detuning from resonance between the 
frequency w and the characteristic frequency of the 
transition w,). 

The solutions of the equation for S in the case of dif- 
ferent forms of the collision integral S(v) have been in- 
vestigated in detail for the case of sufficiently weak in- 
tensity of the electromagnetic (EM) field E,, i. e . ,  in 
the linear approximation, s e e  Refs. 1-3. We also note 
the recent work of Alekseev and Malyugin; in which a 
systematic method of calculation of the ahsorption spec- 
t r a  was developed for an arbitrary form of S(v) at a suf- 
ficiently large value of the latter. 

In the nonlinear problem, the situation is quite com- 
plicated, and the only actual example of an exact solu- 
tion in this case i s  the strong-collisions model, see 
Ref. 2. In the present work, nonlinear effects in the 
absorption of light a r e  considered for the strong-col- 
lisions model, which corresponds to Brownian motion 
of the absorbing atom or  ion. The Brownian motion 
model describes an important circle of physical pheno- 
mena connected with the collisions both of a heavy ab- 
sorbing particle in a light buffer gas and of ions in a 
plasma. 

Two approaches to the calculation of the absorption 
probability in the Brownian motion model should be not- 
ed here. The first  approach i s  based on the solution of 
the equations for the amplitudes a, of the atomic states, 
which depend parametrically on the stochastic param- 
eter u(t)-the velocity of the atom. The general solu- 
tions that a r e  obtained must be averaged over all pos- 

quantum m e ~ h a n i c s . ~  This method was used in its lin- 
ea r  approximation by Podgoretskii and Stepanov. The 
calculation of succeeding corrections in the value E,  of 
the EM field has been carried out by Rautian. 

The second (more traditional) approach is based on the 
solution of the kinetic equation, indicated above for the 
density matrix 6 with a collision integral of the Fokker- 
Planck 

v+' d'f d 
i ( f ) = B - - + ~ - ( v f ) ,  2 dv' dv 

where P is the frequency of collisions of the particle, v, 
i s  the most probable velocity. 

This approach in similar in many ways to the Schr6- 
dinger treatment of quantum mechanics: plays the 
role of the kinetic energy operator, and the Doppler fre- 
quency shift kv corresponds to the potential energy oper- 
ator. 

The solution of the kinetic equation with the integral 
(1.1) has been carried out by Smirnov and ShapiroQ 
within the framework of perturbation theory in the mag- 
nitude of the field (see also Ref. 2). An approach out- 
side the limits of perturbation theory has been given by 
Kofman and ~ u r s h t e h ' '  in the rate-equation approxima- 
tion. The sense of this approximation is that the re-  
laxation of the polarization i s  assumed to be the largest 
parameter of the problem, a s  a result of which it turns 
out to be proportional to the population of the states that 
change a s  a consequence of the Brownian motion of the 
atom. 

In this research, in contrast to Ref. 10, the Brown- 
ian collisions a r e  responsible for the relaxation of both 
the populations and of the polarization itself, so  that the 
collision frequency f3 i s  the only relaxation parameter 
of the system. We restrict  ourselves to the case P/kv, 
<<I, which corresponds to diffusion of the atoms in vel- 
ocity space. 

Since the relation between the two mentioned approach- 
e s  which a r e  based on path integrals and on the kinetic 
equation method, is  of significant interest, we shall pay 
particular attention to their comparison. 

sible trajectories of the velocity. Such an approach is The physical meaning of the nonlinear effects that 
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arise is  easily made clear by analyzing the linear kine- 
tic equation with a collision integral of the diffusion 
type: 

S ( f )  =DdZfldu2 

(D=v% i s  tke diffusion coefficient in velocity space). 
Comparing S with the Doppler shift (Aw - kv), it i s  easy 
to see  that a narrow band of frequencies near the reson- 
ance kv = Aw, with effective width bw,,, - kv,(~/kv,)'/~, 
is responsible for the absorption. The interaction with 
the strong field G = dl, . E, (dl, i s  the dipole moment of 
the transition) leads to the forcing out of the frequency 
of the atomic oscillator S1= [(Aw - kvI2 + 4G2I1 I2 from 
this resonance region and, consequently, to a decrease 
in the absorption at G 2 bw, , ,  . 

