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We construct the integral equations which describe the problem of the kinematic planetary dynamo. Using 
these equations we propose a method for calculating the characteristics of the field, using perturbation theory. 
To do this we construct the vector Green function for the unperturbed equation that includes axisymmetrical 
differential rotation. When analyzing the perturbation-theory series we point out the special case of 
degeneracy of the damping of the axisymmetric toroidal and poloidal dipoles. We estimate within the 
framework of the theory developed here, for a number of models, the generation conditions and the values of 
the observed characteristics of the geomagnetic field. 

PACS numbers: 91 .25.C~ 

1. INTRODUCTION motions cannot be large although their presence is 

There i s  a t  the present time a generally accepted idea 
that the planetary magnetic field i s  the consequence of 
the motion of the conducting medium in the liquid 
core. The basic equation for the analysis of the 
ter res t r ia l  (and also of the planetary) dynamo i s  the 
induction equation for the magnetic field in a frame of 
reference fixed a t  the Earth's surface, in the form 

Here H i s  the magnetic field strength. D the magnetic 
diffusion coefficient, V the velocity of the conducting 
medium. and the magnetic permeability i s  taken to be 
unity. For a complete solution of the problem Eq. (1) 
must be supplemented by a dynamic equation for the 
velocity V of the conducting medium. 

Up to recently in most papers were restricted in the 
analysis of the equations for the planetary dynamo to a 
simplified kinematic statement of the problem, in 
which the velocity field of the conducting medium was 
assumed to be given while the field generation conditions 
were that Eq. (1) have solutions that did not vanish a s  
1 - 00. Even in this simple kinematic form the solution 
of the problem met with considerable difficulties. A 
large number of so-called anti-dynamo theorems' were 
found which showed the impossibility to generate the 
observed magnetic field a t  velocities subject to very 
simple restrictions (for instance, when axial symmetry 
was conserved). The problem of the general necessary 
and sufficient conditions for generation then remained, 
a s  was shown in Ref. 6, unsolved even in the kinematic 
formulation. A natural way to analyze Eqs. (1) for the 
case of arbitrary velocities is the use of perturbation 
theory. ~ r a ~ i n s k i r ~  was the f i rs t  to suggest such an 
approach; he considered the problem with axisymme- 
t r i c  velocities of the conducting medium a s  the unper- 
turbed problem. One is not allowed to choose an un- 
perturbed problem corresponding to a very high degree 
of spherical symmetry in the velocities, a s  it is known 
from paleomagnetic data and from data about other pla- 
nets that the magnetic axis i s  always close to the axis 
of rotation. For  the same reason the non-axisymmetric 

necessary to violate the conditions for the anti-dynamo 
theorem. Further analysis of various variants of the 
dynamo theory, performed basically by using numerical 
computer calculations, led either to contradictory re- 
s u l t ~ ~ * ~  o r  started from conditions which a r e  certainly 
not satisfied in the Earth. lo 

Considerable difficulties a r i se  from the necessity to 
satisfy the restrictions which a r e  imposed on the dyna- 
mo mechanism by the presence of an upper limit, al- 
lowable independent considerations, on the velocities in 
the liquid core. It is also necessary to have agreement 
between the results  and the observed spatial-temporal 
structure of the magnetic field, namely the angle of in- 
clination of the magnetic axis, the ratio of the ampli- 
tudes of the higher field harmonics to that of the dipole, 
the presence of inversions, and s o  on. It turned out 
that i t  was far  from trivial to satisfy simultaneously the 
restrictions and the conditions for generation. In par- 
ticular, in Ref. 11 this was attained by imposing rather 
artificial conditions on the functional form of the mo- 
tions in the conducting medium. 

In connection with what has been said above we con- 
sider in the present paper consistently a method for 
analyzing the induction equation, using perturbation 
theory based upon a study of integral equations. We 
have included here in the unperturbed equation a term 
with axisymmetric differential rotation. We show in 
the second section that the unperturbed vector Green 
function in the integral equation can be expressed in 
t e rms  of two scalar  Green functions which satisfy ordi- 
nary differential equations. When analyzing the spec- 
t ra l  properties of the lat ter  Green functions i t  turns 
out to be possible to use the efficient apparatus of the 
theory of ordinary differential equations. 

2. BASIC EQUATIONS 

The induction equation for the field H in the reference 
frame which is fixed in the Earth's surface can be writ- 
ten a s  follows: 
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We shall call Eq. (2) with l? = 0 the unperturbed equa- 
tion. We have included in the unperturbed equation a 
term that takes into account differential rotation around 
the third axis e, with a radius-dependent angular velo- 
city Q(r). We denote by D(r)  the magnetic diffusion 
coefficient, which is inversely proportional to  the con- 
ductivity. We assume for simplicity that D(r) depends 
solely on the radius. The velocity V(r) of the conduct- 
ing medium i s  contained in the perturbation; we write 
i t  in the form 

where f'(r) and f '(r) a r e  some scalar  functions. Fol- 
lowing the usual definitions in dynamo theory we call 
VT the toroidal and VP the poloidal component of the 
velocity. The choice (3) corresponds to a ze ro  diver- 
gence of the velocity. This condition i s  not an import- 
ant restriction as ,  according to vainshtern's theorem1' 
a velocity which has  the form of a gradient cannot lead 
to generation. 

