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A quasiclassical realization of the irreducible tensor operators in the basis of spin coherent states is proposed. 
The dynamic symmetry of chargedipole interactions is considered and the classical Bloch equations of 
motion of the angular momentum of the state of the perturbing particle in the collision is obtained. The exact 
M-exchange matrix is obtained on this basis. The scattering-problem data are used to analyze the anisotropy 
of the collisions in the relaxation and in the spectral structures. An increase of the relaxation rate with 
increasing multipole moment of the state in isotropic collisions is predicted. It is 0bSe~ed that the anisotropic 
part of the relaxation rates, due to the "wind effect," amounts to 1/8 to 1/5 of the isotropic part. As a result 
of this effect, the line contour can comprise a superposition of an abrupt component and a broad one. 

PACS numbers: 03.65.Sq 

1. INTRODUCTION 

This paper i s  devoted to the disorientation produced 
in collisions of atomic particles with charge-dipole in- 
teraction (CDI) 

Scattering with CDI was investigated earlier by Lisit- 
sa,  Sholin, and Streka10v.l.~ Lisitsa and Sholinl solved 
the particular problem of the broadening of hydrogen 
spectral lines in a plasma on account of collisions with 
electrons. They used in their calculations a special 
quantity connected with the additional 0 (4) symmetry of 
the states in a Coulomb field. Strekalov2 considered the 
CDI within the framework of an exponential approxima- 
tion that i s  applicable only under nonadiabatic condi- 
tions. In the case of close flyby, strong disorientation 
takes place and this approximation cannot be used here. 

We propose below an exact solution of the problem of 
elastic M-exchange with CDI both in the adiabatic and 
the nonadiabatic collision regions; this solution i s  not 
connected with the presence of additional symmetry of 
the states and of the conserved quantities. 

structions have been known in group theory and their 
representation for a long time. The idea of realization 
of IT0 of general form in a CS basis i s  discussed here 
apparently for the first  time. 

The JM-exchange matrix in scattering i s  determined 
by the dynamic-symmetry group and its representations. 
The quasiclassical approximation mentioned above as- 
sures asymptotically correct expressions of the repre- 
sentations of the DS group. In the case of elastic scat- 
tering with CDI, however, the quasiclassical approach 
leads to an exact solution. This is  no accident and is 
due to the fact that the DS group of the interaction coin- 
cides with the SU(2) group of quantization of directions 
on a sphere. 

The concept of the DS i s  necessary also in the analy- 
s i s  of the observed structures of spectral lines. We re -  
call that a s  a result of the anisotropy of the collisions 
(the "wind effect") the impact contour of a spectral line 
broadens and splits into several components. The 
diagonal elements of the relaxation matrix determine 
the relaxation rate of the states, while the off-diagonal 
elements determine the mixing in this process. 

If the collisions a r e  isotropic, the irreducible multi- 
The is also of inter- pole moments of the states relax but can become mixed, 

est  in quantum theory of systems whose dynamics i s  because of the wind effect. The mixing structure i s  
determined by an interaction characterized by irredu- determined by the space-time properties of the sym- 
cible tensor operators (ITO). metry of the states in the scattering and by the DS in- 

For the IT0 responsible for the quantum transitions teraction group. In anisotropic collisions, the mixing 
between states, we develop quasiclassical represents- of the states i s  significant to the extent of the resultant 
tion that i s  a t  the same time also an exact quantum collisional disorientation. If the region corresponding 
representation. In this representation it i s  easy to go to strong disorientation i s  important (the interaction is 
over in standard fashion to a quasiclassical description not long-range), then, besides the quasiclassical ap- 
of the internal quantum degrees of freedom and obtain proximation, it i s  possible to use in individual cases a 
the corresponding classical equations of motion. numerical solution of the scattering Of 

We shall consider rotation states that a r e  degenerate 
in the projections M of the angular momentum J of the 
system, in the representation of the spin coherent states 
of the rotation group. The coherent states (CS) of the 
rotation group began to be discussed in the physics lit- 
erature intensively about 10 years ago.314 A complete 
review of the dynamic symmetries (DS) of the most im- 
portant groups in physics, and of the corresponding 
CS , can be found in Perelomov's paper. Such con- 

great interest to us a r e  analytic methods not restricted 
by specific values of the moments of the states. 