It should be noted that the interaction of an atom with a 
strong EM field generally leads to violation of the reson- 
ance condition Aw =kv. Therefore, to obtain an ab- 
sorption that is different from zero in this case, we 
must introduce some sort  of relaxation mechanism. 
The usual introduction of a spontaneous relaxation mech- 
anism y leads to the well-known results of the theory of 
inhomogeneous br~adening."~ However, even at y =0,  
the atom in the strong EM field, "being located in deep 
saturation," has the possibility of absorbing radiation if 
its velocity changes during the absorption process. In- 
vestigation of just these nonlinear effects, brought about 
by the relaxation of the velocity, i s  the purpose of the 
present work. We shall therefore limit ourselves be- 
low to the simplest setup of the problem: the atom i s  
assumed to be a two-level system, and the only relaxa- 
tion mechanism i s  the relaxation of its velocity a s  a 
result of the Brownian motion. 

52. METHOD OF THE AMPLITUDES OF THE 
STATES AND CONTINUOUS INTEGRATION 

The system of equations for the amplitudes of the 
states of a two-level atom with resonance radiation has 
the form (see Ref. 2) 

The initial condition presented corresponds to pumping 
to level 1. The final expression for the absorbed power 
must be averaged over the pumping distribution W(v,), 
for example, over the Maxwell distribution. 

The power P ( w )  that is absorbed is expressed in terms 
of the probability w12 of the transition per unit time 

The angular brackets denote averaging over the real- 
izations of random trajectories and over the pumping. 

In our case, the law of motion of the absorbing par- 
ticle or  the dependence v =v(t) i s  determined by the 
Langevin equation8 

Here /3 is  the damping parameter, n(t) i s  a delta-corre- 
lated random force. 

Thus, the system (2.1) contains the stochastic param- 
eter v(t) and is therefore a system of stochastic differ- 

ential equations. Here and below, we shall understand 
by v(t) the component of the velocity along the vector 
k, for which one-dimensional distributions a r e  used 
everywhere. 

To average in (2.2) over all  the realizations of the 
random process, it is  necessary to start  out from the 
general solution of the system (2.1) without any as- 
sumptions on the character of the change in v(t). 

Such a general solution i s  easily obtained in the case 
of weak fields (perturbation theory). In the case of an 
arbitrary G, there is  no general analytic solution. How- 
ever, there does exist an approximate analytic solution 
of ~a fnsh te in ,  Presnyakov and Sobel'man (VPS)," which 
correctly describes the known limiting cases and is in 
good agreement with the numerical solutions of the sys- 
tem (2.1) for various potentials. 

We use the VPS approximation for the determination 
of the probability w12, obtaining (cf. the similar formula 
in Ref. 12) 

B ( t )  = ([kv ( z )  -Am] 2+4G2)". (2.4) 

Equation (2.4) can be regarded as a natural general- 
ization of the model of an oscillator with variable fre- 
quency' to the case of strong fields G when the phase of 
the oscillator becomes dependent on the value of G [as 
a consequence of the dependence on G of the Rabi fre- 
quency s~(T)].  

Averaging over the realizations of the random pro- 
cess (2.3) can be carried out in the following way. We 
break up the interval of integration over 7 in (2.4) into 
N identical parts. Then the average over the trajec- 
tories can be defined as 

Here W(v,) i s  the initial velocity distribution, W(v,, 
v, , , t/N) i s  the probability of the transition v, - v, +, 

within the time t/N, which, in the Brownian approxima- 
tion (2.3), is  equal to 

The limiting transition in (2.5) determines the so-called 
continuous integral over the Gaussian m e a s ~ r e ; * ' ~ " ~  
which i s  given by the transition probability (2.6). 

