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A divergence-free conductivity of an electron gas in a quantizing magnetic field is found under the

assumption that the mixing of the Landau levels by scatterers of finite but otherwise arbitrary radii is slight.
The cases of different scatterer potentials are investigated: the screened Coulomb potential and small-radius
centers. The temperature and field dependences of the transverse conductivity o (T, H) are found for these
potentials. It is shown that at low temperatures the transverse conductivity in the case of the screened
Coulomb potential is due to the resonance scattering of the electrons. It is found that even in the Born
approximation the Adams-Holstein formula [J. Phys. Chem. Solids 10, 254 (1959)] for the case of the
screened Coulomb potential of the scatterers contains a logarithmic error. It is shown that for centers of small
radii the temperature and field dependences of the transverse conductivity provide direct information about
the energy spectrum of the impurity in the quantizing magnetic field. For scatterers of zero radius the
temperature and field dependences of the transverse conductivity coincide with the results obtained by
Skobov [Sov. Phys. JETP 11, 941 (1960)]. The admissibility of the use of the Titeica formula [Ann. Phys.
(Leipzig) 5, 129 (1935)] in the case of a non-Born interaction between the electrons and the scatterers is

demonstrated.

PACS numbers: 72.20.My

1. The transverse conductivity is usually computed in
the Born approximation from the interaction of the cur-
rent carriers with the scatterers. In this case the con-
ductivity in a quantizing magnetic field exhibits a char-
acteristic logarithmic divergence at small energies,*
which is due to the high density of electron states at
these energies [g(g) ~£™/2 = as ¢ ~ 0], and which can
be eliminated by introducing some cutoff procedure.
Gurevich and Firsov? have shown that in the case of the
electron—phonon scattering mechanism the diverging
integrals can naturally be truncated at the characteris-
tic phonon energy. Magarill and Savvinykh® have shown
that allowance for the nonlinear dependence of o on the
electric field E also results in the elimination of the
divergence. Skobov®* has noted that in the case of small-
radius scatterers [i.e., scatterers whose potentials are
6 functions with respect to the parameter al™, where
1= (ch eH)'’? is the magnetic length] the divergence is
automatically eliminated by forgoing perturbation theo-

ry.

We derive below a formula for the transverse conduc-
tivity of noninteracting electrons scattered by centers
of finite but otherwise arbitrary radius g in a quantizing
magnetic field under the following assumptions: a) the
mixing of the Landau levels by an individual center
U(Ir]) is slight; b) it «< T, where 7 is the character-
istic relaxation time of the electron momentum; c) the
scatterer concentration » is low: na®*<1. Let us em-
phasize that the potential U is not assumed to be small
compared to the characteristic energy of the longitudin-
al motion of an electron: ¢~7. It is demonstrated that
there is no divergence® in the case of centers with ar-
bitrary, but finite radius. The temperature and field
dependences of the transverse conductivity are investi-
gated for the case of the screened Coulomb potential of
the impurity and the case of shallow (Us 2/ m*a?,
where m * is the effective electron mass) centers of
small radius (a< ).
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It is shown that processes in which the electrons are
scattered by screened Coulomb centers can be divided
into two types: resonant and nonresonant. At tempera-
tures T —0 the dominant contribution to the transverse
conductivity is made by the resonant electron scatter-
ing processes, the contribution of the nonresonance
scattering processes being small. Further, as we shall
show, even in the Born approximation the Adams-Hol-
stein! formula for the case of the screened Coulomb po-
tential of the scatterers contains a logarithmic error.

For scatterers of zero radius the dependence o( T, H)
coincides with Skobov’s®* result, differing only in the
renormalization of the interaction constant. In the case
of centers of small, but nonzero radius the formulas
obtained allow the determination of the energy spectrum
of the neutral impurities in semiconductors from the
dependence of the conductivity on temperature and the
magnetic-field intensity.

