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The conductivity of electrons in a random potential is investigated. The Green’s functions are written in the
form of integrals over superfields whose components are classical boson and fermion fields. This makes it
possible to carry out the averaging over the random potential from the very beginning, without using the
replica technique. Through the use of the generalized Hubbard-Stratonovich transformation, the problem
reduces to a nonlinear supertensor o model. The supertensors are of rank 8 X 8 and contain both commuting
and anticommuting elements. The magnetic and spin-orbit interactions lower the symmetry.
Renormalizability is proved for the two-dimensional case, for which the Gell-Mann-Low function is
calculated and makes it possible to determine the dependence of the conductivity on the frequency or on the

size of the system.

PACS numbers: 72.10.Bg, 05.50. + q

1. INTRODUCTION

When descfibing the behavior of a particle in a ran-
dom potential field, it is important to take into account
the quantum nature of the phenomenon. A sufficiently
strong degree of disorder in a three-dimensional metal
can lead to localization of all the states.! In one-dimen-
sional and two-dimensional spaces, localization is pos-
sible at arbitrarily weak degree of disorder.?™ These
phenomena are connected with repeated scattering of
the particles by one and the same scattering center.
Localization becomes easier with decreasing dimen-
sionality because of the increase in the probability of
return of the particle to the initial point.

The localization manifests itself most strongly in a
one-dimensional disordered chain.?* Analysis of per-
turbation theory for a chain shows that deviations from
the two- and three-dimensional cases occur even in the
first orders. For example, in the three-dimensional
case, only non-intersecting diagrams are significant.?
In the case of a one-dimensional chain all the diagrams
are of the same order, which leads ultimately to local-
ization.?

The analysis of the situation in the two-dimensional
case and in thick wires is more complicated. Formal-
ly, in these systems, the contribution of individual in-
tersecting diagrams is less than in non-intersecting
ones. The summation of the specially chosen ladder
diagrams, however, leads to the appearance of diffusion
modes that are gapless at zero frequencies, and whose
contribution in the one-dimensional and two-dimensional
cases is divergent.® Large corrections to classical
conductivity theory result from the existence of these
modes and their interaction. To study the localization in
low-dimensional and possibly also three-dimensional
systems it is therefore very important to have a con-
venient description of the interaction of diffusion modes.

Direct calculation on the basis of standard perturba-
tion theory is not convenient, since it is necessary to
integrate in all the diagrams both over the diffusion and
over the electron lines. A reasonable approach is one
that permits integration over the electron lines prior
to integration over the diffusion lines, so that the prob-
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lem reduces to a study of the effective Lagrangian of
the diffusion modes. Quite a number of methods of such
a description have been proposed.”™® All these studies
are based on the use of the replica technique, in which
the initial system is replaced by n thermodynamic sys-
tems, after which the partition function is averaged
over the random potential. To obtain the final result it
is necessary to let n go to zero in the answer. A par-
ticularly fruitful idea was that of Wegner'® concerning
the violation of the symmetry between the replicas.
This idea led subsequently to a rigorous derivation of
the Lagrangians of the interacting modes.'!'!? Schifer
and Wegner!! used the representation of the Green’s
functions with the aid of a continuum integral over Bose
fields, while Efetov, Larkin, and Khmel’nitskii used
the continual integral over Fermi fields.}? As a result,
the symmetry of the collective variable @, that de-
scribes the diffusion turned out to be different. In par-
ticular, the symmetry group corresponding to the vari-
able @, obtained in Ref. 11 is noncompact, while that
corresponding to @, of Ref. 12 is compact. It appears
that this difference should vanish in the limit as n = 0.

Despite the progress made, the methods based on the
replica technique are not fully satisfactory. The main
reason is that no procedure has yet been developed for
an analytic continuation from integer n to n=0. There
was therefore no assurance that the results are cor-
rect (the only exception seems to be perturbation theo-
ry). Within the framework of the proposed methods*!'?
it is necessary to work with matrices @ ,, have dimen-
sionalities 2n X 2n, which is a rather difficult problem.
In addition, the approximations made, the applicability
conditions of which are satisfied at finite n, are fre-
quently not valid on going to n—=0.

