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The effect of open electron orbits on the propagation of a modulated acoustic wave in a metal is investigated. 
A bulk sample and a thin metallic layer are considered under conditions of multichannel surface reflection of 
the carriers. The appearance of a system of secondary sound pulses is predicted. The magnitudes of the pulses 
and the delay (advance) time are found as functions of the applied magnetic field. 

PACS numbers: 72.55. + s, 62.65. + k 

1. Magnetoacoustic effects in a metal a t  k-' < < r  << I 
a r e  sensitive to the geometry of its Fermi  surface, 
i.e., their character is determined by the shape of the 
electron trajectories in the magnetic field. If these 
trajectories differ from the usual closed curves, the 
dependence of the sound wave damping on the magnetic 
field Hlk no longer reduces to the well-known Pippard 
 oscillation^,'.^ and has a more complicated form. 

Open (in the .r-v plane perpendicular to H) electron 
orbits can result from multiple specular reflections of 
charges from the boundary of the sample, and, for 
electrons which do not interact with the boundary, in 
metals with an open Fermi surface (FS). Here k is  the 
acoustic wave vector, and r and 1 a r e  the characteristic 
Larmor radius and the free path length of the electron. 

The features of the damping of a sinusoidal acoustic 
wave 

under these conditions have been thoroughly s t ~ d i e d , ~ v ~ * '  
and can be applied to the study of bulk and surface 
properties of conductors. However, in the high-fre- 
quency region ( w =  k s  2 10",,s- ') the pulse method of ex- 
periment turns out to be more advantageous (see ,  for 
example Ref. 6). The spatial extent of the acoustic 
pulse 6 S l k  is a new parameter, with the dimensions of 
length, and if it is smaller than the f ree  path length of 
the electrons, the conditions for its interaction with the 
sound wave can change materially. In this connection, 
it is of interest to consider the passage, through a met- 
al ,  of elastic waves in the form 

U (j) =u (:) e'( 

with smooth envelopes localized in the interval 1 << 65 
5 k r .  

Because of the great  difference between the Fermi 
and the sound velocities v,>> s the effective interaction 
of the electron with the deformation of the crystal  takes 
place virtually simultaneously a t  several  different 
depths x i  (according to the number of points k-v = k s  at  
which it moves in the wavefront). Therefore, the sound 
pulse located a t  x  perturbs the electron distribution 
function a t  al l  the points x  + x i  -x i . .  As will be shown 
below, this leads to the appearance of a system of 
"satellites" of the fundamental signal; the structure of 

this system is determined by the geometry of the elec- 
tron trajectories. 

Thus, an open orbit in an unbounded metal contains 
an infinite se t  of points x , ,  and the number of produced 
secondary signals is limited only by the ratio l/r. 

In a thin conducting layer (thickness d < l )  transitions 
between open and closed sections of the FS become pos- 
sible in the case of reflection of the ca r r i e r s  by the 
boundaries of the metal. Thus groups of "glancing" 
electrons at both boundaries of the layer turn out to be 
connected even a t  r << d and form a secondary pulse a t  
a distance Sd from the fundamental one. Consequently, 
a "precursor" of the acoustic signal travels through the 
sample with a velocity close to the Fermi  velocity. 

2. We shall s t a r t  out from the dynamical equations of 
elasticity theory 

p(C',,"-so'U,") =f {U(x ,  t ) ) ,  (1) 

the self similar solution of which U h ,  t )  = U([) is  as-  
sumed to have the form U([)=u([)eic. Here p is the 
density of the crystal, so is the unperturbed sound ve- 
locity (for definiteness, we take the sound wave to be 
longitudinal), and the force which the electrons exert on 
the lattice is7 

For  its calculation, it is necessary to solve for elec- 
trons in a metal a kinetic equation that can be repre- 
sented in this case  in the form 

Here ( B ~ ~ / a c ) x  is the nonequilibrium addition to the 
electron distribution function, r is the phase of the Lar- 
mor precession of the electrons and has the dimension- 
ality of time, v is  their relaxation frequency, Vsu, - s ,  
and A is the xx component of the deformation poten- 
tial." The complete solution of (3)  for the electrons 
that do not collide with the boundaries of the sample is, 
a s  is well-known, 
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and is essentially determined by the shape of the elec- 
tron trajectory. 