introduce scalar  Green functions G$',),,(r, r', w) and 
C Z  ( r ,  r', w) which satisfy the following equations: 

6 
[ ~ ' l *  ( r )  Da1# ( r )  - D ( r ) J ( J + i )  

f 
- iMQ ( r )  + i a  G:: (r ,  r', a) - -8 ( r - f ]  I 

d  (6) 
D ( r ) J ( J + l )  - iMQ(r)  + i a  G::' ( r ,  re ,  a ) = - 8 ( r - r e ) .  

r' I 
The functions ~ : b : ( w )  and G>";'(w) a r e  constructed in the 
standard way from a pair  of fundamental solutions sa t -  
isfying the zero  boundary conditions a t  r = 0, -, respec- 
tively. It is important that Gi";."(w) a r e  meromorphic 
functions of iw with poles for values of iw equal to  the 
eigenvalues of the operators on the left-hand side of 
(6). One shows easily that a l l  these eigenvalues 
iw"'(J, .CI) and iw'" '(~,  M )  satisfy the condition 

that corresponds to impossibility of generation. One 
can directly check that the total retarded Green func- 
tion Gij(r ,  r'. I-t') of the unperturbed Eq. (3) can be 
written in the form 

We construct for  the unperturbed induction equation 
a retarded Green function Gij(r ,  r', t - t ')  which satisfies 
the equation 

d  
-G,,(r,  r', t-t')+ed.heh-mv.D(r) V-Gnj(r,  r', i-t ')  
dt 

- e , p ~ c q , l T p [ Q ( r ) e ~ .  r l ,Go ( r ,  r' f - f ' )=6 , ,6 ( f - t ' )6 ' ( f - r ' ) ,  

where eij, i s  a completely antisymmetric tensor. Sum- 
mation over repeated indices is implied. We take the 
Fourier transform with respect to t and expand in t e rms  
of the vector spherical harmonics of the field H(r. I): 

0'" ( r )  
+-H"r, l , .bf , .~ ,~)Y::  

In (4) we have allowed for the fact that the divergence 
of the magnetic field vanishes and we denote, respec- 
tively, by Y:;($), Y ~ ( P ) ,  YE($)  the magnetic, longi- 
tudinal, and electric vector harmonics in Newton's no- 
tation (Ref. 13)." The scalar functions HPIT(r, J. M, w) 
give, respectively, the poloidal and toroidal field com- 
ponents. We shall drop in what follows completely o r  
partially the arguments of the functions where this does 
not cause confusion. At I? =0, Eq. (2) takes, after sub- 
stituting the expansion (4), the form of a se t  of equa- 
tions for  HP(r, J ,  M )  and HT(r,  J ,  '1.1): 

6 
D's ( r )  - D  ' ( r )  HP(J, M )  

d? 

d  d D ( r )  J ( l + l )  
- D ( r )  -HT(J ,  M )  - Hr (J ,  M )  -iMQ ( r )  Hr(J, .If) 
dr dr i 

The se t  (5) has a characteristic triangular structure and 
accordingly no components of the toroidal field oc- 
cur in the equations for the poloidal components. We 

G,,(r,  r', f-f')=- 

clC.2 (r") J((J-!-1) ' - . I fz)  ' 

x-([ dlJ' ( J + l )  ( 4 ( J ~ l ) - - f )  

When writing down (8) we have taken into account the 
fact that the Green function Gi j ( r ,  r', 1-t') acts only on 
vector functions with zero  divergence. As in Eq. (5), 
there a r e  no transitions from toroidal to poloidal field 
components in (8). That Gij(r .  r'. t-t') vanishes when 
t < 1' (initial condition) follows from the fact, noted 
above, that the functions G f i ( r ,  r', w) and GP',Tl-, I- ' ,  w) 
have no singularities in the lower complex half-plane of 
w. Using (8) one can replace the complete induction 
equation together with the boundary conditions by an in- 
tegral equation of the following form: 

Here H;(r, t)  is an arbi t rary  solution of the unperturbed 
equation. 