Direct calculation of the integrals (2.5) i s  not possible 
because of the nonlinear dependence on 52 on v. This 
calculation can be carried through only in the case of 
weak fields G - 0, when 52(7) = kv(r) - Aw. Direct eval- 
uation of the Gaussian integrals leads to the result:I6 
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Wiener measure in terms of the fundamental solution of 
a differential equation of a parabolic type. That is, Kac 
showed that (the proof i s  contained in Ref. 13) 

The argument in the exponential is simply the mean 
squared displacement (?(TI) calculated in the Brown- 
ian-motion model.' The characteristic @(T) dependence 
in the limit of small @T<< 1)  and large (fir>> 1) times has 
the form 

Taking the Fourier transform of (2.7), we get for the 
contour I(@)" 

Thus, the Doppler contour of the line a t  P/kv ,<< 1 is 
replaced by a Lorentzian contour at j3/kvT>> 1 with width 
yD = (kvT)'/2j3, which is smaller by a factor kv, /P << 1 
in comparison with the Doppler width. This effect is  
known a s  the Diecke narrowing effect, s e e  Refs. 1-3. 

We now proceed to the case of strong fields G. The 
calculations here a r e  very complicated in view of the 
nonlinear connection of 51 with the stochastic variable 
v. Therefore we shall limit ourselves below to the case 
j3/kv,<< 1, which corresponds to small relaxation. In 
this case, the complete Fokker -Planck measure (2.6) 
can be replaced by the following much simpler form, 
which i s  obtained from (2.6) at j3t<< 1: 

The measure given by the probability of the transition 
(2.10) is  known a s  the Wiener measure1= and obviously 
determines the diffusion of the atoms in velocity space. 

At Bt,rr << 1, changes in the velocity as a result of this 
diffusion predominate over the regular velocity changes 
associated with viscous friction flu in Langevin's equa- 
tion (2.3). Actually, let us estimate the mean square 
change in the velocity ((v, -v, +,)') in the time t a s  a r e -  
sult of both effects. The change because of diffusion 
(Av'),~, (t), which i s  obtained by direct calculation with 
the probability (2.101, yields 

since the regular change (obtained by the method of ex- 
pansion of the exponential e-") gives 

It follows from a comparison of (2.11) and (2.12) that 

~ v ~ ~ i ~  /A&- (pt) -'>I, (2.13) 

which also justifies the use of the measure (2.10). 

The result of K ~ C ' ~ - ' ~  i s  very important for our ex- 
position; he expressed the continuous integral (2.5) with 

i v [ x ( T )  Id.}) -1 u(x.t)dx ( ~ ( 0 ) = 0 ) ,  (2.14) 
0 - - 

here the function u(x ,  t )  i s  defined in the following way: 

lim u(z, t) =0, lim u(x, t) =6(z). 
I-*- 1-0 

Taking the Fourier transform 

we obtain 

I @' [p+Y(z) ]$(z)=O, lim $(x) =0, $I(-0) -rp1(+0)=2. (2.16) 
2 dtz =-to 

The information furnished on the continuous integral 
i s  sufficient for us to proceed to the solution of the stat- 
ed problem. 

Using (2.4), we express the contour I ( o )  in the form 

+- dv, exp(- (volvr)') Re 
- jdt (erp{ i j  Q [ ~ ( ~ ) I ~ ~ ) )  , 

-- 0 0 

(2.17) 

Here the angular brackets denote the continuous in- 
tegral for a given value of v ,  (the conditional mean val- 
ue8913). 

We introduce the following notation: 

The condition of the smallness of the frequency fl<< kvT 
i s  assumed below, that is ,  A >> 1. 