We shall be interested principally in the role of open 
trajectories. However, in a metal there a re  always 
closed electron orbits and a s  a rule make the principal 
contribution to the sound attenuation; therefore, we 
shall consider initially the case of a closed convex FS. 
In the most characteristic limit for the magneto-acous- 
tic effects 

ks<vaR, k r s i  (5) 

we can neglect the phase shift of the sound field during 
the Larmor period T = 21r/62, and reduce the expression 
(4) to the form 

The integral with respect to 7' is taken by the station- 
ary-phase method [v,(7,,) = O] since kr >> 1, and u(() is a 
smooth function in comparison with eft. These same 
assumptions allow us to calculate the integrals over 7 

and p, without difficulty (in the terms that oscillate with 
variation of p,) and also in Eq. (2). It is easy to see 
that, because of the Larmor precession of the elec- 
trons, the result turns out to be dependent not only on 
5 but also on the value of the argument, shifted by 

Thus, in the passage of a sound pulse Uo(() =uo([)eH 
through a medium the conduction electrons exert the 
force 

on the crystal lattice. Here r, is the monotonic part of 
the damping of a sinusoidal sound wave: 

is a nondimensional coefficient of the order of (kr)'& 
<< 1. 

Knowing the form of the right-hand side of the dy- 
namic equation, we can find with its help the envelope 
of the resulting signal u(5) its propagation velocity, and 
the damping decrement y. Thus, for an even "bare" 
envelope uo(() we get, in first order in Po," 

Formula (10) describes the appearance of leading 
and lagging (by At = 2r/s0) "satellites" of the funda- 
mental signal, which duplicate its shape in a scale 

that oscillates with change in the magnetic field. This 
has been observed experiment all^.^ For sound signals 
with a Gaussian envelope (uo( 5 )  = ex~[-((/6()~]) this re-  
sult was obtained in Ref. 8 by a Fourier-transform 
method. 

3. For a given orientation of H let there now be in the 
metal open electron trajectories and let the direction of 
drift (v) make with the direction of sound propagation 
(the x axis) an angle 8 such that there exists at least 
one pair of points v,(r,,) = s, that repeat periodically 
and are spaced cG/eH apart (G is the period of the open 
FS). 

It is clear from the above that the energy of the initial 
sound pulse, which was located at depth x, should be 
distributed among regions 

zf nA, A- (cGleH) cos 0, n=0. 1. 2, 3, . . . , 

lying in the limits of the electron mean free path. 

This conclusion is not critical for a specific shape of 
the FS, and we only assume that the axis of the open- 
ness, together with the direction of H, forms a reflec- 
tion plane in the reciprocal lattice of the crystal. 

At depths exceeding I ,  expression (4) is valid a s  be- 
fore for the distribution function of the electrons drift- 
ing in the chosen direction. This expression, upon sat- 
isfaction of the inequality (5), can be transformed into 

where ? is the period of motion of the electron along 
the open trajectory u,(s + T) = c , ( ~ ) ,  A(7 + f') = ~ ( 7 ) .  The 
usual stationary-phase method yields 

In the calculation of the force .f+ [according to formula 
(2)1, it must be kept in mind that the quantity A is con- 
stant over the entire !ayer of the open section of the FS, 
while the integrals ~ r ~ " k u , d r  (at j #  jf) are  functions of 
p,, so  that the corresponding "cross" terms, after 
integration with respect to p,, turn out to be small. to 
the extent that ( k ~ ) - !  << 1. Neglecting them, we obtain 

Allowance for the boundary of the sample (x = 0) shows 
that at a depth x, the number of terms in the sum over 
n is equal to E(X/A), which is the integer part of the 
ratio X/A. However, a t  depths x > 1 this fact can be dis- 
regarded since terms with n r  I/& a r e  exponentially 
small. 