" We propose below a method of describing diffusion
modes, based on writing down the Green’s functions
with the aid of a continual integral both over Fermi and
over Bose fields. This procedure, with the aid of
mixed integration over super-fields that contain Fermi
and Bose variables as components, make it possible to
average-over the random potential without using the
method of replicas. The derivation of the Lagrangian
of the diffusion modes is schematically similar to that
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represented in Refs. 11 and 12. Just as earlier, a col-
lective variable appears and serves as the analog of the
order parameter in the theory of phase transitions.
Now, however, this variable @ has dimensions 8 x 8,
and half the elements are Bose fields while the other
half are Fermi fields. The obtained Lagrangian con-
taining this variable belongs to the class of generalized
o models and has a high symmetry SPU(8)/SPU(4)

x SPU(4), where SPU(N) is the group of superunitary
transformations. In the method developed, the exist-
ence of gapless diffusion modes is the consequence of
violation of the supersymmetry. An effective Lagrangi-
an is obtained and takes into account the external mag-
netic field, scattering by magnetic impurities, and
spin-orbit interaction. The conductivity in two-dimen-
sional space is calculated by way of example.

2. CHOICE OF MODEL AND AVERAGING OVER THE
IMPURITIES

The behavior of the electron in a random potential
can be described by a correlation density function

p(l‘,();
pr,)p (e, t'))=<(p)i= Idmc'“ =t J.

Ne—Nepo .
—(—‘;—-— l\ ((l)) dC, (1)

where the angle brackets denote averaging over the
positions of the impurities. The quantity K(w) in (1) is
the averaged two-particle Green’s function, which is
expressed in the usual manner in terms of the retarded
GR® and advanced G* single-particle Green’s functions:

K(0)=(Gl(x, ') G (2, 1)),

A @ (2)ga(z)
¢ b, J)=Z e—E,xid

(2)

In this equation, x = r,a, where r is the coordinate
and a is the spin variable; E, and ¢, are the eigenval-
ues and eigenfunctions of the electron in the impurity
field:

Hov=Eyq..  H=H,+H,, <=0, (3)

The problem of obtaining the behavior of an electron
in a random potential consists in solving Eq. (3), ob-
taining the single-particle Green’s functions from the
wave functions and the energies, and then averaging the
product of two Green’s functions (2). Since it is impos-
sible to obtain the exact solution of Eq. (3), approxi-
mate methods are frequently used, in which the inter-
action with the impurities is accounted for by perturba-
tion theory.>*® Averaging over the impurities is carried
out in each term of the series. With this approach, the
diffusion appears after the summation of ladder dia-
grams.

The methods that turn out to be convenient are those
which permit averaging over the impurities from the
very beginning, and reduce the problem to an investi-
gation of field-theoretical models. Such methods, how-
ever, are based on the use of the method of replicas.!?
If distances that exceed the mean free path play a ma-
jor role, the problem then reduces to the Lagrangian of
the interacting diffusion modes. We propose below a
method that avoids the use of the method of replicas
but yields nevertheless the effective Lagrangian of the
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interacting modes. The method is based on writing
down the Green’s functions with the aid of integration
over superfields whose components are classical Bose
and Fermi fields.

For the calculations that follow it is necessary to
present the basic formulas that define the classical
Fermi fields and the integrals over these fields. By in-
tegrals over Bose fields will be meant ordinary inte-
grals. The classical fermion fields are described by
two sets x, and x}" of Grassmann anticommuting vari-
ables!*® satisfying the relations

(o W=t 27} ={0", 17} =0. (4)

By virtue of the property (4), the square of any vari-
able is zero

i=y =0, (5)

It is convenient to define the operation of complex
conjugation for the Grassmann variables. This opera-
tion sets in correspondence each variable y; to a vari-
able x¥. By definition, we assume that the inverse op-
eration is described by the formulas

) ==y . (6)

The definition (6) differs in sign from the concept of
complex conjugation for ordinary numbers. For anti-
communting quantities, however, it turns out to be rea-
sonable. For example, the quantity x§x; is not changed
by the action of such a conjugation operation:

%) == =2 ()]

Integration with respect to Grassmann variables was
first defined by Berezin and is described by the formu-
las

J‘dkg IdXi"‘=O, jl( dXK-j X('dX(.‘“i. (8)

Integrals of several variables are understood as re-
peated integrals. It is assumed that the differentials
dy; also satisfy the anticommutativity conditions.

From the definition (8) followed directly an important
formula for the integration of the Gaussian exponential'?

