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The birefringence in a nonquilibrium collisionless molecular gas in the presence of an external magnetic field 
is investigated. The nonequilibrium states produced by the temperature difference between the surfaces 
bounding the gas, the flow of the gas along the gap, and the motion of the surfaces relative to each other are 
considered. The effect is due to the tensor polarization of the moments of the gas molecules in the gap, and 
can be used to study nonspherical scattering of molecules by the surface of a solid. It is shown that the 
birefringence in the cases of the various nonquilibrium states is due to scattering processes with different 
spatial symmetries. An interesting characteristic that distinguishes the effect in question from the analogous 
phenomenon that occurs in the gas of a continuous medium is the nonmonotonic dependence of the phase 
difference on the coordinate of the axis of the ray in the gap in the presence of an external magnetic field. 

PACS numbers: 5 1.70. + f, 5 1 .a. + a 

1. INTRODUCTION 

In the general case, a monochromatic light ray pass- 
ing through an anisotropic medium splits up into two 
linearly polarized waves, which propagate with different 
velocities. The polarization planes of these two waves 
a r e  mutually perpendicular. This phenomenon i s  
called birefringence of light. ' The birefringence effect 
i s  due to the anisotropy of the permittivity of the med- 
ium: this anisotropy either can be an intrinsic property 
of the material. o r  it can be produced under the action 
of mechanical deformations, an electric field (the Ker r  
effect). o r  a magnetic field (the Cotton-Mouton effect). 
The permittivity anisotropy may also be due to the non- 
equilibrium state of the medium. especially when the 
medium i s  a gas. Thus, birefringence has been ob- 
served in an inhomogeneous C0,-gas stream.' Theo- 
retically. this effect was f i rs t  predicted and described 
by Hess r l I  r t l .  3*4  It i s  well known that the distribution 
function for an inhomogeneous gas consisting of mole- 
cules with rotational degrees of freedom i s  anisotropic 
both with respect to the directions of the velocities v of 
the molecules and with respect to the directions of the 
angular momentum vector M (Ref. 5). An  important 
consequence of the anisotropy of the distribution func- 
tion with respect to the directions of the vector M i s  
the possibility of a tensor polarization of the angular- 
momentum vector, a polarization which in the case of 
optically anisotropic gas  molecules makes the permittiv- 
ity of the medium anisotropic. The tensor polarization 
of the vector M occurs a s  a result of the collisions of 
the nonspherical molecules with each other. 

Birefringence-in a highly rarefied gas in which the 
mean free path I of the molecules i s  much greater than 
the characteristic dimensions L of the device has been 
predicted by the present authors.' The situation con- 
sidered is one in which the light propagates between two 
plane-parallel plates through a collisionless gas. The 
state of nonequilibrium in the system is assumed to be 
due to the existence of a temperature difference be- 
tween the surfaces, o r  else of a pressure difference 
between the gap ends, which leads to the flow of the gas 
along the gap. The investigation of birefringence in a 
collisionless gas is of interest for a number of rea- 

sons. The birefringence effect manifests itself infirst-  
order  approximation in the small  parameter C( (the non- 
sphericity parameter of the molecule), and, a s  the 
corresponding estimates show, can be investigated by 
modern methods.' In contrast to a continuous-medium 
gas,  in which both the kinetic and the optical properties 
a r e  determined by the local values of the macroscopic 
quantities and their derivatives, in a collisionless gas 
the analogous effects depend a lso  on the geometry of the 
system. An essentially new property typical of a colli- 
sionless gas i s  the appearance of a macroscopic spatial 
inhomogeneity of the system upon application of an ex- 
ternal magnetic field H. This property i s  connected 
with the role played by a magnetic field in the birefrin- 
gence effect under discussion. Whereas in the known 
magneto-optical effects the magnetic field either modi- 
fies the structure of the levels of the molecules, o r  
gives r ise  to the polarization of the moments of the 
molecules, orienting the moments parallel l o  the field 
vector H, in this case a weak magnetic field only changes 
the orientation of the moments of the molecules a s  a 
result of their precession about the direction of the H 
vector. Thus, the moment of a molecule changes i ts  
orientation during the free wall-to-wall flight of the 
molecule in the gap. Because of this. the birefringence 
effect depends on the coordinate of the ray in the gap. 
In i ts  turn, the spatial inhomogeneity that i s  realized 
depends on the strength and direction of the magnetic 
field. Another interesting distinctive feature of bire- 
fringence in a collisionless gas is that the characteris- 
t ics of the effect depend significantly not only on the 
type of nonequilibrium state, but also on whether the 
vector of the nonequilibrium state i s  a normal vector o r  
a pseudovector. The latter, together with the behavior 
of the nonspherical-scattering probability under inver- 
sion, determines the character of the macroscopic in- 
homogeneity that a r i ses  in the gas. 