We consider now the shift of the eigenvalues of the 
induction equation when the perturbation is switched on. 
We shall in this case s t a r t  from Eq. (9) in which we 
substitute for the f i rs t  term on the right-hand side the 
solution HO(r,  ~ , ) e - ~ " n ~  of the unperturbed Eq. (5) cor- 
responding to a definite damping ra te  (eigenvalue) iw,. 
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We shall be especially interested in the solution 
HO(r,  w0)e"at with the smallest value of the real  part  
iw,. For  this solution there is the largest probability 
for a change in sign of the real  part  after  the perturba- 
tion i s  switched on and, indeed, for  the occurrence of 
magnetic-field generation. It i s  natural to  assume that 
iw, corresponds to the damping ra te  of a solution cor- 
responding to a poloidal dipole. In that case the solu- 
tion of (5) corresponding to an axisymmetric poloidal 
dipole has the form 

d o  ( r ' )  
- ~ " ' ( r )  Y J ~ ~ '  (;) Sdr' [G::' k v i ~ I I p n ( r ' ,  dr 5 I , @ )  1) (10) 

In (10) the function HPo(r, 1,O) i s  the solution of the 
f i rs t  of Eqs. (5) for w = w,. It i s  then convenient to 
choose for HPo(r) the normalization 

IIpO' ( r )  Hp" ( r )  dr= 1. (1  1) 

Following the usual scheme we transform the integral 
Eq. (9) in such a way that we eliminate i t s  secular 
terms. We then get the se t  

H l ( r ,  a ) = H , '  ( r ,  w 0 ) &  S d 7 r ' { G , , ' ( r .  r', -la,- lop) ( K H ) * ( ~ ' ) ) ,  

(12) 
im-tws+AOp. .lar=- J d r 7 { 1 [ , * ( r )  ( A I I ) ,  ( r ) ) .  

We have denoted in (12) by G i j ( w )  the modified Green 
function of the unperturbed equation, obtained from ex- 
pression (8) for Gi,(w) by eliminating the terms which 
a r e  singular when w = on. To do this it i s  sufficient to 
replace (regularize) the function G:e$(w) contained in 
Gij(w) by 

H,P' ( r )  If? *(r')  
G::' ( 0 )  --tG:.:)' ( 0 )  =G::) ( a )  - 

io-io, 

The expression for A; in (12) determines the eigenvalue 
shift which specifies the time dependence of the field. 
The set (12) will be the basis for constructingthe pertur- 
bation-theory se r i e s  in the non-degenerate case. Rec- 
ognizing that divH = 0 and also the symmetry of the un- 
perturbed problem, we shall use in what follows an ex- 
pansion in a spherical basis and write H a s  a sum of a 
poloidal, Hp, and a toroidal, HT, components. 

One can see the meaning of the notation used in what 
follows from the equations: 

XHp(r', J', M ' ) + R m T ( r ,  r', J, J', M ,  M1)H+(r ' ,  J', M') I ,  a=p, T. (14) 

The operators kPp(r,  r'), IZPT(r, Y'), RTT(r ,  Y'), and 
kT"(r, 7 ' )  introduced in (14) have the following meaning: 

R"(r, r', J, J', M,  M')  = - jdPdcosO ( D - S ( ~ )  [ J ( J + I ) ] ' ~  

+L[ dr' ( J' D ( r )  ( I  +I) ) " ( ) ] ( r - r )  (15) 

X [ V ( r ) ,  ~ : , 2 . ( ? ) ] 6 ( r - r ' ) ) ,  

Krr ( r ,  r', I ,  J', M ,  M')  - d ~ d  cos 0 
- - 

Ar:%(?)] 6(r-r7r" 

The basic quantity A: can be expressed a s  follows in 
terms of the operators gas': 

+ r  I M ' ) H r ( r ' , 1 ' , M ' , )  I ) .  (16) 

The discussion given here must be modified when the 
eigenvalue iw, i s  degenerate. In the problem con- 
sidered, greatest interest  attaches to the possibility 
of exact o r  approximate equality of two eigenvalues 
corresponding to symmetric poloidal and toroidal di- 
poles. Accordingly we assume in what follows that the 
eigenvalue iw, corresponds simultaneously to  two solu- 
tions of the unperturbed equation: the solution H:(r, t )  
of the form (10) and a lso  the solution 

Hr4 (r ,  I ,  0 )  
&a ( I ,  t )  =Hz ( r )  e-'*'=e-'.*' Y !d"' ( r )  . 

r  

We denoted in (16a) by HTO(r, 1.0) the solution of Eq. 
(5b) a t  J = 1, ,%I = 0, and the terms proportional to 
dS2(v)/dr se t  equal to zero. ' In the case of degeneracy 
we must, by analogy with the usual perturbation theory 
a t  the degenerate level, choose special combinations 

where a, and 8, a r e  constants to be determined (s = 1, 2). 
One can use these combinations, taking them a s  the 
f i r s t  terms of the right-hand side of (12), to construct 
two solutions H,(r) which depend linearly on a, and p,. 
The quantities a,, P ,  and A, a r e  determined from the 
conditions that the secular terms be excluded. These 
conditions reduce to the requirement of satisfying a t  
s = 1 ,2  the relations 

drdr' ( H P O ' ( ~ ,  I , @ )  [ K P P ( ~ ,  r', I ,  1'. 0 ,  ~ ' ) H . p ( r ' ,  J', M 1 , t ) )  
I ' M '  

+XPr(r,  r', I ,  J' ,O,M')H,r(r' ,  J', M', o ) ] ) + a . A j = O ,  (17) 

d r d r { ~ l ~ ( r ,  0 k T p ( r ,  r', 1, I f , @ ,  B ' ) H . * ( r ' , l ' . M ' .  u) 
J 'J1 '  