I exp(—y'Ax)d"y'd"x=det A (9)

and a formula for the integration of an exponential with
linear terms

.‘- exp(—y " Ax—x 2%, —%.x) d"x'd"x=det A exp(x.4A~'x,), (10)
where
=Yoo ) =000 X"y

d"xaH dysy Ay

A is an n X n matrix.

de‘ f

We emphasize that the integral of a Gaussian expo-
nential over fermion fields (9), (10) differs from the in-
tegral of the same exponential over boson fields. In the
case of integration over boson fields the right-hand
sides of (9) and (10) contain (det A)™. This difference
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allows us to write down the denominator in the expres-
sion for the Green’s function (2) in the form

(e—Eyib)—'=i _[xm'exp (—i Z‘ (e—Eyxi6)
1}
X (o1 +S,8s) ) de.'de.Hds: ds,
1} 13 1}
=i [sse exp( =i ) (e~Etid) (0 +5050)
1 3

S 1E5 [Ten ] 2s: as. (11)
A 13 1 3

Using the representation (11), we express the Green’s
function G#+4 (2) in the form of a continual integral over
boson and fermion fields:

GG ) =i [ (exp( =i f L ) (e- Hxid)x(v)

+8°(y) (e—H=i8) S (y) ]dy ) Dy'DyDSDS";

(12)
y(z)= Zz.qz. (). y(r)= Z et (z).
A 13

The advantage of expression (12) for the Green’s
function lies in the fact that it has no weighting denom-
inator. This permits immediate averaging over the
random potential. In principle, the exponential in (12)
can be preceded by boson rather than fermion fields.
The possibility of writing down a single-particle
Green’s function with the aid of an integral over fermion
and boson fields was noted in Ref. 17. Another exam-
ple of a disordered system that can be investigated with
the aid of boson-fermion fields, is presented in Ref. 18.

Using expressions (2) and (12), we reduce the two-
particle Green’s function K(w) to the form

K(@)={ [ 2@ @ @)y @ ety bybSDS Y, (13)

L-:jdyi [ (-t i+ =) )

+5*(y) ((e—ll)(—l)'*'+—.':f——ia)s"(y>]. (14)

For a more compact expression, it is convenient to
introduce in place of the sets of fermion and boson
fields the superfield i with the following components

= (%), oL
¢ (y“)' w= )?(x‘)'
S —
v=—(.). T=Ccwr, (15)
where a=1 or 2 and T is the transposition operation.

In (15), C is the “charge conjugation” matrix:

b Ao [ € 0
=2 (% ) (16)
where A is a diagonal matrix with components A!!
= -A%=1. The matrices ¢, and c, are of the form

0 -1 01
“"(1 0 ): °’=(1 o)‘
Here and elsewhere, the superior indices pertain to

retarded or advanced parts. The conjugate field 7 is
connected with the complex-conjugate y* by the simple

(16a)
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relation
$=(Ap")". (17

In terms of the superfield, Eq. (14) can be rewritten
as

L=i [ F(2) (~BoHU () +'/10A) $(2)dz, (18)

where U(7) is the impurity potential, and the operator
H, is given by

(18a)

In the calculation of the averages over the impurity
locations, the potential U(») is assumed to be a random
quantity with a Gaussian 6-correlated distribution

U(r)>=0, <L(r) L'(r')>=-ib(r-r’). (19)
JNT

where v is the state density and 7 is the free-path time.
This distribution describes weakly interacting impuri-
ties of small size. In the general case one can verify
that the results that follow remain valid upon a suitable
redefinition of the constants.

In the case of a Gaussian distribution of a random po-
tential, the averaging of (13) with the Lagrangian L (18)
becomes very simple. After the averaging, expression
(13) retains its form, while the Lagrangian L becomes

p While the Lagr:
L= [ [~ e+ L g e (20

The Lagrangian (20) is similar to the Lagrangians
used in field theory. In models described by such La-
grangians there can appear mean values @ ~({{) and
associated Goldstone modes. These mean values will
be separated in the next section in a rather customary
manner. Certain complications due to the need of tak-
ing into account both boson and fermion components are
of no fundamental significance.

3. REDUCTION TO A NONLINEAR GENERALIZED
o MODEL

Further calculations with the Lagrangian (20) will be
carried out under the assumption that the distances of
importance are much larger than the mean free path.
This is the situation in thick wires and two-dimensional
systems, if the potential of the interaction with the im-
purities is small enough. In this case there exist mean
values Q~(¢Qr) that vary slowly in space. To separate
these slowly varying mean values we rewrite the inter-
action in (20) in the form

Ll-u =

2avt

Z (Fo2) (To.th0) = Z [(Fotm) (F-paat-pi-e)

PR =p40, P02

+(Fr.¥0:) (P-pr—a¥-pira) T (Epf-pisa) ($pb-p:-a) 1. (21)

The regions with small g are specially separated in
(21). Using the charge-conjugation operation (15), (16)
and the commutation rules, it can be seen that the first
and second terms in (21) are equal. Just as in Refs. 11
and 12, we use the Hubbard-Stratonovich transforma-
tion.'® The simplest to separate is the last term of (21)
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exp[ = 5o 3 Boted) B0 |

- {jexp [—-;—:—J‘E’(r)dr]DE}—‘

(22)
XIexp[—2—‘1.[E(r)E(r)\r(r)dr—g—:!E’(r)dr]DE.