The content of this paper is  the following. We consid- 
e r  f irst  elastic M-exchange in collisions of charged 
particles and molecules with an intrinsic o r  induced di- 
pole moment. We obtain the dynamic symmetry of the 
CDI and the equation of motion of the classical angular 
momentum. Next, on the basis of the concept of co- 
herent states and complex realization of the IT0 we in- 

604 Sov. Phys. JETP 55(4), April 1982 0038-5646/82/040604-08$04.00 O 1982 American Institute of Physics 604 



troduce the disorientation current. A generalized pow- 
er-law model is analyzed. Next, the consequences of the 
DS of the CDI in the structure of the matrix relaxation 
and in the spectral-line contours a r e  discussed. Metho- 
dological aspects of the complex realization of IT0 and 
of the Hamiltonian approach a r e  relegated to the Appen- 
dix, where the polarization relaxation ra tes  also given 
in the case of different perturbations on the combining 
levels. 

2. COLLISIONAL DISORIENTATION IN CDI 

We consider disorientation, due to collisions with 
charged particles, of states that a r e  degenerate in M 
and have no inversion center. In the coordinate sys- 
tem (see Fig. 1) whose z axis i s  parallel to the direc- 
tion of the relative velocity u of the colliding particles 
(the u-system), the dynamics of elastic M exchange i s  
described by the following equation for the scattering 
matrix: 

as,',. i = C  - 
a a  (:)"'z mM, ~,;(a,o) i . : :  ( M M , ) ~ : , . , .  (2.1) 

For simplicity we assume that the scattering orbit is  a 
linear trajectory $ =p2 + ( ~ t ) ~  with an impact parameter 
p.  We introduce on this trajectory an angular time a, 
=n/2 + arctan (ut/2), which ranges from 0 to r during 
a collision time from t = -m to t =-. The parameter 
C is the product of the energy difference of the neigh- 
boring M-sublevels in the potential (1.1) during the time 
of flight p/u (i.e., C i s  the Massey parameter): 

Here e is  the charge, (nJJldlJnJ) i s  the reduced matrix 
element of the dipole moment of the level nJ. 

The M-exchange dynamics proper is specified by a 
first-rank tensor operator with components 

The operators (2.2) form a closed algebra of the SU(2) 
group : 

[i:.,, ? ~ I = F ? ; : , ,  [Z;,, ?:!,I=-?::. ( 2 . 3 )  

Since the Hamiltonian of Eq. (2.1) i s  linear in the gen- 
erators of the SU(2) group, it follows that the scattering 
operator is  the Wigner rotation ~ p e r a t o r . ~  We have 
thus established the analytic structure of the scattering 
matrix. 

FIG. 1. The u-coordinate system. 

We tie to the molecule a coordinate system whose z 
axis coincides with the direction of the average angular 
momentum J (the M system). The rotation of the M 
system upon collision will be described by the Euler 
angles $, O , p between the M and u systems. The scat- 
tering operator then takes the form 

bJ(+, 13, cp) =exp (-i$F1,") exp (-iOT,,") exp (-icpftz'J), 

(2.4) 
s : ~ . = ( J M I ~ I J M ' ) = D : ~ , ( + ,  0, c p ) .  

Here F f ,  ( t z = x , y ,  z) a r e  the Cartesian components of 
the tensor ei. 