In the present paper we establish and investigate the 
above-noted characteristics of birefringence in a colli- 
sionless nonequilibrium molecular gas. The analysis 
of the birefringence i s  based on symmetry considera- 
tions fo r  the system. In particular, we investigate the 
birefringence in the case of the nonequilibrium state 
produced by a temperature difference between the sur- 
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faces in the presence of an external magnetic field H, 
a s  well a s  the birefringence in the case of a gas flowing 
along the gap, o r  in the case in which the surfaces 
move in opposite directions (the Couette problem). 

2. PERMITTIVITY TENSOR OF A NONEQUlLlBRlUM 
COLLISION LESS MOLECULAR GAS 

In an optically anisotropic medium two waves with 
mutually perpendicular polarization planes, propagating 
in the same direction q, accumulate over a distance I a 
phase difference 

where A i s  the wavelength of the light, while n, and n, 
a r e  the refractive indices for the waves in the medium. 
Below we shall be interested in precisely the magnitude 
of the phase difference 6. As is well known,1° the bire- 
fringence effect is determined by the symmetric part  
cik of the permittivity tensor, i. e. , cia  = c l i .  We shall 
consider those wavelengths for which the medium is 
nonabsorbing, i.e., for  which the symmetric tensor 
ci ,  is real .  With allowance for this, let us write the 
equation for the refractive indices for waves propagat- 
ing in the direction q in the form1 

In the case of a molecular gas we have for cik  the ex- 
pression 

where N i s  the number of molecules in 1  cm3. (. . .) de- \ 
notes averaging with the nonequilibrium distribution 
function f(v, MI, and a i k  is the polarizability tensor for 
a linear molecule, averaged over the possible orienta- 
tions of the axis of the molecule for a given direction of 
the angular momentum M: 

a = 6 -  A biPY*n(M). 
a *  

Here 

where a,, and a, a r e  the principalvalues of the polariza- 
bility tensor of the molecule, and a = 2(6rr /5 ) l f2 /3 .  The 
spherical functions a r e  defined in accordance with Ref. 
8 .  The numbers byk determine the connection between 
the elements of the symmetric traceless second-rank 
tensor and the elements of the equivalent spherical ten- 
so r  Y,, (Ref. 9 ) .  According to ( 3 )  and ( 4 ) ,  cia has the 
form 

where E ,  is the isotropic part of ci ,  and cp,, is the 
second-rank spherical tensor defined by the expression 

Thus, the main problem in the computation of the ten- 
s o r  cik  is the determination of the nonequilibrium dis- 

tribution function f ( r ,  M) for the gas. 

Let us  consider a collisionless molecular gas located 
between two plane-parallel surfaces. We choose the 
system of coordinates such that the direction of the z 
axis coincides with the normal k to the lower surface. 
The planes z = - L / 2  and z = L/2 correspond to the low- 
e r  and upper surfaces. The distribution function 
f ( r ,  M) is determined by solving the kinetic equation 
for the collisionless gas 

with boundary conditions a t  each of the surfaces, which, 
in the general case, move with velocity u lk in opposite 
directions: 

Ivkl f-(v, M) = lv'kIW(vl+u, M' -, v+u, M; -k )  
v'L >a 

X f+ (v', M')dv' dM' ( 2 - L / 2 ) ,  

j + a n d f  - a r e  the distribution functions for the mole- 
cules flying respectively upwards and downwards in the 
gap. The kernel of the integral equations ( 9 )  i s  the pro- 
bability for scattering of nonspherical molecules with 
rotational degrees of freedom by the surface of a solid: 

W(v' .  Mf+v, M; k )  =W,+pW, (v'. Mr+v, M; k ) .  ( 1 0 )  

Here W, i s  the diffuse part  of W, and does not depend 
on the orientation of the molecule, while pIir, i s  that 
part of W which depends both on the orientations of the 
angular momenta M' and M and on the velocities v' and 
v before and after the collision. In the computations 
below we shall need the coefficients of the expansion of 
W, in terms of spherical functions of M' and M: 

lV,= ~ , , ~ . , ~ ( v ' . l f " - v , ~ V ' ;  k )  Y;-, (ill') Ytn,(h1). ( 1 1 )  
11; 

The solution to Eq. ( 8 )  can be written in the form 

i ( v ,  31) =z x , p ( v , . ~ ~ ' )  ~k (el,) ~ - , ~ ( > ~ ) ~ x p ( i p w : ,  r r ) ,  ( 1 2 )  
Y h  

where the x,,(vh12) a r e  unknown functions, which can be 
determined in our problem in the f i rs t  approximation in 
the small  parameter p  ( p 2  - from the solution to 
the system of equations (9), the D:,(Q,,) a r e  the Wigner 
rotational functionsg, and the Q, a r e  the Euler angles. 
which determine the orientation of the coordinate sys- 
tem ( s ' y ' z ' )  connected with the field H (2'  11 H). Thus. 
the formulas ( 6 ) - ( 1 2 )  enable us  to determine the per- 
mittivity tensor cik  for a given character of the non- 
equilibrium state. We shall determine the magnitude of 
the phase difference 6 between the waves in accordance 
with the described solution scheme. 