I 
+ K T r ( r ,  r'. i , l ' ,  0 ,  Atf')H,r(r'  l ' ,  M', 0 )  

- 
dSl (r") 

- I dr" c::' ( r ,  r'. w0) j Ki,p(r' ,  rrf ,  2, I , ,  0 . 1 . )  

( r ' l ' , ' .  ) + K T ( r ' ,  r  2 , ' .  0 .  t ' I r ( r .  1'. 1 '  a )  ] + p.A.=O. 11 I 
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3. PERTURBATION THEORY 

In the analysis of the integral equations the principal 
role is played by the operators i ~ r ' ( r ,  r'), with y, y' 
=p, T, introduced in (15). They satisfy the following 
relations : 

a P r ( r ,  f, I, I', 0 ,  0 ) - 0 ,  (18a) 

Rpr(r, r' I ,  l', M, M') =O whenV(r) - u ( r ) ~ : ; " '  (i), 
J M  

(18b) 

B9*(r, r', I,I',O,O)=K"(r, r', J .  1'. 0 , 0 ) = 0  whenV(r)  = u ( r ) Y E 1  (;). 
a 

( 1 8 ~ )  
These must be understood to be operator equations, 
i. e . ,  e. g. ,  (18a) corresponds to vanishing of an inte- 
gra l  of the form 

where i~:(r) and 1V,(r) a r e  functions of the radius which 
vanish when r = 0, Precisely such integrals enter in 
all  the formulae which we consider. The proof of (18a) 
and (18b) follows from (15) if i t  is recognized that in the 
axisymmetric case (i. e. , when the angular-momentum 
components vanish) the spherical vector functions 
Y?, YE, Y:;' for a l l  J a r e  directed, respectively, 
along the orthogonal unit vectors i. 6, and %. The 
proof of (18c) follows from the vanishing of the triple 
product of vectors lying in one plane. It is important 
that it does not follow from (18a) that kTp( r ,  r', J ,  J',O, 0) 
vanishes. 

It is important for what follows to know the proper- 
t ies of the operators R7 ' ( r ,  r ' )  for the case when they 
contain only poloidal o r  only toroidal velocity compo- 
nents. In that case we get from the condition that the 
velocity be real  and from the rule for the behavior of 
spherical vector functions, when the complex the con- 
jugate is taken, 

Kpp'(r. r', 1, J', M ,  M') - ( - I ) t K p p ( r ,  r', 1, It, - . I f ,  -.jlr), 
Krr'(r, r', 1, J', M, MI)=( - i ) 'Krr ( r ,  r', 1, I t ,  -.If, - h f r ) ,  

t in\  

Here f = 0 for poloidal velocities and f = 1 for toroidal 
velocities. 

In the non-degenerate case we get from (12) and (16) 
a perturbation-theory se r i e s  for A: in the form 

A,.:=-Hpo'(r, I ,  0 )  KJ'J'(r, r' 1, J ,  0 ,  ,M)G::) (r ,  r", o,) 

XHp0(r"',I,O) + H * ' l ~ ( r , l , O ) K p T ( r , r ' , I , l , O , M )  J 
XG~:) (r, r", wo)  {KT"(r",  r"', J ,  i ,  M ,  O)H~o(r" ' ,  I ,  0 )  

- 

+Krr(rt l ,  r"', 1, 2, M, o ) G ~ ~ ) ( ~ " ' ,  r r ' ,  wo)U ( r )  (- v$ ) 
d 9  (r" ) di2 (r") 

X- HPo(r tV ,  1 , O )  - - b J I J I . ~ : \ .  (r", r"', wO)  
dr'" dr" 

+Rpr(r"', r", l', 2,  M',  0 )  ( - v: ) c:' ( r r v ,  rv .  O.)D'& (r)  

dQ (r') 
X - H P ' ( ~ ' ,  dr " l , ~ ) ] ]  . 

We imply in (20) summation over the indexes J ,  M, J', 
M' ,  and integration over a l l  variables r ,  . . . , rv from 
0 to 03. 

The expression for the shift in the lowest eigenvalue 
corresponding to  a toroidal field is also  of interest. 
Repeating the reasoning leading to (16) we get for the 
eigenvalue corresponding to a toroidal dipole the ex- 
pression 

It is important that when there is a "largew axisymme- 
t r ic  toroidal motion (e. g., differential rotation) pres- 
ent. A: can be less  than A:. This follows from the 
fact that. according to (18), only the operator kTP(r ,  r ' )  
i s  non-zero for that kind of motion. 