In the moving M system, the initial distribution of the 
state amplitudes over the projections of the angular mo- 
mentum i s  obviously conserved, but in the u-system it 
varies, i. e . ,  M exchange takes place. Our next task is 
to calculate the angles $, 0 ,  p. The angular-velocity 
components of the rotation of the moving M system along 
the axes of the u system can be obtained from the equa- 
tion [obtained by substituting (2.4) in (2. l ) ]  

The circular components of the angular velocity a re  of 
the form 

roo=@ cos O+ 4, o,,=(-i@ip sin O )  e**/)/2. (2.6) 

From the completeness of the algebra of the operators 
F:: and from Eq. (2.5) follow the classical Euler equa- 
tions of motion of a solid with equal moments of inertia 

- 
I'Zo,=-C sin a ,  o,=C cos a .  (2.7) 

This equation can be written in vector form 
A= [CXn] , 

n= (sin 0 cos rp, sin 0 sin +, cos 0 )  , C=C(sin a ,  0 ,  cos a ) .  (2.8) 

For the initial conditions n(0) = (0 ,0 , l )  we easily obtain 
from (2.8) 

n, ( a )  =sin a-cos a sin ( a v )  lv-sin a (I-cos a v )  /vz ,  
n,(a)  =-C(1-cos a v ) / v z ,  

n , ( a )  =cos a+sin a sin (av) /v-cos a(1-cos a v ) / v 2 ,  v = ( I + C ~ ) " ~ .  

Knowing the components of the unit vector, it i s  easy 
to determine the Euler angles O and J ,  after the flight of 
the charge (a! = u ) :  

0=arccos [(-C2-cos n v ) / v 2 ] ,  rp=-arctg [ (C  tg ( n v / 2 ) ) I v ] .  (2.10) 

We can next obtain the angle rp from Eqs. (2.7). In 
practice the situation reduces to a complicated integral 
which could not be evaluated here directly. However, 
all the Euler angles can be easily determined in a dif- 
ferent coordinate frame, with z axis perpendicular to 
the collision plane (the z-system): 

cosg= ( l+CZ cos n v ) / v 2 ,  
$=n/2+arctg ( v  ctg ( n v / 2 ) ) ,  

Q=-arctg ( tg  ( n v / Z ) ) / v .  

We now transform the S matrix from the z-system to 
the u-system of coordinates, making both systems 
congruent by clockwise rotation through an angle n/2 
about the x axis: 

8 (rp, 0, cp)  = b ( n / 2 ,  -n/2, - n / 2 ) S ( $ ,  < @ ) b ( n / 2 ,  n/2,  -n/2) .  
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. As a result of straightforward but cumbersome spheri- 
cal-geometry tran~formations'~ we obtain 

Thus, the DS of the interaction, if it reduces to the 
SU(2) group, can describe the dynamics of an angular 
momentum that i s  directed on the average along n, using 
the solution of the Bloch equation o r  of the correspond- 
ing Euler equations. We can stop here if we a re  not in- 
terested in the angular-momentum motion due to an in- 
teraction having a different DS. In such cases an ap- 
proach in a basis of quasiclassical states may turn out 
to  be effective. 

The anisotropic part  of the interaction potential is  
usually characterized by an IT0 or  by a set  of ITO. 
The construction of the classical equations of motion 
that generalize the Hoch Eq. (2.8) i s  carried out in two 
stages. During the first stage the IT0 a r e  realized in a 
basis of quasiclassical states 1Jn) (Ref. 41, which a r e  
the eigenstates of the operator 

n.311n)=111n>.  (2.13) 

From analytic considerations, it i s  more convenient to 
use the complex variable 

p=tg ( W 2 )  e'*, (2.14) 

which is obtained a s  a result of a stereographic projec- 
tion from the sphere nZ= 1 on the plane p. We define 
these coherent states in the following manner: 

which differs from the definition of Refs. 3 and 4 in that 
the norm of the states is included in the measure 6, w 
of the "expansion of unity": 

The realization of the ITO, e.  g. , from the left for 
pf:, has in the basis (2.15) the form 

In th_e g,eneral case a realization of an IT0 of ~ e n e r a l  
form T:: i s  specified by the operator function c:' 
(p*, a/ak*). For first-rank tensors these functions a r e  
given in Appendix 1. 