3. THE SYMMETRY OF THE SYSTEM 

The properties of the phase difference 6 a r e  de- 
termined by the properties of the anisotropic par t  of the 
permittivity tensor of the medium. This part  in turn 
on the symmetry of the system under consideration. 
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The object of the present section is to analyze the bire- 
fringence effect on the basis of an analysis of the sym- 
metry of the system. For  this purpose we construct a 
second-rank spherical tensor cp,, from the vectors of 
the problem [see (7)]. The elements of the anisotropic 
part of the tensor c i ,  a r e  linearly connected with the 
elements of the tensor cp,, [see (5)]. The following 
vectors a r e  involved in the problem: the vector H, the 
normal k to the lower surface (the surfaces can be 
made of different materials), the vector X character- 
izing the state of nonequilibrium in the system, and the 
vector x 11 z characterizing the position of the ray in the 
gap. The point in introducing s l ies in the fact that for 
H # 0 the birefringence effect depends on the coordinate 
of the axis of the ray in the gap. Let us  locate the 
origin of the vector x at  the center of the gap and the 
terminus of the vector at the point through which the 
axis of the ray passes; k and e a r e  vectors, H is a 
pseudovector, and X can be a vector o r  a pseudovec- 
tor. Thus, if the nonequilibrium state i s  created by 
the motion of the surfaces in opposite directions with 
velocity ulk, then X i s  a pseudovector perpendicular 
to the vectors u and k. In the case of a gas flowing 
along the gap. X is a vector whose direction coincides 
with the direction of the flow. If. on the other hand, 
the nonequilibrium state i s  created by a temperature 
difference between the surfaces. then X i s  likewise a 
vector directed, say, from the surface with the lower 
temperature toward the surface with the higher tem- 
perature along the z axis. The general expression for 
the spherical tensor cp,,, a s  expanded in t e rms  of the 
irreducible tensors constructed from the components of 
the vectors of the problem, can be written in the forms 

Here (111~111,~11, Jl,r)~,) i s  a Clebsch-Gordon coefficient 
and s denotes the se t  of indices over which the summa- 
tion is  performed, i . e . ,  s =(Il, I,, I,, I,, L,, L,). The 
coefficient P ,  depends on the moduli of the vectors H, 
X, and z, and is determined by the probability W for 
scattering of the molecules by the surfaces. If W i s  in- 
variant under inversion, p, i s  a scalar;  if not, the 
right-hand side of (13) contains terms in which P, i s  a 
pseudoscalar; )?I,  = 111, = 0, since t Ilk 11 OZ. 

In the case of identical surfaces 1, should be assumed 
to be even; if on the other hand the surfaces a r e  dif- 
ferent (i. e. , if they scat ter  the molecules with different 
probabilities), then the right-hand side of (13) should 
contain terms with odd 1,. The birefringence effect in 
the case of a collisionless gas occurs in the first  ap- 
proximation in the parameter characterizing the non- 
equilibrium state6; therefore, we shall hereinafter se t  
I ,  = 1. It i s  evident that the spatial inhomogeneity 
vanishes when the field H is switched off. We shall 
accordingly assume that the equality I, = 0 follows 
from the equality 1, = O .  Then cp,, can be rewritten in 
the form 

TABLE I.  

If H =0, then, apart  from a redefinition of P,, we 
can write 

In Table I we present the results  of the investigation 
of the conditions in accordance with the formulas (14) 
and (15) when cp2,# 0, a s  well a s  of the symmetry pro- 
perties of the birefringence (cp,,) with respect to re- 
flection in the plane passing through the middle of the 
gap. 

W, invar. 
under 

inversaon 

A plus sign in Table I denotes the assertion written in 
the top cell of the corresponding column. The minus 
signs in the first  five columns denote respectively the 
assertions: H = 0, X is a pseudovector, W is not in- 
variant under inversion, the surfaces a re  dissimilar, 
and X i s  arbitrarily oriented. Thus, the first  five 
signs in a row formulate the physical conditions neces- 
sa ry  for the existence of birefringence. The sixth 
sign in a row indicates the evenness (+) o r  oddness (-) 
of the birefringence (cp,,) with respect to the middle of 
the gap under the prescribed conditions. 