By virtue of the assumed symmetry of the FS, exactly 
the same form is possessed by the contribution f,, 
which is dependent on ( + n k ~ ,  of electrons drifting out 
of the interior of the metal. In lower-symmetry cases, 
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the coefficients of terms with 5 + n k ~  and - nkA can of 
course be different. 

As pointed out above, there a r e  always closed elec- 
tron orbits in real  metals, in addition to the open or- 
bits. The role of the corresponding asynchronous 
(i.e., depending on the shifted values of the argument 
1 * 2kr) t e rms  was explained in Sec. 2, and we exclude 
them from consideration here, assuming, for example, 
that the central section of the FS is open.3' However, 
a s  is seen from a comparison of formulas (12) and ( lo) ,  
the synchronous term in the force is generally speaking 
determined by these closed sections of the FS. 

Summing up the above, we obtain the following ex- 
pression for the force: 

8neflk r,,lmrH + - j +, ~ . \ L ( T ~ , ) ;   if=(^.,^ I, 
och' 

Here the integration is carried out over the layer of the 
open FS sections containing the points"' o,(r,,) = 0, and 
in r, [see formula (911 over values of p, corresponding 
to closed orbits. if the structure of the electron spec- 
trum does not contain addi t io~al  small  parameters," 
the quantity 8, - vT << 1 (6 = (vT)  is the averaged proba- 
bility of scattering of the electron within the period of 
motion over an open trajectory. 

In analogs with Sec. 2, we get with the aid of the dy - 
namical equation (I) the envelope of the resulting signal 
(in first  order in P,): 

i s . * . ,  

where, for even rc,(<), 

Thus, in the presence of open electron trajectories, 
the profile of the envelope of the wave in the interior of 
the sample, the quantity x > 1 ,  represents the complete 
se t  of small [in the measure P, ( C O S ( ~ ~ Z A )  11, (but slowly 
decreasing with the number 117 1 )  "satellites" located on 
both sides of the fundamental signal and spaced k~ 
= ( k c ~ / e H )  cos6 apart  up to 5 -  kl (see Fig. I). The 
maximum observed time lag (lead) is 6t-l /s ,  and can 
reach - 10" sec  in pure metals. 

We note that this result satisfies a special "corre- 
spondence principle": for a sinusoidal wave [u,([) 
= const], by carrying out the summation in (15), we 
obtain 

i.e., "resonance oscillations" similar to those pre- 
dicted in Ref. 3. 

4. In conclusion, we analyze the passage of sound 
pulses through a metallic layer, the surfaces of which 

FIG. 1. Envelope of the wave in the interior of a metal with 
open FS. If the width of the initial signal i s  6 1 ~  M ,  then the 
secondary pulses (near E = nbA) duplicate i ts  shape in the scale 
/3, exp (- In 16) Icos(n4A) 1 .  At the depth x ,  the number of "pre- 
cu r so r s  '' (n> 0) does  not exceed E(x/A). 

x = 0, d reflect electrons almost specularly. We shall 
be interested in the case of multi-channel reflection, 
when an electron reflected by a boundary of the metal 
with conservation of the tangential quasimomentum 
(p,,p.) can go over with a certain probability W into 
another cavity of the non-singly-connected FS. In a 
magnetic field parallel to the layer such processes 
moditg substantially the "glancing" trajectories of the 
electrons, and this leads to a new type of magneto- 
acoustic o s c i l l a t i ~ n s . ~  

Consider, fo r  example, a FS whose central section 
is shown schematically6' in Fig. 2a. Thanks to the 
presence of two reflection channels corresponding to 
the open and closed parts of the FS, electrons, glanc- 
ing along one of the boundaries of the layer, become 
able from time to time to go over to another layer in 
an arbitrarily strong magnetic field (r  << d). Such 

FIG. 2 .  a )  G-period of the open sections of the FS and 2po 
= 2 e H r / c  i s  the maximum diameter of the closed ones. For 
definiteness, 2po < ~ / 2 .  b) Corresponding trajectories of 
electrons in the layer (the sections of the open trajectories 
a r e  shown by straight lines), a r e  the turning points of the 
electrons colliding with the boundary of the metal. 
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electrons, interacting with the acoustic signal localized the result 
near x = 0, transport part of their energy to the surface 
x = d and form there a second burst of the acoustic 
field. 