During the second stage, we write down the quantum 
evolution equation $(p*)= (Jp I $) in the CS representa- 
tion with a Hamiltonian realized in the same basis: 

The classical equations of motion of the angular momen- 
tum a re  obtained by the standard procedure of quasiclas- 
sical approximation of quantum mechanics. At large 
J, the function J,  is sought in the form 

From this we obtain in the zeroth approximation the 
classical Hamilton-Jacobi equation 

and if necessary the classical equation of motion. 

We use the described procedure again to analyze the 
disorientation in scattering with CDI. In place of the S 
matrix we have here the scattering-operator symbol 

S(p ' ,  a ) = < J p I B  ( a )  IJM'), (2.20) 

which satisfies the equation 

j (p ' ,  a )  =iC [2 - ' ( I -p")  sin a-p'  cos a ]  

The initial values for the S symbol, corresponding to 
a unit S matrix (prior to the collision, i. e. , a t  cu = O ) ,  
a r e  

The solution of Eq. (2.21) i s  determined by the equation 
of the characteristics, which i s  the classical equation of 
motion 

d p S / d a = j  ( p ' ,  a ) .  (2.23) 

Thus, the quantity j has the meaning of the disorienta- 
tion current, and the characteristics a re  the streamlines 
of j. 

If we make the substitution 

p'=[ji+tg ( a / 2 ) ]  / [ 1 - p  t g  ( a / 2 ) ] ,  

which means a change to a rotating system with axis di- 
rected on the incident particle, then p satisfies the Ric- 
cati equation with constant coefficients 

To illustrate the solutions of Eq. (2.25), Fig. 2 shows 
the phase portrait of the disorientation current. The 
form of the integral lines proves that the F-plane points 
move periodically around the singular points F, 
= -i(C v ) .  

On the characteristics (2.23) we have the solution of 
Eq. (2.21) (see Appendix 2) 

FIG. 2. Phase portrait of the disorientation current on the 
ii=1:-6 plane. 
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Here v* is the Lagrange variable 

q S ( p ' ,  n ) = ( p * - A t ) / ( l + p ' A ) ,  
21 '1. 

S ( p S , n ) = (  ,) (I+~AIz)-J(~'-A')l-M'(I+~~A)l+M', (2.27) 
I-M 

A=-iC+v ctg ( n v / 2 )  =ae'*. 

The matrix element (JM J M 1 )  is  obtained from (2.27) 
by a quadrature that leads us  to the Wigner matrix: 

- e - i ( ~ - ~ r ) v  - [ (J+M) I ( I - M ) !  ( J f  M') I (J-M') !]'" 
( - I ) '  ( I+M-t )  ! (I-M'-t) ! (M'-M+t) ! t !  

From the character of the phase trajectories we can 
determine the degree of disorientation after the col- 
lision. We note that the running angles O(a) and $(a) 
in the D matrix correspond to a trajectory that s t a r t s  
out from the origin (q* =O).  Therefore, if I F  I = tan(O/2) 
changes weakly (or strongly) on this trajectory , the dis- 
orientation is  weak (or strong). The corresponding 
angle O(n) is  close to zero o r  n. From Fig. 3 we can 
see that a t  C << 1 (remote flyby, large relative velocity) 
the disorientation i s  very weak, and in the other limiting 
case C >> 1 it is strong. The latter can be easily ex- 
plained by recalling that according to Eq. (2.8) the quan- 
tity C is also the rate of precession of the average angu- 
lar momentum. Precessing rapidly around the interac- 
tion axis C/C, the angular momentum follows it adia- 
batically. 

In the physics of atomic and molecular collisions one 
frequently uses a power-law model of interaction 

? - L ( Y , : ( ~ , O ) ? : : ) .  
r'+2 

(2.29) 

The value s = 0 corresponds to the CDI, and s = 5 cor- 
responds to the anisotropic part of the Buckingham 
potentialsI3 between the atoms of the inert gases and 
the polar molecules, etc.; the S matrix in the power- 
law model is also a rotation matrix. In the cases s + 0 
all that changes is the character of the rotation, now 
described by the equation 

dp/da=- iC,  sin' an- ( l + p 2 ) / 2 ,  (2.30) 

where Cs is the Massey parameter [cf. (2.2511. For an 
approximate solution of this equation we introduce the 
effective interaction region E localized in the vicinity of 
the perturbed quantity, i. e. , near the point a = u/2, 

where B ( x , y )  i s  the Euler @ function. 