Titeica’s® intuitive formula is often used to compute
the transverse conductivity in a quantizing magnetic
field. Adams and Holstein' have demonstrated its
validity in the Born approximation in the carrier-scat-
terer interaction strength. We shall show by direct
calculation that, in the approximation of slight mixing
of the Landau levels by a single scatterer, this formu-
la is valid for arbitrary temperatures, and not only in
the Born approximation in the carrier-scatterer inter-
action strength.

2. Let us consider a system of noninteracting elec-
trons located in a quantizing magnetic field H|| z, in
the field

V()= ZU(lr—RJ)

of randomly disposed centers, and in a weak electric
field E|ly (eEl/hw < 1).

The diagonal element of the transverse-conductivity
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tensor is given by Kubo’s formula®:

-
o=z R S080] i)y @

where # is the total Hamiltonian of the system in the
absence of an electric field, V is the volume of the
semiconductor, 9, is the electron-velocity operator,
and p is the electron density matrix. The sign (...)
denotes averaging over the disposition of the centers.

In the approximation 777 « T <« fiw, the current in the
system is the product of the volume-averaged current
from a single scatterer and the number of scatterers in
the volume. In determining the average current from a
single scatterer, we should replace the Hamiltonian A
by the Hamiltonian I?o for the single-center problem.
Then in the expression obtained from (1) we should take
the trace over the complete system of functions for the
single-center problem. Since the matrix elements of
the electron-velocity operator i}, are nonzero only for
the transitions N~Nz+1 between the Landau bands, we
construct the wave function for the single-center prob-
lem with allowance for the assumption a): we solve the
Schriddinger equation in the N= 0 band, neglecting the
other bands, and then mix in the first (i.e., N=1) band
with the aid of perturbation theory. For an axially
symmetric gauge of the magnetic field, the electron
state is characterized by the numbers’ p,, n, and m
(p, is the momentum component along H; »n and m are

the radial and azimuthal quantum numbers). Carrying
out the indicated calculations, we obtain®
oy =4n’e*nlt Z(m-f-l) Idp,dp (———)B(e, —&,) Idzy,,.“( )
X [Un(8)~Unn () 112(2) | (2)

Un(z) =<Rom(p)U(p; z)Rom(p)>.

the R__ are the radial wave functions of the electron,’
and x:z is the solution to the one-dimensional problem
of the scattering of an electron with momentum p by
the potential U (z). In deriving (2), we used the rela-
tion for the matrix element of the potential U between
the N=0 and N= +1 bands:

Uo"(2) =(m+1)"[Uim (2) —Uimi+1(2) ).

It is convenient to write the formula (2) in terms of
the probability amplitudes for transmission (D ?)
through, and reflection (R,?) from, the one-dimensional
potential U,(z) of an electron with momentum p. After
simple transformations, (2) reduces to

4nenn, .
Oy = —ene I8 2(m+1) Ie“”deRe[l —R.*Ra),—D.*D1L). (3)

T(2am'T)"
Here n, is the electron concentration and ¢ is the ener-
gy of the longitudinal motion of an electron, the spec-
trum of this energy being assumed to be quadratic.

The formula (3) is valid in the case of the Boltzmann
statistics for electrons, to which we shall limit our-
selves below.

3. Let us compute with the aid of (3) the transverse
conductivity due to the scattering of the carriers by
centers whose potential has a long-range Coulomb
character. The subsequent analysis will show that the
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long-range interaction in the case of the purely Cou-
lomb potential results in the appearance of a logarith-
mic divergence in (3) when the summation over m is
performed; therefore, we shall from the very begin-
ning consider the screened Coulomb potential

U(r)——;‘;exp(——:;—). (4)

where » is the static permittivity and g is the screening
distance.

