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The cross section is calculated for resonant capture of neutrons top-levels of a compound nucleus under the 
influence of laser radiation. It is shown that the dependence of this cross section of induced absorption on the 
crystal phonons is determined by the same factor as in the case of ordinary capture to s-levels. Detailed 
estimates are presented of the magnitude of the effect. The influence of classical nuclear oscillations in an 
ionic crystal under the influence of an electromagnetic wave on the neutron capture is considered. 
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1. INTRODUCTION Since we a r e  interested only in E l  transitions, it 
suffices to choose 

The capture of slow neutrons to the p-level of a 
compound nucleus under the influence of l a s e r  radiation .. 

v,- - - 
was recently It was shown that this shifts (4) 

the p-resonance energy by an amount equal to the laser -  
photon energy. I t  was proposed in Refs. 1-3 that the 
nuclei form an ideal gas with a Maxwellian velocity 
distribution. In the present paper we construct the 
theory of induced scattering (absorption) of neutrons 
by nuclei bound in a crystal. We refine also the esti- 
mates of the induced width of the p-level, which do not 
depend on the medium in which the nuclei a r e  located. 
A quantum theory of the influence of polaritons on the 
capture of neutrons by nuclei in an  ionic c rys ta l  was 
developed in Ref. 4. It was assumed there that the 
forced oscillations of the nucleus a r e  small. We con- 
s ider  this effect without assuming the oscillations to 
be small. 

2. SCATTERING MATRIX 

We consider a sys tem consisting of a nucleus in a 
crystal ,  a neutron, and an electromagnetic field._ W e  
wrjte the Hamiltonian of the system in the f o r m % = g 0  
+ V. Let  the zeroth-approximation Hamiltonian be 

.. ,. 
where H,, , Hn4, and H, a r e  respectively the Hamil- 
tonians of the crystal ,  of the nucleus, and of the field, 
m is the mass  of the neutron, r is i t s  radius vector, p 
=r - R ,  R is the radius vector of the nucleus, and 
~ ( p )  is ? central potential that approximates the inter- 
action V, of the neutron with the nucleus. The Hamil- 
tonian of the field is of the form 

where gv and ii,, a r e  the operators fo r  the creation and 
annihilation of a photon with a wave vector k and a 
polarization unit vector e,(k). 

The perturbation operator is then 

where f, is the interaction of the nucleus with the field. 

where e is the proton charge, r, and p, a r e  the radius 
vector and momentum of the i-th proton of the nucleus, 
and A(r) is the operator of the vector potential of the 
field : 

where L~ is  the volume occupied by the 

We consider neutron capture by heavy nuclei with 
mass  M =Am >> m. Then ,  in accordance with Refs. 7 
and 8, we can neglect the change of the mass  of the 
nucleus upon capture of the neutron. Assume that  a t  
t =-a the field contains N photons with frequency w ,  
wave vector n, and polarization G, while the neutron 
has a momentum tik,, and a spin projection p,. The 
initial s ta te  of the system is described by the wave 
function 

where (v:)  is the wave fuction of the crystal ,  is the 
initial number of photons, h,) is the function of the 
field, \k,,,, is that of the nucleus, and Zo is the spin of 
the nucleus. The distorted plane wave 

@r,(~) =94(~)xsu 

describes the motion of a slow neutron in the field U(p):  

where 6, is the phase shift of the potential scattering of 
the neutron in the field U(p)  (for simplicity we neglect 
its dependence on the spins). _The function (6) is an  
eigenfunction of the operator &Po: 

where the system energy is 

o, is  the frequency of the s-th oscillator of the crystal. 
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The ground-state energy of the nucleus is s e t  equal to 
zero. 

The coherent wave emitted by the laser  i s  described 
by the wave function lo), which is a superposition of the 
states of the field (N) with different numbers of pho- 
t o n ~ . ~  The probability that N photons a r e  contained in 
the state la) is determined by the Foisson distribution 

where i s  the average number of photons. Since N 
>> 1, the variance [(N - #)"1i2m<< 1. The averaging of 
our final formulas over N reduces therefore simple to 
replacement of N by R. 