Using (2.18), we express (2.17) in the form 

In accord with Kac [see formulas (2.14)-(2.16)] 
m - 
j dt(. . . >- j anp(z), (2.20) 
0 -- 

where $ ( x )  i s  determined by the solution of the equation 
$7"-2iA [ ( X - ~ ) ~ + U ' ]  "$7=0, 

$(XI -- 0, [$(O) I+--$(-O)-$(+O)-O, [$7'(0) I+-=2. (2.21) 
=-*- 

Equation (2.2 1) will be used in the following sections for 
the solution of the given problem. For elucidation of the 
physical meaning of the function $(x ) ,  it is of interest 
to  obtain an equation similar to (2.21) by using another 
formal procedure-the equation for the density matrix. 

It should be noted that the equivalence of the results 
based on the Langevin equation and on the Fokker- 
Planck equation is well known (see Ref. 8). In the prob- 
lem considered, however, this equivalence i s  traced on- 
ly in the linear case (G - 0). 
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In the linear case, the general solutions a r e  unknown 
both in the amplitude approach (using the continuous in- 
tegral) and in the Fokker-Planck approach, which i s  
used in equations for the density matrix. Therefore, 
their comparison even for the particular nonlinear sol- 
ution (2.21) i s  nontrivial. 

53. EQUATIONS FOR THE DENSITY MATRIX AND 
THE EQUIVALENCE OF THE AMPLITUDE AND 
MATRIX APPROACHES 

Following Refs. 1-3, we write down the equation for 
the elements of the density matrix 

We limit ourselves to the case of identical relaxation 
constants y, = y, = y and identical collision integrals S, 
=S,=S. We shall seek a stationary and spatially homo- 
geneous solution of the system (3.1). Introducing N 
=pll  -pz2,p=p12 andQ=Ql - Qz, wewrite thesystem (3.1) 
in the form 

In the case of weak fields (G - 01, the solution of the 
first equation of the set  (3.2) has the form 

We substitute the solution for arbitrary fields in the 
form N=N, +l?. The system (3.2) in this case i s  writ- 
ten in the form 

Let A=Rep ,B=Imp.  Then the se t  (3.2) can be writ- 
ten in matrix form (p = @ , B ,  N}) 

Here is the unit matrix and Q = {O,GQ~-~N,(U), 0) 

The eigenvalues of the matrix .? a r e  A,,, =*i51, h,=O, 
52 ={(kvl: + 4 ~ ~ } ~ ' ~ .  We find the eigenvlectors of the 
matrix Z and form from them the matrix T that diagon- 
alizes the matrix 2 (JJ = fa) :  

(3.7) 

The physical meaning of introducing matrices U and 
i s  a transition to the states of the mixed system "atom 
+field." In the absence of relaxation and collisions, 
the states of this system a r e  stationary and the absorp- 
tion of light does not take place. Account of the Fokker- 
Planck collisions leads to the appearance of stationary 
absorption in the system. 

The absorbed power is determined by the imaginary 
part of the polarization Imp = B:  

It follows from (3.7) that the imaginary part of the po- 
larization is expressed in terms of the first and second 
components of the vector U: 

B=i(o,-as). (3.9) 

We write down the equation which is satisfied by the 
components of the mixed density matrix a: 

F-~+Q)u=T-IQ.  (3.10) 

In Eq. (3. lo) ,  we_ must carry  out commutation of the 
operators 9 and T, since the latter depends param- 
etrically on the variable v on which the operator acts. 
Direct calculation shows that the noncommuting terms 
can be discarded upon satisfaction of the condition2' 

and the equations for the components a, and a, of the 
matrix take the form (g i s  the diagonal operator of the 
collision integral) 

i QG 
(S-y+iQ) oI= - ---. 

2 Y 
w.9 

i QG 
(S-7-iQ)03 = -- W,,. 

2 r 
It follows from (3.12) that we can take 0, =of. We set 
a=  -iq/2; then 

while the equation for q has the form 

For the solution, it i s  convenient to introduce a delta 
function on the right in place of QGy-Iw,, i.e., to find 
the fundamental solution 17 instead of q. Here the final 
expression for the absorbed power takes the form 

The angular brackets here denote averaging over the 
Maxwell distribution. If we introduce the value of 
the jump in the derivative, which i s  equal not to 1 but to 
2, a s  in (3.151, then 

which, after setting QIY =N, is completely identical with 
the expression obtained in the amplitude approach. 