It is seen from Fig. 2 that the transition from an open 
orbit to a glancing one is possible in both surface lay- 
e r s  at values of the magnetic field 

Here the distance between turning points of the elec- 
trons, over which the signal is transported, is 

We point out the basic features of the calculation. 
The problem of finding the 4 -component distribution 
function x with the help of two pairs of boundary condi- 
tions turns out to be rather cumbersome. However, it 
can be simplified in the case 

which is more favorable for the observation of the ex- 
pected effect, when W greatly exceeds both the fraction 
q of the diffusely reflected electrons and the probability 
of their bulk scattering between two reflections by the 
boundary (S d/l). Within the free path time the electron 
manages to pass repeatedly through all four possible 
parts of the trajectory and, as exact calculations con- 
firm, the transition probability W does not enter at all 
in the result. Setting now Wz 1, we see that the time T 
of traversing the figure ABCDE (Fig. 2b) turns out to 
be the effective period of the motion, which allows us 
to represent x in the form 

This integral differs in practice from zero only in 
those regions of space where the points T,, and T,, lie: 

where the function 8(x) = 1 at 

mas (0; d-D-L) <r<min ( D ;  d -L)  

and is equal to zero for other x. 

The calculation of the force f is similar to that de- 
scribed in Secs. 2 and 3. The electrons on the consid- 
ered orbits have asynchronous terms with arguments 
5 *&Lo while the synchronous part (which depends on 5) 
of the force is determined a s  before by the closed sec- 
tion of the FS, since the probability of scattering by the 
bulk electrons during the period VT of their motion 
turns out to be much smaller than vT: 

TITST I <c;=> 1 lad-r,'dai 

((v,) is the drift velocity of the electrons). 

A s  a result, we get for the envelope of the electron 
force 

j . 9  fe-"lipksp, (22) 

where 

and the index 0 denotes the central section of the FS. 
The regions of existence of the asynchronous terms are  
shown for the case 

when they a r e  directly adjacent to the layer boundary. 
We shall not write out the asynchronous terms with a r -  
guments t k 2kr(see Sec. 2) since we shall be interested 
in the transport of the sound pulses to a large distance 
Lo >> 27. 

Let us consider this process. In the zeroth order in 
B,<< 1, the solution of the dynamic equation 

is the function ?[(it), [ = k(x- so l )  r ks- w t  which satisfies 
the boundary condition ~ ( 0 ,  1) = rco( -wt), i.e., rr,(t). 

In first approximation in B,, the solution rc(x, 1) is 
self-similar, strictly speaking, only within the regions 
indicated in (22), and the values of the coefficient y in 
them turn out to be different: 

a) y=y'=[ l+jur(kLo)lu.(O) l r ~ .  
h ~ ~ - r , , ,  

c) y=y"- [1+!'rro(-kL,)/u.(O)]P,,. 

The functions u(Lo, 1)  and rr(0, t - L,/s,) [in regions b) 
and a), respectively] a re  not identical, but a re  con- 
nected by a relation which follows from formulas (23) 
and (24) and from the boundary condition 

Now shifting t by (d  - Lo)/so and neglecting quantities 
-B:, we find the envelope of the signal at the "exit" 
(x = dl 

Thus, in addition to the main signal (at the instant t 
=d/so) a "precursor" and a "follower" should be ob- 
served a t  the second boundary of the sample at the in- 
stants t = ( d i  Lo)/so). They a r e  of the same shape as  the 
main signal but a r e  decreased by 8, Icos (kLo + r/4) 1. 
The lead (lag) interval is 

and approaches in a strong magnetic field, when Z 
=eHd/cC>> 1, the time a t  which the main signal passes 
through the sample. 