The integration in (22) is with respect to slowly vary-
ing real functions E(r). Comparing (22) and (20), we
can verify that E(r) leads to only an insigificant change
of energy, since it is a slow real function. Therefore
the last term in (21) leads to no physical phenomena
whatever and will be disregarded.

The remaining terms in (21) can be split into slowly
varying parts only by integrating over the matrix. We
rewrite (21), separating the fermion («) and boson (v)
components of the supervector { (15). Discarding the
last term and using the equality of the first two terms,
we obtain

1
Lin= T\TE [ (p.15,) (77— pp=qli=pisa)

H(Fp Y (Fopy-alop o a) +2(Tpty,) (Fop-ql=psa) ). (23)

The splitting of the first two terms into slow parts in
(23) can be carried out by integrating over the Bose
fields. However, to split the third term in (23), inte-
gration with respect to the Fermi fields is necessary.
Integrating by using Eq. (10) for the Gaussian integral
over Fermi fields, and the corresponding equation for
the integral over the Bose fields, we arrive at the
equations

exp (“‘Lmr) =P|P_.P,,

p=| exp( - %:X_: ( ii,‘A."ut.,_‘i”"i-’;—vSp A% 4, )) DA,
v (24)
= exp( - :—2 ( BBty oi" ! + % Sp Bt BY, )) DB,

abert
pe

P.\=§ exp ( - 172 ( l'l.’.‘:."’v'i,_.ﬁ"-“-'

abet
p.a

TS Uty (1) Sp e z:'.)) Ds.

In (24) the integration is over the 2 x 2 matrices A%,
B and =*. The elements of the matrices A%® and B®
are ordinary numbers, while those of £ are Grass-
mann variables. All these matrices satisfy the condi-
tions that arise when the charge-conjugate and com-
plex-conjugate quantities are separated in the integrals:

At =Abr=p APTe T (25)
B*t=B"=c,B""¢,T, (26)
Sebtp ST T (27)

For the sake of clarity, we write down the matrices
A%, B% and =% that satisfy the conditions (25)-(27) in
explicit form:

Aub _ A‘ub 1124‘!‘ B‘b - B‘ab anh )
—a g B B
(28)
5o DRI X A,0=A “": Aft=— A2,
= _Eabc _E,lb- ) ? B|ab=Ba‘a: Bzflb=B:bn.
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Altogether the matrices A, B, and T contain 16 in-
dependent complex variables, half of them boson and
the other half fermion. The equality of the number of
boson and fermion variables makes it unnecessary to
write in (24) the weighting denominators, since their
product is equal to unity. We note that the integrals in
(24) always converge. The matrix A has a symmetry
similar to that used to analyze the problem by the
method of replicas with the aid of fermions,'? and the
matrix B analogously with the aid of bosons.*

The rather cumbersome expression (24) can be
written in a more compact form by introducing the con-
cept of the supermatrix. Such a supermatrix @ con-
sists of blocks (superelements)

. q."” g

= (4"° q:"’)' (29)
The quantities ¢{® are also matrices, with ¢?° and ¢*°
consisting of bosons, and ¢3° and ¢5° fermions. It is
easy to verify that the product of any number of super-
matrices is also a supermatrix of the form (29). Since
half of the elements are anticommutative, the rules for
operating with supermatrices differ somewhat from
those for ordinary matrices. We define the supertrans-
position operation

(qllva)f _(q‘ba)r (30)

S§T)ab__ .
(Q ) ((q:ba)r' (qzbu)r)

Using the definition (30) and the rules for commuta-
tion of the elements of the supermatrix, we can verify
that the following equality holds

(Q.0:)°T=0:""Q,", (31)

where @, and @, are arbitrary supermatrices of the
form (29). The definition (30) allows us to introduce the
operations of the charge and Hermitian superconjuga-
tions

0=CQ*CT, (32)
where C is defined by Eq. (16)
st=(()sr) . (33)

From (31)-(33) it follows immediately that

Q—‘—Q_:___a:ah (34)
(QWQ:) == Q5. (35)