I t  is known1° that the scattering i s  determined by the 
operator 

The resonant scattering of a neutron through the P level 
is determined by the t e rm f , d ( ~ ,  +irl)e,. The f i r s t  
factor on the right determines here  the transitions of 
the system with emission o r  absorption of one optical 
photon (x ,  &) in the intermediate s ta tes  

where @pi i s  the wave function of the P-level of the 
compound nucleus. 

Choosing the quantization axis z along the light-polar- 
ization unit vector E and taking into account the equality6 

(f~ili)=imo,,(flrli), (13) 

we obtain the matrix element for  the E l  transition with 
emission of a photon (x , &): 

where ~ , , = N , , / L ~  is  the photon density and e, ,=e~/  
( A  + 1) is the effective charge of the neutron." 

The matrix the determines the (n, n') o r  (n, y )  scat-  
tering through the @ resonance is of the form 

where E, = E o r  tZu, is the energy of the nuclear reso-  
nance shifted by an  amount equal to the light-photon 
energy (the sign of Aw is chosen to satisfy the reson- 
ance condition E -  E,), I' is the total width 

r0 is the width of the P-level of the compound nucleus 
in the absence of the laser ,  and A r is i t s  broadening 
due to the interaction with the l a se r  radiation. 

The total width is determined by the known formula5.10 

where Id') a r e  a l l  the s ta tes  to which the decay can 
occur. In the derivation of (15) we have assumed an 

incident-neutron energy E>>AG, (a, i s  the characteris-  
tic frequency of the phonons), s o  that the neutron energy 
differs little from E in al l  the final s ta tes  la1'). Then, 
inasmuch as 

the Green's-function matr ix  d ( ~ ,  +iq) i s  diagonal in the 
phonons, and the width I' i s  independent of the phonons. 
The broadening A r  is  determined by the s ame  equation 
(17) with replaced by ?, and with (aN) standing for  a l l  
the s ta tes  of the system into which an  E l  transition 
takes place from the state Ib) with emission o r  absorp- 
tion of a photon ( x ,  &) and emission of a neutron. Taking 
(14) into account, we have 

where dn,  =sinpipdo; k,, 8, and a, a r e  the spherical  
coordinates of the vector k, and S i s  the average laser -  
radiation energy flux density: 

We note that A r  in (18) coincides with the induced width 
of the p-level of the f r ee  nucleus. 

3. CROSS SECTION FOR INDUCED ABSORPTION 

The neutron-scattering amplitude is  connected in the 
following manner with the scattering matrix: 

The total c ros s  section i s ,  in accord with the optical 
theorem, given by 

where g(v:) i s  the Gibbs distribution over the crystal  
s ta tes  lv:) and fa, is  the amplitude of the zero-angle 
elastic scattering. 

A relation s imi lar  to the Wigner-Eckart theorem 
holds: 

where (jlj2mlm2 1 jm) a r e  Clebsch-Gordan coefficients, 
and ( I )  1)) is a reduced matr ix  element independent of 
the magnetic quantum numbers. Recognizing also that 

we can express the numerator in fa, in te rms of Ar. 
As a result  we obtain the following expression for  the 
total c ros s  section for  induced capture of neutrons to 
the p-levels: 

~ r ~ - - n k ~ - ~ g A ~ ~ w  ( E ) ,  (24) 

where the spin factor g = (21 + 1)/2(2Z0 + 1) and 
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The dependence of the cross section (24) on the phonons 
is determined by the same factor w(E) a s  for ordinary 
neutron capture to the s-levels. 