In conclusion, we calculate the damping of the har- 
monic wave [uo(t) = const] passing through a metallic 
layer under the considered conditions: 
yd=(yl+f"' (d-LC) +rH(2L, -d )  =I'H[d+ (d-Lo)  .2p2 cos (kLo+n/4)  1, 
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which can be represented in the form 

Thus, in addition to the Pippard oscillations, there a r e  
specific damping oscillations that a re  modulated by the 
sawtooth function R(Z) .  

5. For experimental observation of a series of N  
precursors (or followers, Sec. 3), the receiving ap- 
paratus should resolve sound pulses separated by the 
interval 6t -S I /NS, .  Therefore the metals with open FS, 
in which large carrier mean free paths a re  possible, 
a re  most convenient for the measurements, for ex- 
ample, Ga used in Ref. 6 and also Cd, Cu, Ag and Re 
(see Ref. 9). Realization of the size effect described in 
Sec. 4 requires of course, high quality of the surface of 
the sample. 

A common feature of the particular cases considered 
is the transport of the sound pulses in the metal with 
velocities of the order of the Fermi velocity through 
distances that a r e  .characteristic of a system of elec- 
tron orbits in an external magnetic field. Chief inter- 
est here is attached to trajectories that a r e  infinite in 
the direction of propagation of the wave k (Sec. 3), o r  
which possess anomalously large spatial periods, a s  in 
Sec. 4.l' 

The first case can be realized also for a closed FS if 
the angle between k and H differs from a right angle. 
Here, too, an equidistant system of "satelli~es" of the 
fundamental signal arises at distances that a r e  multi- 
ples of the extremal period of drift of the electrons A,,. 
A t  k ~ ,  >> 1, their maximum relative value is 

~(n l , , ) ,u [0 ) - (kA~ , ) -  , esp (- 1111  AXc1l). 

In a thin layer of metal, in the case of certain orien- 
tations of the crystallographic axes, it may turn out 
that the different channels of surface reflection corre- 
spond simply to repetitions of the closed cavity of the 
FS in the broadened band scheme. Then (see Ref. 5) the 
shift D, of the turning points of the electron after such a 
transition is  the same for the entire layer PC. This cir-  
cumstance eliminates the smallness of the coefficient 8, 
due to interference of the different D,(p,), and can lead 
a t  27-2 d to the formation of secondary pulses u( (  i kD,) 
comparable in magnitude with the fundamental pulse. 

These effects illustrate the new possibilities of pulsed 
magneto-acoustic experiments. 

The calculation method used by us makes it possible 
to analyze the propagation of a smoothly modulated 
acoustic wave in a metal without specifying the shape of 
its envelope. 

The authors thank K. B. Tolpygo for useful discus- 
sions of this work. 

'In the general case,  the right-hand side of the kinetic equa- 
tion i s  equal to 

AuO,r-ev(E+[vX Hl/c), 

where fit, is the time derivative of the distortion tensor; the 
total electric field E is calculated by means of Maxwell's 
equations. However, in the case  of a longitudinal strain, 
the corresponding renormalization of A, i s  unimportant. 

2 ) ~ n  the principal approximation in vT<<1. the renormalization 
of the signal velocity 

(s-s0)/s0-Bo sin(2kr-n/4) Iuo(2kr)-KO(-2kr) ]/uo(O) 

vanishes for  even uo(5). 
3 ' ~ f  there a r e  nevertheless closed sections with extremal 

diameter D, these t e r m s  can be made sufficiently small  by 
varying the parameter  Po.  

 he number of such points in one period of the motion can 
generally speaking, vary with p,. However, this fact  does 
not change the order  of magnitude of PI and all  the more of 

r,,, . 
"For example, these can be the smallness of the corrugation 

of the open FS, a significant difference in the values of A for 
different regions of the FS, etc. 

')For example, the FS of rhenium has  such a shape.' For us, 
however, only the constancy of the sign of v on the open sec- 
tions and the presence of a reflection plane ~ P x , P ~  a r e  im- 
portant. the la t ter  for simplification of the formulas. The 
other details of the structure of the FS a r e  unimportant here. 

7 ) ~ u c h  trajectories can a r i s e  a l so  in  a bulk sample under con- 
ditions of magnetic breakdown between the open and close 
c r o s s  sections of the FS. 
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