Surfaces are 
identical 

- 
- 
- 
- 
+ 
+ 
- - 
+ 
+ - 
- 
+ 
+ 

It can be seen from Table I that, when X II z and H =0, 
birefringence is possible only in the case of dissimilar 
surfaces (the rows 1 and 2). If, on the other hand, X is 
not parallel to z ,  then for H = 0 birefringence is also 
possible in the case of identical surfaces (the rows 
5 and 6). For this to be so, i t  i s  necessary that the 
vector X characterizing the nonequilibrium state have 
the same symmetry with respect to the operation of in- 
version a s  the scattering probability W. As will be 
shown below, this situation in fact obtains. For  ex- 
ample, if the state of nonequilibrium i s  created by the 
motion of the surfaces relative to each other (i. e . ,  if 
X is a pseudovector and X l z ) ,  then in the case of ident- 
ical surfaces only that part of the probability W which 
is invariant under inversion makes a nonzero contribu- 
tion to the effect. If, on the other hand, X i s  not paral- 
lel  to z ,  and the surfaces a r e  dissimilar (the rows 3 
and 4), birefringence is also possible in the case in 
which the vector X and the scattering probability W 
transform differently under inversion. For H#O, the 
gas i s  inhomogeneous for the reasons indicated above. 

1 
2 
3 
4 
5 
G 
7 
8 
9 

i l l  
11 
12 
13 
1 4  
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I, 

+ 
+ - 
- 
- 
- 
- - - - 
- - 
- - 

- - - - 
- 
- 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

- 
+ 
- 
+ 
+ 
- 
- 
+ 
+ 
- 
+ - - 
+ 

V z r n ~ m  rcL 
to of 
P P  

+ + + 
+ 
+ + 
+ 
+ 
+ + 
- 
- 
- - 

- 
+ - 
+ 
- 
+ - 
+ - 
+ - 
+ - 
+ 



As can be seen from Table I, the evenness o r  oddness 
of the birefringence (cp,,) under the operation 6 - -8 is 
connected with the symmetry properties of the proba- 
bility with respect to inversion and with the type of 
nonequilibrium state that obtains. Thus, in the case of 
identical surfaces, fo r  cp,, to be invariant under the 
substitution 8- -8, it is necessary that X and W have 
the same symmetry with respect to  inversion (the rows 
9 and 10). When X and W transform differently, the 
tensor cp,, is odd with respect to  the substitution 
s - -2 (the rows 13 and 14). If the surfaces a r e  dis- 
aimilar, then the tensor cp,, is even (the rows 7 and 8) 
o r  odd (the rows 11 and 12) with respect to the sub- 
stitution s -- -6, depending on whether X and W possess 
different symmetries o r  the same symmetry. 

It should be borne in mind that the results  given in 
Table I for  the case of dissimilar surfaces (the rows 
7, 8, 11, and 12) were obtained under the assumption 
that 1, is odd [see the formula (14)]. Thus, for example, 
i f  for identical surfaces cp,, i s  even with respect to the 
middle of the gap (i. e . ,  with respect to  the substitution 
8 - -b), then in the case of differing surfaces cp,, i s ,  
when the other conditions a r e  the same, a sum of even 
and odd components. By assuming I ,  to be odd, we con- 
sider only the odd component. 

Let us point out that the Onsager symmetry relations 
are ,  generally speaking, not satisfied under nonequili- 
brium conditions, since they a r e  derived under the a s -  
sumption that only one energy dissipation mechanism 
operates-in the alternating electromagnetic field of the 
wave.'' This situation is ,  in particular, realized in the 
well-known birefringence effect occurring in an inhomo- 
geneous stream of a viscous fluid (the Maxwell effect), 
in which the internal friction constitutes an additional 
mechanism for energy dissipation, and leads to the vio- 
lation of the Onsager symmetry relations. '' 

Birefringence occurs in a collisionless molecular gas 
only when the gas i s  in a nonequilibrium state. A weak 
magnetic field only modifies the then existing tensor 
polarization of the angular momenta a s  a result of their 
precession in the magnetic field. The distribution func- 
tion of the nonequilibrium collisionless gas, which i s  
necessary for the computation of the tensor cp,, [see the 
formula (?) I .  i s  determined by solving the Boltzmann 
kinetic equation (8) with the boundary conditions (9). 
The Boltzmann equation (8) i s  not invariant under H- 
field reversal. Therefore, the nonequilibrium distri-  
bution function contains terms both even and odd in the 
field. In consequence, the tensor cp,, and the linearly 
related tensor ci, also contain t e rms  that a r e  odd in H. 
The presence of terms that a r e  odd in H in the symme- 
t r ic  part of the permittivity tensor i s  due to the exis- 
tence of the state of nonequilibrium in the system, and 
can be understood if account is taken of the precession 
mechanism of interaction between the angular momenta 
M of the molecules and the field H. Indeed, the angular 
precession velocity vector reverses  sign when H i s  r e -  
placed by -H. Therefore, if in the field H the angular 
momentum M of a molecule turns a s  a result of the 
precession through an angle JI  in a time t, in the field 
-H the angular momentum of the molecule will turn 

during the same period of time through the angle -$. 
Since the birefringence is determined by the orienta- 
tion of the angular momenta of the molecules, the 
permittivity tensor &,,(H) does not, generally speaking, 
coincide with the tensor cik(-H). 

Below, a s  a result of a kinetic computation in each 
specific state-of-nonequilibrium case, we find the ten- 
s o r  cp,,, which, a s  can be verified, contains terms 
both even and odd in H. For  simplicity, we compute 
the expressions for the phase difference 6 only under 
conditions of even parity in H. 