The charge-conjugation operation plays an important
role in the description of the properties of quadratic
forms. If §, and ¢, are arbitrary supervectors of the
form (15), then the following equality holds

¢10¢:=¢:G¢1- (36)
It is useful to introduce the concept of the superspur?®
sspQ =Y (a-au). (37)

The superspur defined by (37) is invariant to cyclic
permutations:

S8p Q,Q:0:=55p 0:Q,0Q: (38)
and is not changed by supertransposition

SSp Q=5SpQsT. (39)
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In supermatrix notation, expressions (24) take the
form

exp(—Lin) = | [ exp ( - :—j ( 0+ i;—v— SSp o’)) dr] DO. (40)

The supermatrix @ in (40) satisfies the self-adjoint
conditions

Q=0 (41)

and consists of four superelements made up of the ma-
trices A, B, and T (24)

o= (A2, gumi(An 2,

T+ B T+ jgu (42)
2 gy 12 2
Q" = ( ign* Ii};u) ' Q“=_i ( ;:n: ;ll{-) .

Substitution of (21) and (40) in (20) yields an expres-
sion for the Lagrangian L in (13). Using the slow vari-
ation of the supermatrix @ in space, we can integrate
(13) over the boson and fermion fields. We note that all
integrals over the superfield ¥ converge. Gaussian in-
tegration with respect to § is carried out with the aid of
the equation

J exp(—FPo) F dg=exp (- SSp10 P), (43)

where P =P is a self-adjoint supermatrix.

Equation (43) can be proved by successive integration
over the boson and fermion fields. Using (13), (15),
(20), (40), and (43), we obtain

K(o)= (’;:)'._[ssp(k(i—.\)(1—:,)()(-)(1+A)
X (1=%) kQ (r’') ) exp(—/[Q]) DQ, (44)

where k is a superelement of the form (29) with com-
ponents

k= (o —1) (45)
The matrix 7, is also of the form
10
w3 %) o

but is now in the space of the matrices A, B, and .
The functional of the free energy in (44) is

1
FIQ]= jdr[—Tsspln(ill.-—""}-—-g)+ SSp Q’] (47)
We note that the integral over @ in (44) with the func-
tional F{Q] (47) converges as before.

In two- and three-dimensional sufficiently pure sam-
ples, such that the inequality ¢7>> 1 is satisfied, and in
sufficiently thick wires with cross section much larger
than atomic, the minima of the energy (47) are signifi-
cant. Varying (47) with respect to @ and using the
property (37), we obtain

1
0=— jG(p)dp- (48)

o= e 21 2)"

At w#0, the solutlon of (49) is of the form @ = A.
This extremum point does not belong to the set of su-

(49)
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permatrices of the type (42) with conditions (25), (26),
and (27), since the matrices B® in (42) are Hermitian
with real eigenvalues. A similar disparity arises when
the method of replicas is used in the boson representa-
tion.!! To reach the saddle point it is necessary to shift
the contour of the integration over the elements of the
matrices B% into the complex plane. This procedure is
described in detail in Ref. 11. At w= 0 the solution of
(48), (49) turns out to be strongly degenerate. Just as
in Ref. 11, we obtain @' and Q% at the saddle points
from the specified @'2. The solution, which goes over
continuously at w#0 into @ = A, takes the form
12

Q=WHA(-W)" W= (02. % ) (50)
where @'? and @* are defined in (42). The supermatrix
W has eight independent complex variables.

At the saddle point, besides the condition (41), there
is satisfied the equality

0=KQ*K; K=(éf) o (51)

where & is the superelement (45). Equation (51) can be
verified by comparison with Eqgs. (25)-(27), (42), and
(50). For the supermatrix @ (50) there exists another
convenient representation:

Q=UAL. (52)

where U is a superunitary matrix satisfying the condi-
tions

CU=1. U'=KUS'K. (53)

Thus, at the saddle point the extremal solution (52) is
connected with the transformation group U(8)- U(4)
x U(4). This degeneracy is due to the supersymmetry
of the initial Hamiltonian (20). The supermatrix @ (52)
plays the role of the order parameter and contains
Grassmann variables. Calculating the free energy (47)
at the minimum, we verify that it is equal to zero. An-
ticommutative variables do not enter in the physical
quantities. A similar situation obtains in supercon-
ductivity, where the order parameter is a complex
quantity, but all the thermodynamic quantities are real.