Thus, the functions J ,  in the amplitude approximation 
a r e  se t  in correspondence 'with the matrix elements o,,, 
of the density matrix of the mixed system "atom +field." 
Solutions will be given below of the corresponding equa- 
tions and new nonlinear absorption effects will be in- 
vestigated. We note that the total weak-collisions oper- 
ator enters into (3.12), in contrast with (2.21). How- 
ever, in actuality, we used, in the derivation of (3.12) 
the condition @/kv<< 1, which corresponds to the transi- 
tion in the collision integral to the diffusion limit, keep- 
ing only the second derivative d2/dv2 (cf. Sec. 2). 

54. SOLUTION OF THE EQUATIONS AND 
INVESTIGATION OF NONLINEAR EFFECTS IN 
ABSORPTION 

We shall start  out from Eq. (2.21). Substitution in it 
of x, = x  - 5 yields 
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Further, we set  ~ ( t ) = ( t ~ + a ~ ) " ~ ,  and define the func- 
tion p ( t )  in the plane with a cut from t = -ia to t = +ia. 
On the real  axis we have then signp(t)=signt. This 
choice of the branch of the analytic function guarantees 
a valid transition to the limit of weak fields (a=O,p(t) 
= t ) .  

Equation (4.1) contains the large parameter A >> 1, 
which allows us to use the quasiclassical method for 
i t s  solution. We use here for the solution of Eq. (4.1) 
a method based on i ts  reduction to the standard Airy 
equation (see Ref. 161, by introducing the auxiliary 
function ~ ( 7 ) :  

The equation for the function v ( q )  i s  of the form 

where 

We introduce a new variable 6, for which Eq. (4.3) re-  
duces directly to the Airy equation: 

For the function ~ ( 6 )  we get 

Taking it into account that 

and substituting the function J ,  in (4.11, we obtain for  the 
contour Z(o) 

(4.7) 
We construct the solution of Eq. (4.6) from two in- 

dependent solutions A'(6) and A-(6) of Eq. (4.6). This 
new solution possesses the specified jump in the deriva- 
tive. Then the expression (4.7) for the contour Z(w) 
takes in terms of the variables 6 the form 

+ ,,lnia 
Cb z = R e -  d b  [A] rrp (- (i ( ~ 4 )  - 31 

.l!:n, I P (i (Clo)) 

As the functions A'(6) and Aq(6), it is  convenient to 
choose Ai(6) and Ai(6) + iBi(6), respectively, where Ai 

and Bi a r e  the standard Airy functions. l6 Turning 
around the path of integration over 6 and 6, in (4.8) to 
the real  axis, we get 

We define the distorting function J(w,G): 
I(G,  o)=I(O, o)J(o, G ) ,  I(0, o)=n-'" exp(-a'). (4.10) 

Here the functions J,,, a r e  determined by Eqs. (4.9) 
with the obvious substitution 

exp[-(c(Cbo) -a)'] - + e x p [ 2 ~ ~ ( C b ~ ) - ~ ( C & )  1. 
Function C(C6,), is determined in accordance with Eq. 

(4.4) from the relation 

The limiting values of the function t a r e  the following: 

The convergence of the integrals in (4.9) is deter- 
mined, a s  is not difficult to show, by the Airy func- 
tions, s o  that effectively dcff - 1. Taking (4.12) into ac- 
count, we find that t,,, << 1. Therefore, under the con- 
dition , 

* S d f c i  (4.13) 

the exponentials in the distorting function J(w, G) can be 
set  equal to unity. Then the function J(O, G) = J(0, G )  
turns out to be independent of frequency. Thus, the 
deformation of the contour by the EM field turns out to 
be uniform over the spectrum in the most important 
range of frequencies G = h / k v T s  1, where the condi- 
tion (4.13) is  satisfied. We shall show that just this 
range of frequencies makes the fundamental contribu- 
tion to the normalization of the spectrum, so  that 