By considering the signs of the t e rms  in the perturba- 
tion theory se r i e s  for A: we can prove the main anti- 
dynamo theorems: Cowling's theorem,= Backus' 
theorem.'' and ~ a h s h t e h ' s  theorem. l2 

Of most interest is the elucidation of the necessary 
conditions under which generation occurs. In order  to 
advance in that direction we use the pole approximation 
for the scalar  Green functions in (20). This approxima- 
tion corresponds to replacing the kernel of the integral 
equation (12) by a finite-rank operator. l3 We then re- 
tain in the spectral  representation for the scalar  Green 
functions, corresponding to the unperturbed equations, 
only terms2'  corresponding to the lowest eigenvalues 
iw,. for which (iw, - iw,l s iw,. These t e r m s  give the 
main contribution in the case 1 A:) 3 liwO1 which is of 
interest to us  when we consider generation. In this 
approximation the ser ies  can be summed3' (see the Ap- 
pendix). In that case (as  in the case when one sums a 
geometric ser ies)  the sign and the order  of magnitude 
of A: a r e  determined by the f i rs t  terms of the perturba- 
tion-theory ser ies ,  evaluated up to the order which i s  
equal to  the number of t e rms  retained in the spectral  
representation of the Green function, provided that the 
displaced higher eigenvalues iu, + A, remain larger  
than iw, + A:. If. however. this last condition i s  vio- 
lated for a finite number of eigenvalues, one must go 
over to a calculation scheme which takes degeneracy 
into account. 

We consider the properties of the perturbation-theory 
se r i e s  (20). Fi rs t  of a l l  we note that the t e rms  of the 
se r i e s  for A: which contain only toroidal velocities 
make a positive contribution to Rea t ,  a s  can be veri- 
fied in agreement with Backus' theorem,14 and can 
therefore not lead to magnetic-field generation. We 
further show that a s  a consequence of (19) the terms in 
the se r i e s  for A: a r e  real .  As an example we consider 
the f i rs t  term on the right-hand side of Eq. (20) for 
A? corresponding to a total angular momentum J and to 
a z-component M.  It equals 
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Here, a s  in (20). we assume integration over all  
variables r ,  . . . , r'". We use the obvious relation 

C Y ~ ~ )  (r, r#, a , )  =G~L": (r, r', an), 

Eqs. (19). and the fact that the velocity of the conduct- 
ing medium is real, and easily find that 

W ( J ,  M ) - e ( ~ ,  M ) .  (23) 

It follows from (23) that the imaginary part  of the term 
corresponding to (22) in the se r i e s  for A; vanishes. 

We now turn to the degenerate case. Degeneracy of 
the lowest eigenvalues in Eqs. (5) i s  directly possible 
only for a special form of D ( r ) .  More realistic i s  the 
possibility of dynamic degeneracy caused by the effect 
of axisymmetric motions. It follows from the discus- 
sion following Eq. (21) that axisymmetric motions must 
cause the lowest eigenvalue iw; corresponding to a 
poloidal dipole to approach closer the lowest eigen- 
value iw; corresponding to a toroidal dipole. For  
axisymmetric velocities for which iwi and iw; a r e  
approximately equal i t  i s  necessary to use the pertur- 
bation theory a t  the degenerate level. In order  not to 
complicate the kinematics, we take into account in the 
exposition which follows the effect of degeneracy- 
causing axisy-mmetric velocities by introducing addi- 
tional shifts A: and i: of the eigenvalues in the unper- 
turbed equations. After this addition the equations of 
the type (5) take a t  J =  1 and J1 = O  the form 

8 ITD ( r )  
[ r  - D r  - -- i ( , w . i , + ~ . p ) ]  H ~ ( I ,  0 )  -0, 

dr- I- 

The shift of the eigenvalue in the degenerate case i s  
found by setting the secular determinant corresponding 
to (17) equal to zero. It follows from (18a) that in f irst  
approximation the quantities AS1'(s = 1 , 2 )  a r e  the same 
a s  A;' and A:', respectively. After the second itera- 
tion the system of secular equations takes the form 

From the condition that the determinant of the se t  (25) 
be equal to zero  we get for A?' and the ratio P, /u,  ex- 
pressions of the following form: 

Expressions for the quantities a,,, and b , , ,  can be ob- 
tained by comparing (25) and (17) after substituting 
there the second iteration instead of H:  and HZ. 

4. CONCLUSION 

We consider those consequences from the formulae 
given above for the ter res t r ia l  dynamo problem which 
can be obtained without performing numerical calcula- 

tions with specific expressions for  the velocities. We 
dwell f i rs t  of a l l  upon the degenerate case. Starting 
from the eigenvalues for the freely damped magnetic 
field modes, which are ,  e. g. , indicated for a specific 
model of the Earth in Ref. 1, one can reach the con- 
clusion that even the t e rms  with the lowest eigenvalues 
J =  1 , 2  in the spectral  expansion of the scalar  Green 
functions should yield reasonable answer in the search 
for  the necessary conditions for generation. It then 
turns out to be sufficient in the non-degenerate case  to 
retain terms in second order  of the perturbation 
theory. The axisymmetric poloidal motions must be 
small, since they shift iw: in the positive direction 
according to Cowling's theorem and thereby inhibit 
generation. We shall  therefore assume in what follows 
that the first  term in the se r i e s  (20) for A:, which is 
not zero  only when the velocity has a component 
u(r)Y$;'(r), i s  not important. 