FIG. 3. Dependence of the disorientation on ( = 1 / C  (( i s  pro- 
portional to the impact parameter). 

Replacing the smooth interaction CSsinS ff by a step 
function (Fig. 4), we easily obtain the disorientation 
parameters. To this end, using the known solution of 
Eq. (2.25) in the region of interaction with the Massey 
parameter Cs, we join it to the solution of the equation 

d p / d a = -  ( l + p z ) / 2  

outside the interaction region E. As a result we obtain 

cos 0,=v-I sin e v  sin e+v-' cos e v  cos e 
- ( I - v 2 )  [sin2 ( ~ 1 2 )  -cos e v  cosz ( E I ~ ) ] ,  (2.32) 

tg lp.=C.[cos ( e / 2 ) - v  ctg ( e v / 2 ) ]  -', v =  (i+C.')". 

In the case  of remote flyby, under the condition Cs<< 1 
that the collision be nonadiabatic, the disorientation is ,  
naturally, always weak: 

In the other limiting case  of adiabatic collisions, the 
disorientation in the power-law model differs somewhat 
from the disorientation in the CDI in that it is not nec- 
essarily strong. In fact, it follows from (2.32) that 

i. e . ,  the function sin2 (Os/2) oscillates a s  Cil- 0 about 
a value 1-Z1 cos2 (&/2). In the case of s = 0, on the 
other hand, we have E = n and sin2 (Oo/2) = 1. 

3. RE LAXATION MATR lX 

In this section we study the consequences of the dy- 
namic symmetry of the CDI, which manifests itself both 
in the structure of the relaxation matrix and in the val- 
ues of the matrix elements. 

We recall  that if the velocity does not change the re -  
laxation constants (RC ) calculated in a coordinate frame 
whose z axis i s  directed along the velocity v of the per- 
turbed particle (the v-system) is determined by the dif- 
ferential c ross  sections6 

o ( x x , L ,  p, u )  = C ( - l )" ' -9<xpxl -p iLo)  
9 

X[ ( 2 x + I )  ( 2 x , + i )  1"o(JJfxpl JJ'x,p, p, u ) .  (3.2) 

The Euler angles 9 = (#, 0,  p) depend on p and u via the 
parameter C,  and for the subsequent averaging over p 
and u it is  useful to introduce the notation 

FIG. 4. Illustrating the replacement of the real interaction by 
a step. 
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where the Massey radius i s  

and Tb i s  the average velocity of the perturbing charged 
particles. 

The weighting density with which the averaging over 
the velocities is  carried out, i s  given bye 

Further integration of the cross sections (3.1) and 
(3.2) with respect to the impact parameter p must be 
cut off at the Debye radius p, of the screening of the 
charges in the plasma. In the upshot we obtain the 
quantities 

which a r e  needed for the calculation of the relaxation 
matrix elements in the v-system: 

At F>>Gb, the dependence of r:,: on n ,  q ,  and v is spec- 
ified directly by the cross sections (3.1) [see Eq. (2.4) 
of Ref. 61. 

It is  easy to show (we omit the proof) that the cross  
sections u(mlL),  and consequently also the RC I':, , , 
are  real. We emphasize that the latter is valid even in 
the case of different perturbation of the states nJ and 
n'J1, although in the general case of arbitrary perturba- 
tion the quantities r;, , a r e  complex. 