Analytic expressions can be obtained for the trans-
verse conductivity in the limiting cases of large and
small values of the dimensionless parameter A= T(fi/

m*a®)™. Let us begin the analysis with the high-tem-
perature case:
A1 (5)

Besides (5), we shall assume that the cyclotron energy
is high compared to the Bohr energy, which conforms
to the condition for the mixing of the Landau levels to
be slight, and that the screening distance is large com-
pared to the Bohr radius ag (ag= i*n/m*e?):

a>ag>l. (6)

On account of the inequality (6) and the divergence
that arises on performing the summation over i in (3)
for the purely Coulomb potential, it is clear that the
dominant contribution to {(3) is made by the terms with
m> 1, i.e., the coefficients R and D, in (3) change
little in the transition sz = m + 1. Therefore, let us re-
place the summation over » by integration, and expand
the coefficients R, , and D, in powers of the differ-
ence (m + 1) = m up to terms of second order in small-
ness inclusive. After this, (3) assumes the form

e R (RSN

We shall, in computing the coefficients R, and D,
take into account the fact that the dominant contribution
to the transverse conductivity is made by the electron
states with angular momentum components w > 1. For
large m the potential U,(z) obtained from (4) can be
written as

Oy =

__ € exp[— (2mP*+z%)"/a]
Unle) == = Gmpry" (8)

If we make in (7) the change of integration variable

m —~ml?, we can easily see from (7) and (8) that the de-
pendence of the transverse conductivity on the magnet-
ic-field intensity in the case in which (6) is satisfied
has one and the same form in the entire temperature
region:

O~ H"". (9

For the function x,(z) in the dimensionless Coulomb
units of a, and £, = m*e*/n*4%, we have the equation

Xp[— (§*+Em) "/ Emas
y_,,.”(“;)ﬂ‘-{e‘-i-ZexP[ ((ié ,)),.,5 ]}xn.(§)=o,
P (10)
§=c/ag. e.=¢/eg. Em=(2m)"l/ag, Fmex=alup.
On the basis of the quasiclassicality parameter for £,
~ Emar’
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|3§|<,2m‘f;e ]ll,~[2mZ’T]‘/‘<1' (11)

we find in accordance with the inequality (5) that the
quasiclassical approximation is applicable on the entire
z axis. In this case, as can easily be shown, the coef-
ficient R_= 0 (there is no reflection), while the coeffi-
cient D, = exp(iS(¢,;¢)], where

T 2exp— (B4 Em®) "/ Emas)
my &)= +
st = [{[“Fmrra
Replacing the differentiation with respect to, and in-
tegration over, m in (7) respectively by differentiation
and integration with respect to £,, we have in the ap-
proximation (11) the following formula:

e ]"le'fe}dg. (12)

2aenn 1}

(2un*)%Ta

i1

¢B S BT de S Endim (d.\fs’": P)):. (13)
Let us consider particular cases of (13). At temper-

atures low compared to the Bohr energy (i.e., for

T<«< gz}, the inequality £<< 1 can be assumed to be ful-

filled in the entire effective integration domain. Then

S(¢,;0)~¢l/? and

a,~alll’T . (14)
In the opposite limiting case of high temperatures
(i.e., for T>>g,), the phase S(¢,;€), (12), has the fol-
lowing form:
expl — (£ +§n") "/ Emac )

(15)

1 +oo
SCoie)=—-fds

If 2082+ & ?)M2<¢, i.e., if the point (£, ;¢) in the plane
of the variables (£, ;¢) is located to the right of the hy-
perbola £ = 2/£_ (see Fig. 1), then

SGuie) = 2K (22 (16)

]
BUTE

here K, is a MacDonald function. To estimate the

transverse conductivity, let us replace the phase S in
(13) by (16) and the MacDonald function by its asymp-
totic value,® i.e., let us replace the phase S in (13) by

Then the integration in (13) yields

~

et € ds (En; €)\3
~ '] A reg/T t em
O~ H3T §e B de§§,,,dm(———-——d§m )
"m:u Emax 4 e E
= S de S E o BE e == JI72T " 1y S8}y Smax
egm’ min §m:u
Emin Emin
T a
— HAT~Y: 1n? e — — 20) s o
H™3T~":In TRTR Uw(a 0)~» o, (17)
emin=2/Emer, Emax=T/€B, Emin=2en/T.
£ \"
Enae™ '.1:3 \ 2| FIG. 1. Integration domain

! for the Born approxima-
tion.

o e Cnas ¥
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In deriving the last formula, we performed the integra-
tion over the region indicated in Fig. 1.