4. BIREFRINGENCE I N  THE CASE OF DIFFERENT 
TEMPERATURES A T  THE SURFACES 

Let us s e t  u=O in the equations (9). Substituting the 
expression (12) into the system of equations (9), and 
solving the system in the first  approximation in the 
nonsphericity parameter p,  we obtain the anisotropic 
in the angular momentum M-part of the nonequilibrium 
distribution function of the gas. " The formula (7) has, 
in the linear approximation in AT (AT/ T o  << I ) ,  the form 

Here jo(E) i s  the Maxwellian energy ( E )  distribution 
with temperature T o ,  

d2r=dI.dl", I.= (v, hl'),  r,= (v,, w ) ,  
v,=v-Zk(vk), dr--dv,lld.+f, o=yH,  

y i s  the gyromagnetic ratio for the molecule, z i s  the 
coordinate of the axis of the ray in the gap, rcr' pertains 
to the scattering of the molecules by the lower surface, 
while u,- pertains to the scattering by the upper surface. 
The expression (16) was derived with allowance for the 
reciprocal relation for. and the preservation of the 
Maxwellian character" of. the scattering probability. 

The expression for tc3,,,,(r, rl;k) can be written a s  
follows: 

Below we shall assume in the computations that the 
coefficients A in (17) a r e  constants. 

Assuming that the two surfaces a r e  identical, i. e . ,  
that when their temperatures a r e  equal they scatter the 
molecules with the same probability, and using (17) 
and the properties of the spherical functions under in- 
version and reflection in the xy plane, we find that 

Then we have for cp,, the expression: 
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X jj @rfo(E)E'wZooo(I',, I"; k) 
4.*:*0 

Before computing the final expression for 6 at pre- 
scribed directions of the vectors H and q, let us ana- 
lyze the expression obtained for cp,,, and thereby eluci- 
date the properties of the function 6. 

As can be seen from (16) and (18), for H=O bire- 
fringence will occur only in the case of dissimilar 
surfaces. This can be explained a s  follows. The M- 
vector polarization occurring a s  a result of the scatter- 
ing of the gas by one of the surfaces gives rise to an 
anisotropy in the tensor ci,, and, consequently, makes 
it possible for birefringence to occur in the reflected 
gas stream. But because of the invariance of the scat- 
tering probability under inversion and reflection in the 
s~ plane, the scattering by the other surface (k - -k) 
will lead to exactly the same M-vector polarization (the 
surfaces are  identical) with respect to the chosen coor- 
dinate system of the opposite sign, i. e. . the inverted 
system. Thus. if the surfaces are  identical, and if 
H = 0, then the M-vector polarizations that arise a s  a 
result of the scattering by the two surfaces cancel each 
other out, which leads to the disappearance of the bire- 
fringence effect. This result follows from the analysis 
of the symmetry of the system (the row 2 in Table I). 

Let H 11 k, then in (19) we have rl; (8, = 0) = 6 and, 
consequently, cp,, = 0. The nonoccurrence of bire- 
fringence at H 11 k can be understood on the basis of the 
following. The role of a magnetic field in the effect 
under discussion consists in the modification of the 
polarization of the gas as a result of the precession of 
the angular momenta of the molecules during the flight 
in the gap. But there is no preferred direction perpen- 
dicular to the z axis in the absence of a field in the 
system, and a magnetic field H U z does not change this 
symmetry because the angular momenta of the mole- 
cules a re  not polarized by the field H. It is therefore 
not accidental that the application of a H (1 k field led 
in the expression for cp,, to the equality p = 0, which in 
fact implies that the field has been switched off, since 
the exponents p and w = yH in the expression for cp,, 
a re  cofactors. Thus, cp,,(H ilk)= cp,,(H=O). 

It should be noted that the last result cannot be ob- 
tained from an analysis of the symmetry of the system 
in question [see the formulas (14) and (15)], since the 
mechanism underlying the effect of a magnetic field on 
the system is not concretized in the process. At the 
same time, if we recognize that a magnetic field H 
polarizes the angular momenta in its direction, and that 
this polarization is not connected with the nonspherical 
scattering, we find that in principle cp,, #0. and bire- 
fringence occurs. But this effect is vanishingly small, 
since the effective magnetic moment of a molecule is 
small: CI,,, H /k,T -(10-7-10-6). 