At small deviations 6Q from the equilibrium value,
the free energy is quadratic in these deviations:

1 %k
F=-4—_‘2-SSpj-—(W{

+

ap
)t — G,
iony

80uGorx 5Q-x +7v T80k 5Q-1] }

)' SSp AQ dr. (54)

A distinction must be made between longitudinal fluc-
tuations of @, which change the eigenvalues, and trans-
verse ones, in which only the matrix U in (52) fluctu-
ates. For transverse fluctuations we have

Q8Q-+600=1.

The longitudinal fluctuations alter greatly the free en-
ergy, and can therefore be neglected.

Homogeneous transverse fluctuations do not change
the free energy at all in the low-frequency limit. The
functional F of the free energy, which describes these
fluctuations, contains at low frequencies only gradients
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of @ and terms linear in the frequency

F=%’-ISSp[D(V0)'—2imAQ]dr, (595)

where D= v 27/2 is the diffusion coefficient.

The functional (55) describes Goldstone modes whose
existence is the consequence of the spontaneous break-
ing of the supersymmetry and of the existence of the or-
der parameter Q. A system with free energy (55) be-
longs to the class of nonlinear ¢ models. We note the
formal analogy between expression (55) and the corre-
sponding expressions obtained in investigations by the
method of replicas.!**? Of course, the matrices @
have everywhere different structures.

To calculate the propagator of the free diffusion mode
it suffices to use the first terms of the expansion of @
in terms of W in (50). Substituting this expansion in
(55) we obtain

nz%j[n SSp(VW)*+ie SSp W*]dr. (56)

From (56) and (54) we get
K. (0)=2av/(Dk*+iw). (57)

The propagator K (w) corresponds to the usual diffu-
sion equation.

4. MAGNETIC AND SPIN-ORBIT INTERACTIONS

We have considered so far the scattering of electrons
by ordinary impurities. The system was in this case
invariant to time reversal. When account is taken of
the spin degrees of freedom, invariance to rotations in
spin space is added. The high degree of symmetry of
the free energy (55) with respect to the transformations
of U (53) is due to the invariance of the system to time
reversal and to spin rotations. An external magnetic
field and magnetic impurities destroy the symmetry
with respect to time reversal. The symmetry with re-
spect to rotations in spin space is violated by the inter-
action with the magnetic impurities and by the spin-
orbit interactions. When all these perturbations are
accounted for, the Hamiltonian takes the form

ll=e(i)~—ie—At1) ~eTa[VV..,pl. (58)
c
l=UU.a+a[V U ..p]. : (59)

In (58) and (59) A is the vector potential, V is the
spin-orbit interaction in the absence of impurities, U
is the interaction with the magnetic impurities, and U,
is the impurity spin-orbit interaction. The matrix 7,
defined by (46) arises in the transformation of the x,
x*, S, S* Lagrangian into the Lagrangian expressed in
terms of ¥ and .

If the entire interaction is weaker than scattering by
ordinary impurities, the influence of the latter can be
calculated independently. All the calculations are sim-
ilar to those in Ref. 12. Repeating the derivation of the
functional (55) in the presence of a magnetic field, we
obtain

F—-%V-ISSp[D(VO+E?-[O,T;] )Z—ZimAQ]dr. (60)
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The free energy (60) contains, besides the gradient
term, the commutator [@,7,]. Because of this term,
some of the diffusion modes are no longer gapless. By
substituting (42) in (60) we can verify that the only re-
maining Goldstone excitations are A,, B,, and Z, in
(28). The 4,, B,, and Z, fluctuations are suppressed
within the limit of long waves by the magnetic fields.
If the Hamiltonian does not depend on the spins, all the
results are separately applicable for particles with
spin up and with spin down. To study the spin interac-
tions it is necessary to double the number of variables.
The anticommuting (#° and the commuting () compo-
nents of the supervector y are of the form

. 1 a . 1 Sq-
¢ ‘sz'(wf,_--) v =Fz(m,s~)' (61)
=7, o= (i((:, igu) v a= ( i(:, —(;'oy)_

It is assumed that the supermatrix C is expressed in
terms of ¢, and ¢, in accord with Eq. (16). All the
equations of the preceding section remain unchanged if
the supermatrix C is taken to mean the expression (61).
In particular, the symmetry of @ is determined as be-
fore by Egs. (41) and (51). After averaging over the
random fields of the magnetic impurities U, the La-
grangian (20) acquires an additional term

1 —_
—— (Joy)*, =08,
bavt, (62)

U (r) U (r')>=- by o(r—r’).
JavTs

Integration over the superfields ¥ leads to an addi-
tional term in the free energy

F,=-§—:JJ.SS()(QG): dr. (63)

In the long-wave limit, an anisotropy of the form (63)
leads to suppression of the excitations 4,, B,, and Z,
in (28). [All the elements in the matrices (28) are now
spin quaternions.] In addition, only unity elements re-
main in the spin quaternions 4,, B,, and £,. Therefore
the action of the magnetic impurities is equivalent to
the action of the magnetic field.