The formula obtained for the transverse conductivity
by Adams and Holstein! in the Born approximation in the
interaction with the Coulomb centers at T>> g has [with
the same coefficient of proportionality that occurs in
our formula (17)] the form

wy Emin  E vy Bmin @
a,,~H-2T—'~1nT‘1n-M—’H~11—=T—'= In T‘ I,
where E = n*/m*a® and ¢/, is some minimum energy

at which the logarithmically diverging integral is trun-
cated. In Adams and Holstein’s formula the minimum
energy €., is not determined, and the £ and ¢ integra-
tions are performed independently, which, as shown
above [see (17)], is inadmissible and leads to an incor-

rect choice of &

min®

Let us now consider the opposite—to (5)—limiting
case of low temperatures:

A<t, (18)

As we shall show below, when this inequality is ful-
filled, the transverse conductivity is essentially due to
the resonance scattering of the slow particle by a deep
potential. It is convenient to choose the dimensionless
variables slightly differently:

e.=e[N*/m'a*] .

i=:/a,

The quasiclassicality parameter K increases from
K~(ag/a)''?«< 1 at | £|< ag/a through a value of the or-
der of unity at | £| ~1n(a/ag) to K~¢t'?>>1 at
lni<§<lnf—+g—-ln—1—-.
ag dg ] Ee
and then decreases back to K<« 1 (see Fig. 2). In other
words, the motion of the particle has a quasiclassical
character in the regions I, III, and V, and is not quasi-
classical in the regions II and IV (see Fig. 2).

The electron energy in the regions II and IV can be
neglected in the Schriddinger equation. Further, the
phase accumulated by the wave function in these re-
gions is small compared to unity. As for the depend-
ences of the amplitudes of the coefficients of transmis-

i

vx) | di. 1
a, ol a a 2+ L1l
""“E"Z ane in p I'"Tz_g ! 2572 "z,
1
| 4
I I { mw r r
a
ag

FIG. 2. The potential and the quasiclassicality parameter: I)
and V) regions of free motion; II) region of quasiclassical
motion; II) and IV) reflection regions.
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sion through, and reflection from, a deep potential of
the type existing in the regions II and IV, they are in-
sensitive to the form of the potential in these regions;
thus, for example, regardless of the dependence on the
specific shape of the potential, the amplitude D, of the
transmission coefficient is proportional to the square
root of the electron energy.!'® Taking the foregoing into
account, and joining the solutions in the regions I-V,
we have for the amplitudes of the transmission and re-
flection coefficients the expressions

_ 4elt exp (iSm) 1 (ee: (2iS.) ]
(g,+§...)""-‘[1+e¢"’/(8-+ﬂn)"']'[ —g*(ee; Pm) 0xp(2iS.) ],

Re=[exp(2iSn) —1] gn(ec; Bm) [1—g(e; Bm)exp(2iS.)]-".  (19)

Here S is the phase accumulated by an electron be-
tween the nonquasiclassicality region:

-
Sa(m b= [ (UGB ]"dE UG 300 =pm

-t~
2exp[—(E+Ea")"] @ ._ 2ml
UEit)=— g — B =—pm,
(E ) (§z+§mz) ' ag a?

, , 20)
Emlec; Bo) = (Bmte.) e 1/[ (Bnte.) +er . {

The constant 8, in (19) has been chosen so as to obtain
the correct value for the magnitude of the area of the
energy barrier.