A second general property of the CDi i s  the logarith- 
mic divergence of the integral with respect to 5 in (3.5). 
Assuming p, >> p,, we consider the principal term of the 
integral with respect to 5, which is proportional to 
ln (p,z l p , ) ,  and retain in it only ln (p,/p,)>> 1, assum- 
ing that z - 1 [see (3.4)]. In this case the integrals in 
(3.5) separate: 

where K(2,L, 5 )  a r e  standard functions of b =v/Zb (see 
Ref. 61, which in the case  of CDI a re  expressed in 
terms of the probability integral and of elementary func- 
tions. 

We analyze now the RC of the levels, and also the RC 
of the transitions for an identical perturbation of the 
combining states nJ and n'J1. In both cases the addition 
of the D-matrices in (3.1) leads to the expression 

Thus, under the indicated conditions the relaxation ma- 
tr ix is  diagonal both in x and in p (in the v system), but 
depends on x and p .  Consequently, the wind effect caus- 
e s  here only a dependence of the RC on p, and there a r e  
no off-diagonal terms in x ,  as  in the general case. 

We investigate now the relation between the relaxation 
ra tes  of the different multipole moments of the states 
and the polarizations. We call attention first  to the fact 

that a t  x = 1 the cross  sections with p = O  and p = 1 differ 
according to (3.8) by exactly a factor of 2. In the pre- 
viously studied dipole-dipole and dispersion interac- 
tions'-" this difference reached only 30%. Next, for 
x +  1 it i s  easy to separate the terms that yield the prin- 
cipal logarithmic members; since sin2 0/2 - t-' a s  5 - 0, we have 

In particular, at the values of Ip I that differ most the 
ratio of the cross  sections increases with n: 

In the "logarithmic" limit (3.9) the cross section con- 
tains only the angular momenta L = O  and 2. Indeed, 
from (3.2) and (3.9) it follows that 

As x increases from 1 to the ratio of the anisotropic 
and isotropic parts ranges from 1/a to 1/6.  

If the collisions a r e  isotropic (E<<Tb), we obtain with 
the aid of (3.10) the dependence of the relaxation con- 
stants on x: 

Thus, the CDI leads to a strong dependence of the RC 
on x ,  whereas for dipole-dipole and van der Waals in- 
teractions the values of r, a re  changed by approximate- 
ly 10% in the range x= 1-3 (Refs. 14-16). 

The polarization relaxation matrix has a somewhat 
different structure if the disorientation is not the same 
on the combining levels. An investigation of this case 
is  cumbersome and is relegated to Appendix 3. 

We confine ourselves here to the model with pertur- 
bation of one level. In the v-system the relaxation 
matrix f i s  then diagonal in the M representation. The 
corresponding cross sections and relaxation ra tes  a r e  
given by 

o(JJL,  g)--(2Ji-1)-'" z ( - 1 )  '-M<JMJ-MILO)[l-d,M'(0) 1, 
M 

P D I P o  

r(JJL, u)=Nbi7bpo2K(2,L, S)2n o(JJL,  f ) E  (3.12) 
0 

r M ( V ) = ( 2 ~ + 1 ) " z  ( -1 )  J-M<JMJ-MILO)I'(JJL, u) .  
L 

In the principal-logarithm approximation we can obtain 
[cf. (3.911 

2 J ( J + l )  [ (21-1) (2113) u (JJL, t )  = -- 
3 EZ 20J(J+1) 

1" 6.4 , 

r=NbVbpO2J(J+1) (4n/3)  ln (pD/po) .  

The dependence of the RC on the velocity v is  concen- 
trated in the functions K(2 ,L , t) (Fig. 5), which take a t  
L=O and 2 the form 

K ( 2 , 0 ,  5 ) = ( 1 / 5 ) @ ( 5 ) ,  

K ( 2 , 2 ,  5 )  = (1/5-3/253) 0 (t) +3n-'"5-' exp ( - 5 7 ,  (3.14) 
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FIG. 5. Depe.ndence of K(2,  L, 5 )  on the velocity 5 = v/iFb. 

where @(f) i s  the probability integral in accordance with 
the general formula (2.31) of Ref. 6. 