We make some model estimates of the velocities 
necessary for generation. T o  fix the ideas we assume 
that the velocity that enters  in the perturbation can be 
written in the form 

The choice of the velocities in the form (27) (with the 
smallest  angular momenta that allow the necessary 
transitions) corresponds, in the estimates of the per- 
turbation-theory ser ies ,  to retaining the largest  terms 
s o  that adding velocities with larger  angular momenta 
does not change qualitatively the conclusions that follow. 
Moreover, one can give a direct  physical meaning to  
velocities of the form (27). In particular, vT(r) in (27) 
can include a differential-rotation component that ar ises  
when the rotation axis of the mantle deviates from the 
rotation axis of the core by an angle y. According to 
independent data1' this angle has an upper limit of the 
order4' of lo-' radians. For a model estimate i t  is suf- 
ficient to retain in the expression (20) for Af only the 
f i rs t  two terms. After evaluating the angular integrals, 
which a r e  of order unity, we can express the quantity 
AF in the form 

A ~ J , : =  dr'dr"drf "{ I fp0 ' ( r )  v I r ( r )  G!:) ( r ,  r r ,  coo) 
dQ ( f ' )  

~ v , p ( r ' )  G:) ( r ' ,  rr', aO)- 
dr" 

HpQ (t") ] +J d r r d f l  

X{Hp" ' ( r )  v t r ( r )G: : )  ( r ,  r ' ,  wo) utr ( r ' )  H p Q ( r ' ) ] .  (28) 

It turns out that the f i rs t  term in Eq. (28) is the main 
one in the limit of large differential rotation, while the 
second one is the main one in the limit of small  dif- 
ferential rotation. Using the spectral  representation of 
the Green functions (see the second footnote) and re- 
placing the radial integrals of the velocities and their 
derivatives by average values (marked by bars) we a r -  
rive a t  the following expression: 
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The dimensionless constants c,, c,, c,, c, in ( 2 9 )  a r e  of 
order  unity. That c,, c,. c, a r e  positive is a conse- 
quence of the antidynamo theorems listed in the Intro- 
duction. The possibility of negative c, follows from the 
fact that the corresponding term contains the indepen- 
dent velocities v T ( r )  and z$(r) to the f i rs t  degree. When 
c, i s  positive, generation cannot proceed, notwithstand- 
ing the violation of axial symmetry. The violation of 
axial symmetry is thus in the general case insufficient 
for the appearance of generation. In writing down ( 2 9 )  
we made the following estimates of the frequency iw,  
and the frequencies w T ( 2 ,  0 )  and w ( 1 ,  I1 1) corresponding, 
respectively, to the eigenvalues in the spectral  expan- 
sions of G:;' and G:Tse) + G:;$): - 

o r ( 2 ,  0) - o , - o n - D  ( r )  R2-', 

( I, 1 i I ) - w ~ - ~ ) ~ R ~ ~ / D T ) .  ( 3 0 )  

These estimates follow from the form of the equations 
satisfied by the corresponding combinations of Green 
functions. It i s  c lear  from ( 2 9 )  that the condition for 
generation 

can be satisfied for negative c, only if 

If we use for R$ the estimate l o 4  based on the westerly 
drift of the magnetic field" we get for R , ( Z ~ )  -R,( l$)  a 
value 10, which corresponds to average velocities of the 
order of l o 3  cm/s, which a r e  admissible from geophy- 
sical considerations. The second of the inequalities 
( 3 2 )  is a reflection of the condition that according to - 
Backus' theorem generation i s  impossible when I Q ( v ) R ,  ( 
is much larger than a l l  other quantities with dimen- 
sions of velocity. Retention of two terms in ( 2 9 )  corre-  
sponds to an interpolation between the cases Rf >> 1  and 
R",< 1 .  In the range of values R$ - 1  a more complica- 
ted behavior of A? is possible, which depends on the 
detailed structure of the velocities. It is important that 
in the case considered the ratio of the energies of the 
toroidal and the poloidal fields is of the order ( R $ ) ~ ,  
i. e . ,  very large. 

We now turn to estimates in the degenerate case. The 
quantities ai and bi which enter here and in terms of 
which A:,, in ( 2 6 )  can be expressed a r e  very unwieldy. 
We therefore confine ourselves to two limiting variants 
of physical interest. We assume in the f i rs t  variant 
that RTP(r ,  r ' ,  1 , 1 , 0 , 0 )  = 0  or, which i s  the same, that 
vf( r )  = 0  in ( 2 7 ) .  The simplest estimate for  A:,, will 
then be the same a s  in the non-degenerate case; how- 
ever,  a detailed analysis of the radial integrals shows 
that the restrictions on the velocity of the conducting 
medium, which enter  in the perturbation, a r e  weaker. 
We consider in more detail the second variant, assum- 
ing the existence of a velocity that ensures the non- 

vanishing of gT'(r, r', 1 , 1 , 0 , O ) .  In this variant the 
transition from the poloidal to the toroidal symmetric 
dipole becomes important; this transition is deter- 
mined by the quantity 