In the case of sufficiently weak spin-orbit interaction
there is added to the Lagrangian (20) a term of the form

Zm— o ([P @LY Vot U Blo(e) )" )

After integration with respect to  we obtain an addi-
tional contribution to the free-energy functional

<R

F.=av E ——S8p(Qa')?,
i)
1a=1 0

Tf1‘,~=nv<<[VU,(,.p]')=+[v Vel (64)

The last equation takes into account the possible
anisotropy of the spin-orbit interaction.

As a result of the term (64), the only Goldstone ex-
citation remaining are those corresponding to unity
elements in the spin quaternions. We then obtain in
place of (28)
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Fob (_z;:;:. ;:':) .

A,, B, and T, in (65) are unity elements in the spin
quaternions.

The results show that the magnetic field, the mag-
netic impurities, and the spin-orbit interactions take
the form of anisotropies with different symmetries in
the free-energy functional, and lower the initial sym-
metry of the energy (55). A similar effect is exerted
by these interactions on the free energy that arises in
the method of replicas.!?

5. RENORMALIZATION GROUP

By way of example of concrete calculations with the
aid of the method described in the preceding section,
we consider the problem of the conductivity of a two-
dimensional disordered metal. We shall use for the
calculations the free-energy functional (55). The asym-
metry of the order parameter @ in (55) depends on the
presence of magnetic and spin-orbit interactions and
is determined by the equations of the preceding sec-
tions. We use the renormalization-group method in a
form similar to that proposed by Polyakov for the in-
vestigation of the vector 0 model.?® Such a method was
already used in Ref. 12 for the tensor model.

We break up the superunitary supermatrix U(r) in
(_52) into a product of a fast and slow part Uyr) and
U(r), respectively:

U(r)=U,(r)C(r). (66)
We assume that Uy(r) and U(r) satisfy the conditions
(53). Substituting (52) and (66) in (55) we obtain
=2 [ 3L (VQ) 2170, Q1 O+(0.. O -2aCATQ.Jer,
O=VC-C, (67)

d=w/l.

Qo=Uu\U,,
1/t=Dav/8,

The supermatrix & (67) satisfies the equation @
= ~%. We integrate (44), with the free energy defined
by (67), with respect to the fast variable Q,(»). Asa
result of the integration, the energy F in (67) is re-
placed by the energy F that describes the slow fluctua-
tions

Fe—ln [ -7 DQ.. - (68)

To simplify the calculations it is convenient to choose
from the outset the gauge of the supermatrices U and &.
We assume that U in (66) and (67) is close to unity.
Then the only nonzero superelements in the superma-
trix & are &'? and $*', which are interconnected by the
anti-self-adjointness condition. Extremely important
in the calculations is how to separate the fast and
slow variables and cut off the diverging integrals in an
invariant manner. To eliminate the slow changes in @,
with momenta k< A, we add to (67) a term of the form

Freg=— —":— [ 22s8p AQuar. (69)
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The cutoff of the integrals that diverge at large mo-
menta will be carried out with the aid of dimensional
regularization. Using the representation (50), expand-
ing @, in terms of W, and retaining in the functional F
(67) and (69) the number of terms necessary to obtain
the first two orders, we get

FoHF/+F +F.+F,,
1
Fom— jssp[ (VW) A W3]dr,

l 2
Fy = —27'[55p[ (VW) W2+ (VW - W)+ ~_’:— W ]dr,

2 (70)
Fy= —Tjssp(wv W-WOA)dr,

2 ¥ & 1 7
F,-=—t—ISSp[(W0)’+W o+ - Wer
_i(wlo)=+i‘3_;yza+_'_m_w.0]dr'
7 2 )
1 ,
F, =7j SSpl(VP)*~ 2\ dr.

Q in (70) is determined by the expression
Q=CAl.