The tensor cp,,, a s  can be seen from (16) and (19), i s  

a function not only of the field, but also of the coordinate 
z of the ray in the gap. This i s  due to the fact that the 
angle through which the magnetic moment of a mole- 
cule turns as  a result of the precession depends not only 
on the magnetic field H, but also on the time during 
which this rotation occurs, and, hence, on the distance 
traveled by the molecule during this time (this is on 
the average the distance from a surface to the axis of 
the ray, i. e., L/2 + z o r  L / 2  - 2). The tensor cp,,, a s  
can be verified from (19), reverses sign when the sub- 
stitution z - -2 is made in it, i. e . ,  it i s  odd with re- 
spect to the middle of the gap [cp,,(z) = -cp,,(-z)], and, 
as  a result, cp,,(z =0) = O .  This follows from the fact 
that the scattering probability determined by the coeffi- 
cient w , , ~ ~  i s  invariant under inversion, while the vec- 
tor X characterizing the state of nonequilibrium (in our 
case this i s  AT) changes its sign under inversion. In 
the case of identical surfaces this, as  we saw from the 
symmetry analysis, makes the birefringence (cp,,) odd 
with respect to the middle of the gap (see the row 14 in 
Table I). If, on the other hand, the surfaces are  
dissimilar (i. e. , if u.' # w-) ,  then we can separate out 
in the expression (16) a term that is invaraint under the 
substitution z - -z (the row 8 in Table I). 

Let us orient H 1 y and qllx. Then from Eq. (2) we 
can easily determine the refractive indices n, and n, for 
the waves. Their difference i s  given by the expression 

As follows from (19) and (20), An i s  a function of 
u~20,0. We retain in the series (17) only one term with 
the indices 1, =0, 1 = 0, L, = 0, and I ,  = 2, which were 
determined from a comparison of the theoretical and 
experimental data obtained in investigations of the 
thermomagnetic effect in N, or CO gases. After the 
performance of the integration in (19) over M , r , M 1 ,  z;, 
and r ; ,  the expression for the phase difference 6 will 
have the form 

1'V AT 
6 = - - - p (a l l - aA)K[ l , ( o ( r / 2+ t ) ) -  12(o(rlZ-t)) 1. (21) ?. To 

Here K i s  a dimensionless coefficient ( J K  1 - l ) ,  

- 
ot 

I . ( o t ) =  Sexp( -x2 )cosn-dz ,  
0 

and NI is the mass of the molecule. 

As can be seen from (21) and (22), the phase differ- 
ence 6 changes its sign when AT i s  replaced by -AT, 
a s  well as  when z i s  replaced by -2. The latter also 
follows from the analysis of the symmetry of the sys- 
tem (the row 14 in Table I), the fact that 6 is an odd 
function of z being unrelated with the parallelism of 
the vector characterizing the state of nonequilibrium 
and the z axis, as  obtains here. We can, in principle, 
choose those orientations of H and q for which the ans- 
wer for 6 will also contain terms that are  odd in H, but 
qualitatively the picture will not change. 

The dependence of the phase difference 6 on the field 
i s  shown in Fig. 1 (the curve 1). The oscillations in 6 
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6, mrb. uniu 

FIG. 1 .  Dependence of the phase difference 6 on UT for z 
L/4 andqllx: 1) AT*O, HIIy; 2 ) A N * O ,  Hllz (6x lo2); 3) 

u*O. Hllz. 

a s  the field intensity is increased i s  due to the single, 
double, e tc . ,  precession of the angular momentum 
of the molecules during the flight between the walls. 
The damping of the oscillations is due to the presence 
of a velocity distribution for the molecules. 

Let us make order-of-magnitude estimates for the 
phase difference 6 for To = 300 K, H = 0 .5  x lo3 Oe. 
AT=100 K, l = 5 0  cm, L = 0 . 2  cm, N=1013 ~ m - ~ ,  
~ = 5 ~ 1 0 = ~ ,  C Y , , - ( Y , = ~ . ~ A ~  (forN,), and 1~.=(0.3-1)  
x lo-'. The substitution of these parameter values into 
(21) leads to the value 6 -10-7 rad. Modern methods 
allow us  to measure the phase difference to within lo-" 
rad. Let us note that the above-presented estimate for 
6 pertains to the case of scattering of N, o r  CO gas by a 
gold o r  platinum surface, for which the magnitude of the 
nonsphericity parameter for a molecule i s  known from 
thermomagnetic effect investigations (IJ.' - 10") and the 
occurrence of (w,ooo # 0) scattering processes leading to 
the tensor polarization of the gas molecules has been 
established. Physically, the model used for u~,ooo im- 
plies that the scattering process i s  isotropic with r e -  
spect to the directions of the velocities v and v' and 
anisotropic like Y,, with respect to the directions of 
the angular momentum of a molecule before o r  after a 
collision. 

5. THE BIREFRINGENCE EFFECT IN  A GAS STREAM 

Let us now consider birefringence in the case of the 
flow of a collisionless gas along the gap (VN Jly) when 
AT = 0. The problem of determining the nonequili- 
brium distribution function f(v, M) of the gas under 
these conditions is solved in Ref. 12. The tensor cp,, 
can thus be computed: 

4.4'>0 

Rpk=wz... (-r, -TSr ;  k) exp ( ip m(L'2+z) ) 
u. 

The index k in the right member of (23) assumes only 
the values i 1. This can be obtained through integra- 
tion over v' with allowance for  the expression (17) for 

W ~ n o o .  