j drdr' {Foe ( r )  Zrp(r, r', 1,1,0, 0)H*(r1) )  
d  In D ( r )  vrr ( r )  D'h ( r )  H* ( r )  If' (r)dr =J XG- r' 
- - 
d l n D ( r ) - v r ( r )  D ( ~ ) L ,  

d l n r  Rr 

In deriving ( 3 3 )  we used ( 1 5 )  and Eqs. ( 2 4 ) .  Starting 
from ( 2 6 )  and ( 3 3 )  and using arguments s imi lar  to those 
leading to ( 3 2 )  we get for generation in the degenerate 
case the following condition: 

i o n  ( 3 4 )  

where ci and ci a r e  dimensionless constants of order  
unity. When writing down ( 3 4 )  we assumed that the in- 
equality 

which is equivalent to the condition Re(b,a,-qb,) < 0  for  
the quanities in (261, i s  satisfied. When the inequality 
which is the opposite of ( 3 5 )  is satisfied, generation i s  
utterly impossible. When ( 3 5 )  i s  satisfied we get for  
the ratio of the energies of the toroidal and poloidal di- 
poles in the degenerate case,  according to  ( 2 6 ) ,  the 
relation 

where c: and c l  a r e  dimensionless constants of order  
unity. 

We note the following four important differences from 
the non-degenerate case considered ear l ier .  Firstly, 
generation becomes possible for small  differential ro- 
tation. Secondly, the energy ratio of the toroidal and 
poloidal fields need not be necessarily s o  large a s  in 
the non-degenerate case. This i s  particularly impor- 
tant because for a large toroidal field the balance of the 
energy dissipated due to ohmic losses is worsened. 
Thirdly, in the expression for A: in the degenerate 
case the r-dependence of D ( Y )  may become important. 
For  large dlnD(r) /d lnr  the velocities which a r e  cri t i-  
cal for the generation threshold will be significantly 
lower. Fourthly, in the degenerate case the appear- 
ance of imaginary A, i s  possible, and thus magnetic 
field oscillations a r e  possible. The physical cause of 
these oscillations a r e  beats corresponding to energy 
transfer between the toroidal and poloidal dipoles. 

Both in the degenerate case  and in the non-degenerate 
case ,  due to  the appreciable contribution to ( 2 7 )  from 
non-axisymmetric velocities, the observed total poloi- 
dal dipole must be deflected from the rotational axis 
by an angle y. If Y is small, we get for  i f  the estimate: 

The relation ( 3 7 )  limits considerably the values of the 
non-axisymmetric velocity components. 

In conclusion I must express my gratitude for useful 
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discuss ions  t o  S.  I. ~ r a ~ i n s k i c  A. A. R u z m a k i n ,  
V. M. F ishman,  and A. P. Anufriev. 

APPENDIX 

We consider  a p a r t i a l  summation of the  perturbat ion-  
theory s e r i e s  in the pole approximation and indicate 
simultaneously a method f o r  proving a number  of ant i -  
dynamo t h e o r e m s  corresponding t o  the c a s e  of an anti- 
Hermitean perturbat ion opera tor  f?. In symbolic  (Di- 
r a c )  notation we can wr i te  (12), when t h e r e  is n o  de-  
generacy in the f o r m  

IH)=IH,)+G'RIH), A,=-(H,l RIA). (A. 1) 

Retaining a finite number  N of eigensolutions in the  
s p e c t r a l  representat ion of the Green  function G' we can 
wr i te  i t  in the fo rm 

(A. 2) 

Such an approximation is valid when I A , I  < i w ,  - i w , ,  
attainable in the dynamo problem5' a t  sufficiently l a r g e  
.V by vir tue of the s t r u c t u r e  of the opera tor  K, indicated 
in the text. Af te r  substituting (A. 2) into (A. I ) ,  the de- 
terminat ion of A ,  reduces  to  solving a n  a lgebra ic  s e t  of 
,V+ 1 l inear  equations in (H,~I?~H) ,  ()z=O, 1 , .  . . ,,V): 

The  solution of (A. 3 )  is equivalent to  a par t i a l  s u m m a -  
tion of the  perturbat ion theory s e r i e s  in which the t ran-  
s i t ions between H,, . . . , H, a r e  retained.  ~ s s u m i n ~ ~ '  
that (H, lk I H,,) = 0 f o r  a l l  1 1 ,  we get f o r  A" the following 
express ion  in the f o r m  of the r a t i o  of two de te rminants :  

Xdct-1 0 J&I I .  . . (A. 4) . .  . 

I n  iNl BN, ... i I 
where  the B,, denote the quant i t ies  

(Em] RIH,)/[ (io,-io,) ( ion- io , )  ] ". 
( r t ,  I ) ?  = 1 ,  . . . , N). The n u m e r a t o r  of (A. 4) has ,  a s  can  
eas i ly  be checked, the s t r u c t u r e  of the IV-th t e r m  of 
perturbat ion theory (without repeated factors) .  The  
mat r ix  in the denominator  of (A. 4)  h a s  the f o r m  1 + A ,  
where A vanishes when k = 0. When IIA 11 < 1 the sign of 
A ,  is determined by the sign of the numera tor  of (A. 4). 
F o r  an anti-Hermitean I? the express ion  f o r  A ,  is found 
t o  be  positive. 