4. SPECTRAL-LINE PROFILE 

The relaxation matrix I? investigated above makes it 
possible to calculate the impact broadening of spectral 
lines in CDI. In contrast to Ref. 1, where a model of 
isotropic collisions was used (F<< G,), we present here 
results on the line profile in the opposite limiting case 
F>> FM when the wind effect manifests itself to the ut- 
most degree. The functions K(2, L ,  5) can be replaced 
by the asymptotic values 1/5, which a r e  the same for 
all L ,  and all the elements of the relaxation matrix ac- 
quire the same dependence on the velocity: 

The components of the spectral structure of the profile 
without Doppler broadening a r e  given by special inte- 
grals: 

- 

Lq(f2) =4n-q%-31 Re[rkq ( u )  -iQ]-ivZ exp (-v2/CZ) du 
0 

= [z;6 +zhq exp(zG2 )Ei(-zL2 ) I f A q ,  (4.2) 

Ei ( - Z )  --/ t-* expt dt, fkq=2n-"A,' 

Here zk ,  = S~/A~., XRa is  the intensity of the component at 
the c ?nter ( 9 = 0 ) ,  and A,, a re  the roots of the matrix 
(4.1). Numerical calculations have shown that the func- 
tions I,,(SZ ) has, accurate to 3%, a Lorentz shape and 
a width 0. BOA,. 

To illustrate the possible effects of the ani.sotropy of 
the collisions we discuss now the numerical calculations 
of the line profile in the model where one level i s  per- 
turbed: 

I ( Q ) = ( Y + ~ ) - ~  X R ~ ( Z  [ r X ( v ~ - i f 2 l - * ) -  (4.3) 
w 

FIG. 6. Contour of spectral line in the limiting case of strong- 
ly anisotropic collisions (J = 10); 1) contour for transition with 
sublevel M =  iJ; 2) summary contour. 

In the limiting case F>> F, we have 

The maximum difference r,(v) as a function of M i s  
characterized by the ratio r,(v)/r,(v) =J + 1. At large 
J, consequently, the set  of Lorentzians (4.3) contains 
narrow (J - M - 1)  and broad (M/J<< 1) components. 
Therefore one can expect the total profile to contain an 
abrupt component against a broader background. The 
foregoing arguments a r e  illustrated in Fig. 6, using a 
numerical calculation of an example with J = 10. The 
contribution of the terms with M = iJ to the intensity at 

= 0 is  41% (these terms a r e  shown separately in Fig. 
6). All the remain components IM I =0-9 form a broad 
background with a width approximately six times larger. 
Such pronounced manifestations of the wind effects were 
unknown before. For comparison we recall that for 
other forms of the interaction the line shape, owing to 
the anisotropy of the collisions, changes by not more 
than 2% (Refs. 6,8,9). 

5. CONCLUSION 

The problem of disorientation in collisions with CDI 
occupies in M-exchange theory a special place, similar 
to the place of the harmonic oscillator in quantum mech- 
anics. The quasiclassical description of rotations and 
of the elastic-scattering matrix in CDI ensures an exact 
quantum result (Appendix 2). The basis of the descrip- 
tion is the classical Bloch equation which i s  obeyed by 
the motion of the angular momentum of the state per- 
turbed upon collision. The DS group of the CDI and the 
matrix of the M exchange a r e  connected with the rotation 
matrix, so that the relaxation matrix can be investigat- 
ed analytic ally for all  J. It has turned out that the CDI 
mechanism leads to maximum anisotropy for anisotrop- 
ic collisions and to a strong dependence of the relaxa- 
tion ra te  on the multipolarity of the angular momentum 
of the state in isotropic collisions. The level relaxa- 
tion matrix has a diagonal structure, so  that there a re  
no transport and mixing of the multipole moment in 
the relaxation. 

For other interactions, whose DS i s  determined by 
the  set  of ITO, we proposed above an approach with a 
quasiclassical realization of the IT0 in a basis of co- 
herent states. The complex variable p of the phase 
transition, which characterizes this state, i s  connected 
with the direction of the average angular momentum. 