As can be seen from (23), here the birefringence is 
due to another process involving the scattering (w,,,, 
#O) of the molecules by the surface. It is possible to 
split the coefficient w,,,,, into two parts K,,, and D ,,,, 
the f i rs t  of which is invariant under inversion, while 
the second changes i t s  sign in such a transformation: 

The plus superscript  in (24) pertains to scattering by 
the lower surface; the minus superscript, to scattering 
by the upper surface. Substituting (24) into (23). and 
setting H = 0, we obtain the following results .  In the 
presence of a gas flow along the gap the birefringence 
can also be determined by that part  (D,,,) of the proba- 
bility which i s  invariant under inversion. If the su r -  
faces a r e  identical, i. e. , i f  D;,, = D;,, and K;,, =li;,,, 
then cp,, is determined only by that part  of the proba- 
bility which changes sign under inversion, i. e .  , by 
D,,, (the row 5 in Table I). If. on the other hand, the 
surfaces a r e  dissimilar, cp,, is determined by both the 
D,,, and K,,, te rms (the row 4). That part  of cp,, which 
is determined by the K,,, t e rms  then changes i ts  sign 
upon the interchange of the surfaces. 

Below we shall assume that the surfaces a r e  identi- 
cal, and that H# 0. Then, using (24). we can rewrite 
the expression for R,, entering into (23) in the form 

As can be seen from (23) and (25), that part  (li,,) of the 
probability which i s  invariant under inversion gives 
r ise  to a cp,, (birefringence) that i s  odd with respect to 
the middle of the gap (i. e. . with respect to the opera- 
tion % - -%), while the noninvariant part  (D,,) gives 
r i se  to an even cp,,. Notice that the results  agree with 
the results  obtained from the analysis of the symmetry 
of the system (the rows 14 and 9 in Table I). From the 
foregoing it follows, in particular, that the measure- 
ment of the phase difference 6 a s  a function of z in 
H # 0 can provide information about the presence of both 
the invariant and the noninvariant-under inversion- 
parts of the probability for scattering of molecules by 
the surface of a solid. 

Let us  assume that H II k. Then. a s  can be seen from 
(23) and (25), cp,,# 0 only when ,n = i 1. In fact, 

but k = i 1, and therefore rtt = i 1. The elements of the 
permittivity tensor then have the form 

Using (2) and (26), we can find the refractive indices for 
the two waves: 
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n,= (eo+eul) ', n,= (eo-e,,)" for qllz; 

nl=(eofe . . )"~ ,  nl=(eo-e..)'h for qlly; 

n l = ~ ~ r = e ~ b  for ql-. 

The resul t s  of the investigation of the thermomag- 
netic effect allowed u s  to establish the presence of only 
that part  of the probability which i s  invariant under in- 
version (i.  e. , K,,,). Therefore,  we shall, in comput- 
ing 6, proceed from the condition that D,,, = 0. A com- 
parison of the theoret ical  and experimental  resu l t s  ob- 
tained in the thermomagnetic-effect investigations on 
N, and CO gases  interacting with Au o r  Pt sur faces  
showed that the summation indices in the expression 
(17) for  K,,, assume only the values 1, = 1. I = 1, L, = 1,  
1, = 2. Using these values, we can obtain an explicit 
expression fo r  the phase difference 6. Let qlJ x. After  
the integration in the formula (23) with allowance f o r  
(25), we obtain 

Here K i s  a dimensionless coefficient (I K I - 1). The 
integral U , ( w l )  has  the form 

ot 
~ . ( ~ t ) -  j = e = ) ( - l ) o o s T b .  (31) 

0 

The estimation of the phase difference 6 with AAV/N 
- 1 ' 3  and the s ame  values of the remaining parameter  
for  the ,V2 gas  yields 6 - 10'' rad. Figure 1 (the curve 
2) shows a plot of the dependence. 

It can be seen from (30) that the phase difference 6 
changes sign when AAV is replaced by -h,V. a s  well a s  
when z i s  replaced by -e. The la t te r  result  follows 
from the analysis  of the symmetry  of the system (the 
row 14 in Table I). I t  should be borne in mind here  
that, in computing (30), we restr icted ourselves to 
only that part  of the scat tering probability which i s  
invariant under inversion. In the opposite case  the 
expression fo r  6 would have a l s o  contained t e r m s  that 
a r e  odd in z (the row 9). As in the preceding problem, 
the expression for  6 contains only t e r m s  that a r e  even 
in H. At the same t ime,  a s  can be seen from (23). the 
expression fo r  cp,, in the general  ca se  a l so  contains 
t e rms  that a r e  odd in H. The damped oscillation of 6 
a s  the field intensity i s  increased i s  a l so  due to the pre- 
cession of the angular  momenta of the molecules and 
the existence of a velocity distribution fo r  these par-  
t icles.  