In the simplest case, when the probability of creation 
(annihilation) of several phonons is low, the cross sec- 
tion is equal to the sum of the zero-phonon cross sec- 
tion o,(O) (the analog of the MGssbauer line) and the one- 
phonon cross section o\l' (Refs. 7 and 8). The zero- 
phonon cross section is of the form 

where exp(-2W(ko)) is the Debye-Waller factor, 2W(k0) 
= ((k,. a)'), a is the displacement of the nucleus from 
the equilibrium position, and the angle brackets denote 
quantum-mechanical and statistical averaging over the 
phonons. The single-phonon cross section is simple in 
form in the case of weak coupling, when r /2  +( 1 g)"' 
>> k , 8 ,  where .@ =AZk2,/244 is the nuclear recoil energy, 

is the average energy per lattice oscillator, k, is 
the Boltzmann constant, and €3 is  the Debye temperature. 
Then 

The absorption cross section (27) in the crystal at a 
temperature T coincides with the cross section for ab- 
sorption by a gas1-= a t  a temperature F/k,. Further 
simplifications of the cross section (27) were discussed 
in Refs. 7 and 8. Calculations of the function (25) for 
multiphonon processes were made in Refs. 12-14. 

4. INDUCED WIDTH 

Following Ref. 1 ,  we consider the induced capture of 
neutrons to a bound level of a compound nucleus, with 
negative energy E,. We consider f i rs t  a highly ideal- 
ized model, assuming that this bound state is a single- 
particle bound state of a neutron in a square well, and 
the core is not excited in this case. This approach, 
a s  will be shown later, imposes an upper bound on the 
induced width A r  at  a given laser power. We shall 
analyze the deviations from the estimates of Refs. 
1-3, and present estimates for a realistic model of 
the compound nucleus. 

Thus, we take the potential U(p) in the form of a 
rectangular well of depth E, and radius a: U(p) 
=-U,a tO<p<aand  U(p)=O a t p > a .  The bound@- 
state of a neutron in this square well is described by 
the wave function 

The radial function cp,(p) extends outside the nucleus to 

a distance p, =W/(2m)~,))l~' .  For shallow levels with 
binding energy ( E ,  I - 1 eV we have p, - lo-' cm, i.e., 
p,>> a. In the approximation p,>> a the radial function 
is 

If the well depth is such that there exists only one P- 
level, than a t  p, w a we have 

In this single-particle approach, the compound-nucleus 
wave function is made up of the function (30) and of the 
wave function of the ground state of the core: 

Substitution of (34) in (18) yields 

In the simplestcase kopo<< 1 we have hence 

8n(21+i) m k , e . G  
dl-='-- 

3 A' apeb. (3 6) 

We used this formula to estimate the laser-energy f l u  
density needed to  obtain an induced width Ar- 0.1 eV. 
Choosing j = $ ,  k, = lo8  cm", eem =0.5 el   lo-'^ cm, 
and p, = cm we obtain S =3 X 10" w/cm2. 

The exact wave function of the bound state of the com- 
pound nucleus is an expansion in the single-particle 
functions of the neutron, with factors that describe dif- 
ferent states of the core. Addition of deeper neutron 
states in the square well to the function (34) leads to 
localization of the neutron in a smaller volume. The 
required value of S can only increase in this case. 

The obtained value of S is much larger than the esti- 
mates given in Ref. 1. To determine the cause of this 
discrepancy, we track the derivation of A r  by the 
method of Ref. 1. We use the operator identity 

$do - Rip = - itr?,u @), (3) 

where $=-itivp is the momentum operator and H, =p/ 
2m +U(p). The calculation of the matrix for (37) on the 
eigenfunctions of the operator 6 leads to the equation 

where E(O) a r e  the corresponding e9envalues of &. In 
our problem the eigenfunctions of H, a r e  the function 
(30) for the bound P-level in a square well and the func- 
tion (7) that describes the neutron scattering by this 
well. Accordingly, 6 ,  is the phase shift of the scatter- 
ing of an S wave by a square well containing a shallow 
p level. This phase shift is determined by the expres- 
sions 

tg 60- k a - t g  (koa) 
l + k a  tg(k,a) ' 

(39) 
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D= (K')-I t g  (K'a), Kg= [2m(U,+E)]'"/h.  (40) 

Taking (32) and (33) into account, we obtain f rom this 

Transforming the integral in (35) with the aid of 
(13) and (38), and recognizing also that 

we obtain 

Recalling (32), (33), and (41), we can show that Eq. 
(43) goes over into (36) in the case  k,p,<< 1. Introducing 
the neutron width r,,  we obtain from (43) the resul t  of 
Ref. 1: 

The broadening AT was estimated in Ref. 1 under the 
assumption that (a + 6,/k0) - cm. According to 
(41), however, this quantity is -lo-'* cm for I E, I - 1 eV. 
Therefore the value of A r  given in Ref. 1 should be de- 
creased by 12 orders  of magnitude. 