- 
j dol(G, o) =J(O, G) .  (4.14) 

- - 
With account of the above, formula (4.10) for the dis- 

torting function J(0, G )  takes the form3' 

It follows from the definition of the functions cp (4.9) 
andp(cp) (4.1) that 

With account of (4.12), the limiting expressions for  
rp(6) a r e  the following: 

It is  seen from (4.17) that the function cp(6) which de- 
termines the distortions of the contour by the laser field 
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reduces to unity in weak fields (a -01, and to a small  
factor (C6,ff/a)3'4 in strong fields. Assuming ~ 5 , ~ ~  - 1, 
we see  that the parameter of the transition from weak 
to strong fields is  the critical value of the field G,,,  
equal to 

It follows from formulas (4.15) and (4.16) that the 
field distortion of the contour is  determined in order of 
magnitude by the square of the modulus the distorting 
function I cp(6,ff) l 2  at the values 6efi - 1, which make the 
major contribution to the integral (4.15). Thus, at 
fields G>> G,, , the distorting factor turns out to be of 
the order of 

55. CONCLUSION 

We pause to discuss the interrelation of the consid- 
ered effect with the usual saturation, for example, in 
the presence of the quenching of an atomic oscillator 
characterized by the frequency y. For this purpose we 
compare the time T,,, of loss of phase coherence by the 
oscillator (at a given value of the velocity u,) a s  a con- 
sequence of both effects-phase diffusion and quenching. 
In the case of diffusion equating the phase shift to a 
quantity of the order of unity on the basis of the time 
evolution of the amplitudes in Sec. 2,  or estimating the 
collision integral in Sec. 3, see  also Sec. I ) ,  we find 

in the case of quenching obviously, T;,: -y-'. Setting 
Ti: << T,:,:', we obtain the condition 

which determines the region of manifestation of the ef- 
fect considered above. Numerical estimates of the pa- 
rameter P/ku, for optical transitions in a gas of atoms 
or molecules with density N- 1018 cm-3 and also for the 
plasma of an argon laserg (Ni - 1014 ~ m - ~ )  lead to a quan- 
tity of the order of 10'-lo9. Under these conditions, 
the considered nonlinear effects, which correspond to 
the condition G 2 G,, , for a typical value 40, - 10'' s-' 
manifest themselves a t  laser field intensities E , z  lO3-  
lo4 V/cm. 

In conclusion, we consider the case of the simultan- 
eous action on the atom of constant (a) and Brownian ac- 
celerations in the linear approximation. Equation (3.1) 
describes in this case  the ion in a buffer gas o r  in a 
plasma acted upon by a regular force (for example, an 
electric field). 

For the population N(u) we have 

adN/dv-S, ( N )  =0, (5.1) 

where Sv(N)  is  given a s  before in the model of weak col- 
lisions: 

It i s  obvious that by carrying out the change of variables 
v =b +alp ,  we obtain in the new variables 6 an equation 
that does not contain terms with acceleration: 

and has the obvious solution 

Thus, the ionic component in the gas acquires a di- 
rected velocity v = a/o in the direction of the accelera- 
tion. It i s  significant that this velocity depends on such 
characteristics of the ion a s  its mass and the collision 
frequency. 

The equation for the polarization in (3. I), which de- 
termines the absorption of the EM field, reduces, 
through the obvious substitutions u = b + a l p ,  Aw = A 
+ ka/p to an equation without acceleration, but with the 
shifted frequency 

If ions of different species a r e  contained in the med- 
ium, then the frequency shift turns out to be dependent 
on the ion species. 
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the corresponding equations. The criterion (3.11) here re- 
duces to the condition P/kv, ec 1 (see the effective regions of 
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formed into one by integration by parts. 
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