T h e  opera tor  2 can  b e  reduced t o  ant i -Hermitean f o r m  
w h e c  the conditions f o r  Cowling's, Backus ' ,  and Vain- 
shtein 's  theorems  a r e  sat isf ied (the reduction of the 
induction equation t o  the n e c e t s a r y  f o r m  when the con- 
ditions f o r  the general ized ~ a i n s h t e f n  theorem a r e  sa t -  
isfied w a s  per formed in Ref. 17). We demons t ra te  th i s  
using a s  an example Cowling's theorem,  which is f o r m -  

ulated as follows: T h e  generat ion of an ax isymmetr ic  
magne t ic  f ie ld by a n  a x i s y m m e t r i c  velocity is impossi-  
b le  when the  diffusion coefficient is constant.  Under 
t h e  conditions considered,  t h e  induction equation r e -  
d u c e s  t o  a s e t  of s c a l a r  equat ions f o r  s c a l a r  functions 
d e s c r i b i n g  the behavior  of the poloidal and the toroidal  
components  of the field. In the ax i symmetr ic  c a s e  the 
to ro ida l  component of the magnet ic  field and the  vec tor  
potential of the  poloidal component a r e  d i rec ted  along 
the  uni t  v e c t o r  +. We c a n  there fore  e x p r e s s  the mag- 
net ic  field and the  velocity field in the f o r m  

H=HP(r, 0) +Hr(r, 0) -rot{Ap (r, elgrad p) + P ( r ,  @)grad 9 
= [grad A* (r, 0 )  grad cp] +F (r, 0) grad p, 

V= VP+ vr, 
and ge t  the following s c a l a r  equations: 

dAP - - D A A P - Z D ( [ ~ O ~  G, +lgradAp)-  ( V P  grad A'), 
dt 

(A. 5) 

+ ( ~ r o t [ F r o t ( A P ( r , e ) g r a d q )  I ) .  (A- 6) 

We cons ider  f i r s t  Eq. (A. 5). Splitting the second 
t e r m  on the right-hand s i d e  of Eq. (A. 5) into its Her -  
mitean and ant i -Hermitean p a r t s ,  one shows eas i ly  by 
d i r e c t  integration that  the Hermi tean  p a r t  is negative; 
definite. Choosing then as the  perturbat ion opera tor  K 
the ant i -Hermitean p a r t  of the  second t e r m  plus the 
third t e r m  on the right-hand s ide  of (A. 5) (which is a l s o  
ant i -Hermitean) ,  and using the a rguments  given above, 
we  find that  AP(r ,  0) - 0 a s  t - m. A s i m i l a r  study of 
Eq. (A. 6)  shows that  a l s o  HT(r ,  6 )  - 0 as t - thus 
proving Cowling's theorem.  

')In the notation used the following equations hold: 

where the Y,, are  the usual spherical harmonics and 
= -i[rr V] is  the angular-momentum operator. The vector 
spherical harmonics have then the following properties 
under complex conjugation, which a r e  used below: 

(n .oe) *  - 
Y,Y ( ~ ) = ( - ~ ) J + M Y ~ ~ $ ' ~ ) .  

2 ) ~ t  is  impossible to guarantee for the scalar Green functions 
~kq;~)(r , r ' ,  W )  with .\Z $0  the existence of spectral representa- 
tions, as they satisfy Eqs. (6) with non-Hermitean operators 
on the left-hand side. However, the Green-function combina- 
tion 

C T M ( r ,  r', ID)= [ ~ : > ~ ' ( r ,  r', o ) +  G Y : ~  (r ,  fl, 0)  112, 

which occurs in the expression for AtsT satisfies an equation 
with Hermitean operators on the left-hand side, in the sym- 
bolical form 

3 ) ~  similar method of partial summation of the perturbation- 
theory ser ies  is used in the quantum theory of scattering (see. 
e.g., Ref. 13) and is called the separable-kernel method. We 
assume below in the text that the Fredholm determinant does 
not vanish under the conditions considered. 

*)~n the model in which the motion in the liquid core is  repre- 
sented as the motion of a viscous fluid between two rotating 
concentric spheres we haveI6 
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Here Rt and Rz  are, respectively, the inner and outer radii 
of the liquid core. 

S)Specific peculiarities, which for the sake of brevity have not 
been considered, arise only when an M-th s h i e d  eigenvalue 
"overtakes" the M + l s t  value. In that case it i s  necessary 
to use a scheme of calculations which is  similar to the one 
described in the text for the degenerate case. 

6 ) ~ h i s  c ~ d i t i o n  is not a restriction, a s  the terms proportional 
to (E,,IK 1%) can simply be included in the unperturbed 
equations. 
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