There are no terms linear in W in (70), since W
varies rapidly. Assuming that A?> @, retaining the
first two orders in {, we reduce (68) to the form

F=F <D0 o=t |, (71)

F; in (71) stands for the part of the functional F,
quadratic in W, and the angle brackets (---), denote
averaging with the functional F, from (70). The quan-
tity F, describes the contribution from the Jacobian.
The Gaussian integrals are calculated in accord with
Wick’s theorem. The following equations, which are
verified by direct calculation, are useful:

t 1 . -
CWPW?, -8_";{:;1\[/\, Pl+—- (1+0?) (SSp P~ASSp AP)
1
+ - (1—a?) 1s(SSp ©,P— A SSp A1, P) }. (72)
(SSp(WP.) -SSp(WPs) 2 = = [P AL [P, Al

In (72), P is an arbitrary supermatrix, while P, and P,
are self-adjoint (P, = P,, P,= P,) supermatrices. The
superelements in all these matrices have the same
structure as the superelements W. The values of the
coefficient a in (72) are -1, 0, and +1 for potential
scattering, magnetic interactions, and spin-orbit in-
teractions, respectively.

Using (72) and calculating the mean values in (71), we
obtain

Fnéj{SSp(VQ)=[1+%t -(;de;F+£(1‘“’) (di_%)
1 dkidhay
Xj (k407 (k2 407) . (20)= ]—216) SSpAQ}dr‘ (73)

The averaging over the angles in the integral that re-
sults from the third term in (71) has already been car-
ried out in Eq. (73), whose nonlogarithmic terms have
been discarded. The quadratic divergences that arise
in the second-order calculation are cancelled by the
contribution of the Jacobian. We note an interesting
feature of the model in question. Only the “tempera-
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ture” ¢ is renormalized in it, and the effective fre-
quency @ remains constant. This property is pre-
served in all orders and is due to the particle-number
conservation law. Equation (74) enables us to write
down the Gell-Mann-Low function B(f):

3(F)=di/dIn (1/2) =el+al*='/,0*(1—a®):  [=t/16a. (74)

Equation (74) shows that there are no terms of order
2 in B(t) in the cases of potential and spin-orbit scat-
tering. The solution of (74) leads to a logarithmic pole
for potential scattering, and to a zero-charge situation
for the spin-orbit interaction. In the magnetic case
there is no term of order f?, but the term of order 3 is
not equal to zero. The results for the magnetic and po-
tential scatterings agree with the conclusions arrived
at by Wegner with the aid of the method of replicas and
by using the results of Ref. 21. The statement made in
Refs. 12 and 22 that there is no #° term in the magnetic
case is incorrect. The error is due to the noninvariant
cutoff used in these papers at large momenta. The
first order for the spin-orbit scattering coincides with
the result obtained in Ref. 12.

The diffusion coefficient D and consequently also the
conductivity are inversely proportional to ¢ (67).
Therefore solution of the Gell-Mann-Low equation (74)
enables us to determine the dependences of these quan-
tities on the frequency and on the size of the system.
We note that calculations for pure potential scattering
were carried out for the spinless particles, while those
for spin-orbit scattering were made for particles with
spin. The transition from spinless particles to parti-
cles with spin is effected by a simple redefinition of D
and ¢.

6. CONCLUSION

It was shown in the preceding sections that the prob-
lem of the electron conductivity in a random potential
is equivalent to the problem of the thermodynamics of
a supertensor field. Despite certain complications due
to the fact that half of the supermatrix elements are
fermions, the principal rules of operation with super-
matrices are similar to the rules for ordinary matric-
es. In contrast to the methods based on the replicas,
the difficulty connected with the assumption concerning
the number of replicas does not arise here. This has
made possible a rigorous corroboration of the renor-
malization-group equation in the two-dimensional case.
Of course, this advantage is not very significant in the
calculation of the perturbation-theory series terms, but
turn out to be very important in the investigation of
more complicated problems. The use of the super-
symmetrical representation of the Green’s functions
has made it possible to express the problem of the con-
duction in few-dimensional systems in terms of fluctua-
tions of the order parameter @. The use of the concept
of such an order parameter can be substantial also in
the investigation of three-dimensional disordered met-
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als. In contrast to phase-transition theory, the sym-
metry group corresponding to @ is not compact. The
known nonanalyticity of the conductivity in the low-fre-
quency region is possibly due to this noncompactness.
The magnetic and spin-orbit interaction manifest them-
selves as special anisotropies of different symmetry.
A change in symmetry leads to a dependence of the con-
ductivity on these interactions. Although the compo-
nents of the order parameter contain Grassmann vari-
ables, the physical quantities should be ordinary num-
bers without even an even number of Grassmann vari-
ables. This is the usual situation in the theory of phase
transitions. In particular, in superconductivity theory
the order parameter is a complex number, while all
the thermodynamic quantities are real.

The author thanks A. I. Larkin and D. I. Khmel’nitskii
for a discussion of the results.
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