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The structure of a vortex filament near the /1 point in helium I1 is considered on the basis of the Y theory of 
superfluidity (Y = (p,/m)"2e'd is a macroscopic wave function that plays the role of the order parameter). 
The entropy, heat capacity, density, and the thermal coefficient of expansion of helium, which are connected 
with the presence of the filament, are calculated in addition to the distribution of the density p, of the 
superfluid part of the helium as a function of the distance from the filament axis and of the parameter M of 
the theory. The possibilities and the purposes of measuring the corresponding effects are briefly discussed. 

PACS numbers: 67.40.Vs, 67.40.Kh 

1. The structure of the vortex filament in helium I1 
was discussed for temperatures close to the A point 
way back in Ref. 1,  and for the temperature region 
near absolute zero  in Refs. 1 and 3 (using the model 
of a weakly ideal Bose gas a s  the example). Since the 
publication of Ref. 1 ,  however, the situation with the 
description of helium near the A point has changed 
substantially (see Ref. 4 and the literature cited there- 
in). Namely, it must be recognized that the Landau 
theory of phase transitions i s  in fact not valid for 
helium near the A point, and similarity theory must be 
used. This circumstance can be accounted for within 
the framework of a ptlenomenological approach by 
modifying the temperature dependence of the coef- 
ficients of the expansion of the density of the thermo- 
dynamic potential @,,(p, T ,  *J in powers of the order 
parameter, the macroscopic wave function @ = (p,/ 
tn tlIZeiq (p, is  the density of the superfluid part  of 
helium I1 and nl i s  the mass  of the helium atom; see 
Refs. 1, 4, and 5). In this approach i t  is not only per-  
missible but also generally speaking necessary to take 
into account in the aforementioned expansion terms of 
order 1 9 1 ', and this i s  why a new parameter .\I has 
been introduced in the theory. The so-generalized * 
theory of superfluidity was already used to solve a 
number of  problem^,^*^ but the question of the vortex 
filament structure was not considered on i t s  basis. 
First ,  the structure of the filament depends on the pa- 
rameter,  although the dependence in question i s  indeed 
quite weak. Second, possibilities of experimentally 
investigating the filament structure near the A point 
a r e  revealed. 

2. We express the thermodynamic potential of helium 
I1 in the form (see Ref. 4 )  

Here T,(j.i) i s  the temperature of the A transition a s  a 
function of the chemical potential p ,  ch, i s  the density 

of the thermodynamic potential of helium I, AC, i s  
the discontinuity of the heat capacitance a t  the A point 
(A C, = A C, = 0.76 lo7 e r g .  cm-3 K-'), M i s  the afore- 
mentioned parameter of the theory, and *,, i s  the co- 
efficient in the expression for the equilibrium value of 
3 : 

1 T )  T , Yo,= (1.43plim)"'T~ =0.23.1U1- cm- (3 ) 

(h = 0.14617 g ' ~ m - ~  i s  the density of helium at  the A 
point at the saturated-vapor pressure,  and T, ( f i )  
=2.172 K). The value of *, i s  determined from the 
minimum condition (a3,,,,/a 1 * 1 0 and i s  normalized 
against the experimental data, according to which7 

The question of the accuracy in the region of the ap- 
plicability of expressions (1) and (2) is discussed in 
Refs. 4  and 8 and will not be touched upon here. 

An equation for 3 i s  obtained from the condition that 
the functional T , * )  be a minimum, and i s  of the 
form 

where we now use reduced variables (R stands for the 
usual coordinatesl: 

= T  r=R/5,, (7 ) 
to=2. i4 .  IU-B(TA--T) -" m=l.6.? 10-8~-"~ cm, v=3/(3+W).  

3. We consider now a vortex filament in an unbounded 
liquid (helium II)  that i s  a t  r e s t  a t  infinity. The problem 
has axial symmetry, so  that we can use cylindrical 
coordinates (r, 6, r ). For an infinite straight filament 
we then have 
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and 

The solution of interest to us  of Eq. (9) takes the fol- 
lowing form: a t  small  r (r <r , )  

and a t  large r (r > r,) 

A B D  f - 1  ------- ,.. r" ...' 

where 

A D - - [ ( i + 2 ~ )  ( 7 - 3 )  +(51-46~) A+3(1 -8 )  (9-8~)  A'] 
(3-2~)' 

At intermediate r (r, c r  era)  the solution of (9 )  and the 
coefficient c in (10) were obtained numerically. The 
results a r e  shown in Fig. 1 for n = 1 and for a number 
of values of v .  As seen from this figure, the distribu- 
tion f(r)  depends little on v .  This i s  not surprising, 
inasmuch as at  small r the terms of (9 )  that contain 
the parameter v = 3/(3 + M a r e  insignificant, and a t  
large r the behavior of the solution i s  controlled by the 
length 

which changes by only a factor a when M changes 
from zero to infinity. 