To solve the dynamic SchrSdinger equation in this 
phase space one makes use of the methods of the theory 
of analytic functions. At large J, it i s  also of interest 
to use the quasiclassical approximation and classical 
trajectories of motion in the p plane. The trajectories 
a r e  the characteristics of the dynamic equations. Con- 
sequently, formulation of the equations of the charac- 
teristics i s  a method of obtaining the generalized Bloch 
equation (of the classical equation of motion). 

In conclusion, we consider it our pleasant duty to thank 
G. I. Surdutovich and A. M. Shalagin for helpful dis- 
cussions. 
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APPENDIX 1 r e m  by the Jacobian of the transition (ap*/ w*) over the 
collision time: 

REPRESENTATION OF I T 0  IN A BASIS OF COHERENT 
STATES 

where v * = q * ( ~ * ,  a). Combining (A2.6) and (A2.1) we 
obtain (2.26). An IT0 of rank has in the quantum basis of the an- 

gular momentum the form 

APPENDIX 3 

LINE BROADENING AT VARIOUS DISORIENTATIONS 
ON COMBINING LEVELS The analytic structure of this operator in a basis of 

coherent states i s  determined by the vector-addition 
coefficient. The IT0 can be realized here both from the 
left and from the right. For example, in realization of 
the IT0 from the left it is  necessary to satisfy the equa- 
tion 

(J~I?$=? ( p * ) < ~ p l ,  (A1.2) 

The general structure of the relaxation matrix (3.1) is  
determined in the principal logarithm approximation 
only by the diagonal (M, M) and off-diagonal (M, M 1) 
scattering channels. The diagonal-channel scattering 
matrix Dc, can be represented in the form 

which in fact defines Tfd ~ ( p * ) .  In particular, using 
(2.15) and (Al. I ) ,  we easily obtain for f'f,' 

Here 
a ] = - 2 / ( 1 + 1 ) / 3 ,  b,=- [ J ( J + l )  ( 2 J - i )  (21+1)  ( 2 J + 3 ) ] ' " / 3 .  

The corresponding part  of the relaxation matrix of the 
irreducible polarization moments i s  then represented 
by the diagram 

This procedure can be used for any ITO. We confine 
ourselves below to realization of first-rank tensors: 

Using the standard transformation rules (cutting 
through three lines), we obtain the closed diagram of a 
6J coefficient, whose values of well known, and the 
vector addition coefficient 

APPENDIX 2 

HAM1 LTONIAN APPROACH 

We seek the solution of (2.21) in the form 

S(p' ,  a )  =exp (JQ (p', a)). (A2.1) 

The eikonal obeys the Hamilton-Jacobi equation 

with the Hamiltonian 

r,a (aJ+a1.)6,,+(-1)'1-1-J'[ ( 2 x f  1) (2x ,+  I )  I ' ~ [ ~ , B ~ ~ + ~ , ~ B : : ~ ( A ~ .  3 )  

The contribution of the off-diagonal channels is  made 
up in the logarithmic approximation by terms of the 
form 

J' DLM-, ( O ) D ~ . ~ ~ - , ( O ' )  =[ (J+M) (I -M+1)  (I'+ M') (J ' -M1+l)  1"lEf' 

The momentum here is  A = a@/ap*. The equation of 
motion, of course, coincides with the equation of the 
characteristics (2.23): 

which can be represented by the diagram 

;i/ 
The eikonal i s  directly determined from (A2.2) by the 
quadrature 

Here @, i s  the initial eikonal. 

The second term, due to the divergence of the disor- 
ientation current, is  expressed in accord with the theo- 
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The corresponding p a r t  of the  RC is r e p r e s e n t e d  by 
the following diagram: 

- + 
J 

zc + J' = IC +w -+ ( 
J' 

a1 J' I - J' - + 
which leads  to the 9J coefficient 

( x x , L I  

Thus, in the principal-logarithm approximation, the 
relaxation r a t e s  contain i so t rop ic  contributions with 
L =0, and anisotropy only with L = 2. 
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