We can, allowing for the rapid decrease of the one-
dimensional potential U _(¢) with increasing £, write the
scattering phase roughly in the form

S (Be"; Em) ESm(0; Em)

(2 eelaE ey ]
(@) JeT T, @
Recognizing that the inequality €, < g is also fulfilled,
we obtain the following approximate expressions for the
amplitudes of the transmission and reflection coeffi-
cients:
Ame expliS.(Em) ]
Do (im; €)="— ~

s €)= I P T2i8a () T —Ame. )
(1—2ne.™) [exp (2iSm(En)) —1]
1 —exp[2iS.(5.) ) (1—4me. )

(22)
RM(‘ém; €)=

The resonant character of the dependence of the trans-
mission and reflection coefficients on the phase S (¢,)
can clearly be seen from these formulas. The effective
depth and width of the one-dimensional potential U,(z2)
depend on the value of the angular momentum component
m; therefore, the scattering of an electron with given
energy will, depending on m, have a resonant or a non-
resonant character. Let us estimate the contribution
made to the transverse conductivity by those terms
with different » which respectively describe the reso-
nant and nonresonant scatterings. Resonance sets in

at 25 (£," = 2mn. Hence we have for the number of
resonant terms in the sum over m the expression

) Taiee (e

For the maximum values of dR_/d¢_ and dD_/d§, _ in
the case of resonant scattering we obtain from (15)

iy s~ ()" (24)

dEm res dE,m |tes " €.” ap

while for the nonresonant scattering we have
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dR.
.

- (1) (25)

nonres \dB

To find the width of the resonance peak (23), let us
consider the denominators in the formulas (22) near the
resonance point £ ". Expanding S, (£,) in powers of the
difference A¢ "= ¢ - £ ", we have

m?

Sn(km) =bne. —2iSn’ (En") AEn",

from which we obtain for the peak width the expression
. - 2."" N " 2 A
(AE-. )res S__....(g...") €. ( a ) . (26)
From the formulas (24) and (26) we find that the con-
tribution of the resonant scattering to the integral over
m in (7), which determines the transverse conductivity,
is a quantity of the order of

1,,‘=A§..."N..'.“ ( dR.. )’m a |

&) w0y 20
At the same time, the nonresonant part of the integral
(7) is a quantity of the order of

I nonres™= (dR./dEw) l:onus "'a/ag- (28)

Comparing (27) and (28), we find that the contribution
to the transverse conductivity of the nonresonant scat-
tering is small compared to the contribution of the
states arising from the resonance scattering in the ra-
tio

I'nonres /lres~¢:h <{. (29)

In deriving the last estimates (27)-(29), as well as
the formula (7) from (2), we expanded the amplitudes of
the transmission and reflection coefficients in powers
of the small quantity ™, which presupposed the small-
ness of the derivatives:

dR,/dm<{, dD./dm<1. (30)

It is not difficult to show that for the case under con-
sideration by us the inequalities (30) are equivalent to
the inequality

e (ag/a)"<1. (31)

Furthermore, in computing the resonance component of
the transverse conductivity, we assumed that each
resonance peak contains a large number of terms with
different »:. This is valid when the following condition
is fulfilled:

(a/l)%el >1. (32)

Taking account of the smallness of the contribution to
the transverse conductivity of the terms describing the
nonresonant scattering, and retaining in (7) only the
resonance terms, we obtain o, < H?T72,

4, Let us now compute with the aid of the formula (3)
the transverse conductivity due to the scattering of the
carriers by centers of small radius, i.e., with radius
a<l. In the case in which the potential of an individual
center is a delta function about a/™, and is not very
deep (i.e., Us #?/m*a®, setting U,,, =0, and sub-
stituting a plane wave for x,, we arrive at the formula

ay.,«azfi'li(—ap(e)) 1

Je de | 1+ ?hou/e’
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which differs from the formula obtained by Skobov* only
in the value of the dimensionless interaction constant
a. In the approximation of slight mixing of the Landau
levels a=£,(0)/1 (Ref. 11), whereas for the exact solu-
tion to the scattering problem in a magnetic field with
summation over all the upper Landau bands a = f/1
(Ref. 12). Here f,(0) and f are respectively the Born
and the exact amplitudes of the zero-angle scattering
of an electron with zero energy by a single scatterer.