The difference between the scattering length (41) and 
the experimental value is  due to the fact that to obtain 
the upper bound we have considered an idealized model 
of potential scat tering (without excitation of the core). 
Accordingly O0 in our formulas is the phase shift of 
only the potential scattering. In the traditional model 
of resonant scattering of neutrons (see, e.g., Ref. 15), 
i t  is assumed that the energy transferred by the neutron 
to the nucleus becomes redistributed among many nu- 
cleons, therefore the radius of the compound nucleus 
changes insignificantly compared with the radius of an  
ordinary nucleus. Following Refs. 15 and 16, we 
estimate A r  by putting pp = const a t  O< p< a and qp = 0 
a t  p >  a. Then A r  i s  determined by expression (36), in 
which p,4 is replaced by a4/32. Consequently, A r -  0.1 
eV only a t  S - 1031 w/cm2. 

5. ROLE OF POLARITONS 

We consider a n  ionic crystal  with two ions per unit 
cel l  and with optical isotropy. Its dielectric constant 
is17 

e ( a )  =e,+ Eo-8- 

1- ( a / a O ) ' - i ( a / a a )  ( y / a o )  ' (45) 

where y is the damping of the optical oscillation in 
sec-', E, and c, a r e  respectively the stat ic  and high- 
frequency dielectric constants, and wo is the disper-  
sion frequency. The refractive index n =[~(w)]"~ .  If a 
wave with electr ic  component 

E('"o) (r, t )  =~6"''' COS(XI-a t )  

i s  incident on this crystal, then a wave 

E(r, t )  =E, cos(Kr-at) .  E , = ~ E , ' ~ ~ '  / ( n + i ) ,  

propagates inside the crystal  and the wave vector is 

K={u~,u , ,  nu,}, where z axis is  directed inward per-  
pendicular to the plate surface. 

The electromagnetic wave excites in the ionic crystal  
t ransverse  optical oscillations. According to classical  
polariton theory, the displacement of a positively o r  
negatively charged ion from the equibrium position, due 
to these oscillations, is 

where vo is the volume of the unit cel l ,  M ,  a r e  the 
masses  of the ions, and = M + M - / ( M +  + M - )  is their  
reduced mass. It is seen  from (46) that o =Acos(wt 
+ q ) ,  where rp is an  inessential phase shift. 

We consider now resonant scattering of neutrons by 
the nucleus of an ion made to oscillate by the laser .  
Following Ref. 4, we take into account only the role of 
the t ransverse  optical oscillations. Using the formal 
expansion of the S matr ix  in powers of the interaction, 
we can show that in resonant scattering from I a) into 
I a') we have 

where J,(x) is a Bessel  function of n-th order ,  M and 
M' a r e  the matr ix  elements that determine the capture 
of a neutron by a f r ee  nucleus to the s o r  p level and i ts  
subsequent decay. In the derivation of (47) we took into 
account the known equation 

From (47) we obtain the cross  sections. In particular, 
the doubly differential neutron-scattering c ros s  sec-  
tion i s  

where E' is  the energy of the scat tered neutron. The 
total c ros s  section is 

where o, i s  the c r o s s  section fo r  absorption a t  reso- 
nance. I t  is seen  from (49) and (50) that the resonance 
energy can be shifted by an amount that is a multiple of 
the l a se r  photon energy Rw. I t  is therefore possible to 
observe resonant levels with negative energy E,. 

The intensity of the additional peaks in (50) with n # 0 
is determined by the parameter  L, . A. When k,, . A<< 1,  
their  intensity decreases  rapidly with increasing n, 
s ince J,(x)- (x/2)"/n! a s  x- 0. Apart from afew details, 
our equations agree  a t  Lo A = k 0 A c  1 with the results  
of the theo~-y.4 
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