With the aid of the obtained solutions i t  i s  easy to cal- 
culate the contribution of the vortex filament to the 
thermodynamic potential of helium II [i.e., to obtain 
the difference between the values of the thermody - 
namic potential A8,, (p,  T) in the presence and absence 
of the vortex filament, referred to a unit filament 
length]: 

FIG. 1. Distribution of the order parameter near the axis of a 
vortex filament with a single circulation quantum (tr =1) in 
helium I1 at v = 1 (curve 1). v =0.5 (curve 2) and v =O (curve 3). 

The integral N ,  represents here the contribution made 
to A&,, by the kinetic energy of the vortex [i.e., by the 
term p,uy2 in (111. We note that N, diverges logarith- 
mically a t  the upper limit. We have therefore r e -  
stricted the integration region to a certain Y,, = R,,/ 
to ,  where the role of &, can be assumed by the radius 
of the vessel o r  by the mean distance between the vor- 
tex filaments. 

Differentiating (13) with respect to the temperature 
T and the chemical potential p [the latter dependence 
enters in (13) via the dependence of the A-point tem- 
perature T, on p], we obtain the contribution of the- 
vortex filament to the entropy S, the specific heat C, 
=c#, the helium density 5, and the thermal expansion 
coefficient q (per unit length of one filament): 

Similarly, in the case-of solutions of 'He in superfluid 
'He, differentiating A*,, with respect to the chemical 
potential @, of the ' ~ e  admixture, we can find the ex- 
cess  content of the 'He in the vortex filament: 

Finally, substantial interest attaches also to the 
'contribution" of the vortex filament to the decrease 
of the content of the superfluid component (just a s  the 
contributions indicated above, this contribution was not 
calculated in Refs. 1 - 4 )  

Since the integrals N and N ,  diverge at the upper limit, 
i t  is convenient to represent them in the form 

The values of x,, x,, N, and of the coefficient c in the 
asymptotic expression ( lo ) ,  a s  well a s  the distance Y, 
up to which the numerical integration of (9) was carried 
out, a r e  listed in Table I for f z  equal to 1 and 2 and for 
a number of values of the parameter v = 3/(3 + hf ). 

By measuring the corresponding quantities one can 
hope to determine the parameter M and, most impor- 
tantly, verify the theory of superconductivity itself. 

In experiment, of course, one can count primarily 
on measuring the contribution of not one but of a large 
number of vortex filaments. If the average distance 
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TABLE I. 
I I n=i I n=2 

between filament exceeds 5 ,  by at  least several times, 
then all the expressions above should be simply multi- 
plied by the density of the vortex filaments (i.e., by 
their total length per cm3). The experiments can be 
performed both in rotating helium I1 and with helium I1 
flowing in channels a t  superfluid-flow velocities ex- 
ceeding the critical vortex-formation velocity us, ,. In 
the case of rotation, a s  follows from the equations 
given, observation of an increase in C, or  of a de- 
crease in ps by 1% at 7 calls for rotation veloci- 
ties 52 - 5 x lo4 rad/sec, since the average density of 
the vortex filaments in a rotating vessel i s  

It appears that sufficient vortex densities a r e  easier to 
obtain in experiments with translational motion of the 
superfluid helium (for example, by heat flow). 

A more detailed discussion of the experimental pos- 
sibilities is not our aim, and we confine ourselves to 
recalling that i t  i s  most convenient to measure the de- 
crease of L, by determining the change of the second- 
sound velocity, and the increase of ; by determining 
the change of the dielectric constant (of the refractive 
index). Observation of light scattering (intensity and 

spectral composition) may also be quite effective. 
Thus, in rotating helium the ratio of the intensity of 
light scattered by the vortex filaments to the intensity 
of the thermal (molecular) scattering by density fluc- 
tuations is9 

where h i s  the height of the scattering volume and 
coincides with the length of each filament in the light 
beam (it i s  assumed that the scattered light beam is 
perpendicular to the rotation axis), and X ,  = p - ' ( a ~ / a p ) ~  
is the compressibility of helium. Substitution of nu- 
merical values shows that, e.g., a t  7 = and h = 1 
cm the intensity I,,, becomes comparable with Im, 
even a t  a vortex filament density no - lo6 cm-', i.e ., at 
angular velocities - 5 x 10' rad/sec. 
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