Let us again note the physical meaning of the last
formula. Standing under the integral sign is the pro-
duct of the following quantities: the densities, g™/2
and £7V/2, of the initial and final electron states, the
coefficient (1 + %uzﬁwh/g)" of penetration of an electron
through the one-dimensional potential, and the distri-
bution function density (-8p/d¢).

If we do not assume the potential of an individual im-
purity to be a delta function with respect to the parame-
ter al™, then, finding the corresponding wave functions
of the one-dimensional problem with the aid of the pro-
cedure employed in Ref. 11, and substituting them into
(2), we arrive at the following formula for the trans-
verse conductivity:

aenhil ¢ Lfde( ap 1
0n =T Y (mt1) (mane)? [ (-2

ve/ (1+a, hw,/2¢)

m=o 3

1

X e, hani2e)’ (33)

A = llf (—al—) . for I»a; a,=a.

The formula (33) reflects, in particular, the follow-
ing general circumstance: for a potential of arbitrary,
but finite radius as/, it follows from the matching
conditions that, in the general case of low energies
¢ =0, the wave function x,, is proportional to the square
root of the longitudinal electron energy (i.e., x,x¢'?)
in that range of action of the potential U,(z) which con-
tributes to the transverse conductivity (2). This leads,
for a potential of finite radius, to the elimination of the
divergence found in Ref. 1. In its turn, this circum-
stance indicates that all the temperature and magnetic-
field dependences predicted by the Born-approximation
theory' for the transverse conductivity will be different
in the low-temperature region. The latter circum-
stance is, apparently, of considerable experimental in-
terest, in view of the possibility of studying the energy
spectrum of impurities in a quantizing magnetic field
by investigating the dependence of 0 on H and T. Let us
demonstrate this in the particular case of the formula
(33) for the transverse conductivity for shallow im-
purities, assuming that the potential of each individual
center also has a sufficiently small radius a <!. In this
case @ >« _,, and we can limit ourselves in (33) to
the first (i.e., »» = 0) term, it being, however, neces-
sary to retain both factors with ¢, and «, in the denom-
inator of the integrand in the formula. Assuming, as
before, that the distribution function of the electrons is
a Boltzmann distribution, we obtain different # and T
dependences for ¢ in the various temperature regions:

. T a
0, T ’-lnﬁ;, T»—%—hﬁ)u

(see Ref. 1),
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2 2
0 H-T-", “2—'- Rou>T> “;_‘ how

(see Ref. 2),
2
q“aH-QT-I-‘ T <a_2; hwa.

It is shown in Ref. 12 that the energies - 3a %fw, are
in fact the bound-state energies of an electron with a
given m in the field of an isolated attracting shallow
center. Thus, the temperature and field dependences
of the transverse conductivity provide direct informa-
tion about the energy spectrum of the attracting center
in a quantizing magnetic field.

Let us again note that, in contrast to Skobov’s* for-
mula, the integrand in (33) contains the product of the
coefficients of penetration of an electron through the
one-dimensional barriers U, ,(2z) and U, (2).

5. Let us consider the question of the admissibility
of the use of Titeica’s® formula for the computation of
the transverse conductivity. Adams and Holstein have
proved the correctness of Ref. 5 in the Born approxi-
mation in the interaction of an electron with the scat-
terers. According to Titeica® (see also Ref. 13), the
transverse conductivity in the ultraquantum limit

- 4=
o,,,cxj de _f dy.dy,’ (— %) (Yo—Yo')* W yoeras (34)
° -

where y, and yj are the Landau numbers characterizing
the position of the center of the electron orbit? and

Wvo‘ vo is the probability for transition of an electron
from y, to vy} during a collision with a scatterer. In the
Born approximation this probability is computed with

the Landau functions of the zeroth band.!

For a scattering potential of arbitrary shape it turns
out to be possible to carry out the integration over the
Landau numbers vy, and y/ in (34) in the Born approxi-
mation. The expression for o, thus obtained for a
spherically symmetric potential U(») can be represent-
ed in the form of a series in m, (2), if the functions ¥,
and x, , in our formula (2) are replaced by plane waves,
which corresponds to the Born approximation,! which is
valid when the following inequalities are satisfied:

(35a)
(35b)

Our formula (2) requires the satisfaction of only the in-
equality (35a). If (35a) is valid (but the relation between
U and T is arbitrary), then the electron transition
probability W’o‘ vo in (34) can be expressed in terms of
the functions x,, of the one-dimensional problem and the
Landau functions.’? The integration over the numbers
v, and v} in (34) reduces the Titeica formula (34) to the

following expression:

U (2) €hou,
U, (z)<T.

« 4o F) o
o=izent: Y (m+1) [ dpdp (— 'a—:) 8(es, —¢5) | [ dzlm ) Un(
t 4
m=0 —o0 -0
—ipz/h 2

_xm,;: (2) Umsa(2)]
The formulas (2) and (36) are identical, a fact which

can easily be verified by, for example, going over to
the scattering operators,'® and then expressing (36) in
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terms of the coefficients R, and D,,.

6. The situation with a quantizing magnetic field and
slight mixing of the Landau levels by the scatterers is
realized in semiconductors owing to the small effective
mass of the carriers and the large permittivity values.
For the typical III-V semiconductor InSb the corre-
sponding parameters in the case of shallow impurities
have the following values: agg= 10" cm, U= 107 eV
=¢g, m*=0.013m, and n=10. For H=6x 10* G, we
have U/kw,=0.03, /= 10"®cm, and a,/l=10. For shal-
low impurities in Ge and a magnetic field of the same
intensity, oriented along the principal axis of one of the
energy ellipsoids, a,= 0.5% 10 cm, a,/1= 0.5, and U/
hwy=1, i.e., the situation is significantly worse.

Let us now discuss the case in which the transverse
conductivity is due to the scattering of the electrons by
ionized impurities [see the formulas (5)-(32)]. Nor-
mally, the transverse conductivity is measured by
measuring the o{ H) dependence at a fixed sample tem-
perature.'’* As we have shown [see (9)], when the in-
equalities a> gz >> [ are fulfilled, the dependence is the
same at all temperatures: o(H) ~H 2, but the tempera-
ture dependence of o takes different forms. The char-
acter of the temperature dependence o T) is quite sen-
sitive to the value of the parameter A= T(/?/m *a® ™.
For a>>1 the conductivity is given by the formula (14)
or (17), according as the parameter T/g, is greater or
smaller than unity. For A<« 1 the transverse conduc-
tivity o, is given by the formula given in Sec. 3. The
parameter A is determined by the value of the screen-
ing distance g for an individual impurity.

If the screening is due to the thermal electrons
thrown into the conduction band, then the screening dis-
tance can be computed, using the method of Eleonskii
et al.'” The condition for the applicability of the linear-
screening theory has in this case the form!’

T>Un"  n=nag'<i. (37)

But using the expression for a (Ref. 17), we can write
the condition a> a, as

T>8aUn, (38)
and the condition A« 1 as
T<2(4n)“Un*, (39)

which contradicts (37). Thus, when the impurity is
shielded by thermal electrons, the situation a>1, (5),
is realized, and the transverse conductivity o 7) is de-
scribed by the formulas (14) and (17).

In slightly doped semiconductors with a small degree
of compensation, i.e., with K;<« 1, the screening can
be realized as the result of the electrostatic interaction
between the 0 and 2 complexes.!® In this case the
screening distance at low temperatures is determined
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only by the concentration of the impurities and the de-
gree of compensation'®;

a=058N" K", (40)

which allows us to realize the condition A «<1. But,
experimentally, this case is significantly more com-
plicated, since the theory of linear screening of a
large-scale potential in the case of a small degree of
compensation is valid at very small degrees of com-
pensation,'® i.e., when

K,<1/400.

The authors are very grateful to I.B. Levinson and
V.1. Perel’ for a discussion of the problems considered
in the paper.
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