6. BIREFRINGENCE IN  THE CASE OF THE 
NONEQUlLlBRlUM STATE CREATED BY THE MOTION 
OF THE SURFACES (THE COUETTE PROBLEM) 

Let the upper plate move along the y axis with veloc- 
ity U; the lower plate, along the s ame  axis with velocity 
a in the opposite direction. Substituting the expres-  
sion (12) for  f(v, M) in the system of integral equations 
(9) with P f  0 (a-k), we find the nonequilibrium dis-  
tribution function f(v, M) of the gas  in the f i r s t  approxi- 
mation in the scattering-nonsphericity parameter  P. 
The integrals  cp,, have, in the f i r s t  approximation in 
the parameter  u/v, ,  the form 

The index k, a s  in (23), a s sumes  only the values * 1. 
This  can be verified by performing the integration 
over v' in (32) with allowance fo r  the expression (17) 
fo r  w,,,,. Thus, the birefringence is determined 
by the s ame  molecule-scattering process  on the s u r -  
face,  that determines the birefringence in a gas  s t r eam 
along the gap. But there i s  an important difference. 
In front  of the second te rm in the expression for  F, 
stands the minus sign, and not the plus sign, a s  is the 
ca se  in (23). This  is a consequence of the fact  that the 
vector characterizing the s ta te  of nonequilibrium here  
is a pseudovector. Indeed, the invariant and nonin- 
variant-under inversion-parts of the probability ex- 
change ro les  when the expression (24) is substituted in- 
t o  (32). As  follows from the analysis  of the symmetry 
of the sys tem,  the symmetry  of the tensor cp,, with r e -  
spec t  to the middle of the gap changes when the vector 
characterizing the s ta te  of nonequilibrium is replaced 
by a pseudovector. Moreover, in the ca se  of identical 
surfaces,  the symmetry of that par t  of the scat tering 
probability which makes the nonzero contribution to  the 
effect in H=O changes. Th i s  can be seen from a com- 
parison of the rows 7-10 and 11-14 in Table I, a s  well 
a s  the rows 5 and 6. Thus,  in the case  of identical 
sur faces  and H = 0, the birefringence i s  determined 
by that par t  of the probability which is invariant under 
inversion, i. e . ,  by K,,, (in the problem with a gas 
s t r eam the effect i s  determined by the noninvariant 
par t  D,,,). If the sur faces  a r e  dissimilar ,  then that 
par t  of cp,, which i s  determined by D,,, changes i t s  
sign upon the interchange of the surfaces.  

Let  u s  write  down F,, with allowance for  (24). assum- 
ing that the sur faces  a r e  identical: 

F,=-D,(L r l ;  L) [exp (ip ) - exp (ip 
L'z u(L12-z)  v, 11 

-K,.(F,, r t ;  k) [erp (C 
L' r v. 

)]. (33) 

A s  can be seen from (33) and (32), that part  of the pro- 
bability which is invariant under inversion (i. e . ,  K,,,) 
gives r i s e  to cp,, that i s  even with respect  to the mid- 
dle of the gap (i.  e . ,  with respect  to the operation 
z - - z), while the noninvariant part  (D,,,) gives r i s e  
to an odd q,,. These  resul t s  a l so  agree  with the r e -  
su l t s  obtained from the analysis of the symmetry of the 
sys tem (the rows 10 and 13  in Table I). 

Let  u s  again assume that H 11 k. Then cp,, P O  when 
m = i  1. The elements of the permittivity tensor Cik 

a r e  given by the formulas (26). Limiting ourselves 
to that pa r t  of the probability which i s  invariant under 
inversion ( i .  e . ,  t o  K,,,) ,  and taking into account the 
values of the summation indices in the expression for  
K,,,, we obtain the following explicit expression for  6 
a s  a function of z and H fo r  H !I k and q I1 ?r: 

42 1 Sov. Phys. JETP 55(3), March 1982 



Here K is a dimensionless coefficient (IKI - 1). The 
integral U, is given by the formula (31). The estima- 
tion of the phase difference 6 with u/v ,  - 1 and the same 
values of the remaining parameters for the N, gas 
yields the value 10" rad. 

As can be seen from (34), the computed expression 
for the phase difference is an odd function of the velo- 
city u and an even function of the field H and the coordi- 
nate z of the ray in the gap. The evenness of 6 a s  a 
function of z is due to the invariance of that part  of the 
scattering probability which i s  determined by the coef- 
ficient K,,, and the invariance under inversion of the 
vector characterizing the state of nonequilibrium in 
this problem (the row 10 in Table I). 

Figure 1 (curve 3) shows a plot of the phase difference 
6 a s  a function of the field. It can be seen that 6(H =0)  
+ 0. This is due to the fact that in this problem the 
vector characterizing the state of nonequilibrium is a 
pseudovector, and in this case, a s  follows from the 
symmetry (the row 6), that part  of the probability which 
is invariant under inversion when H = 0 makes a 
nonzero contribution to the permitivity tensor and, 
consequently, to 6. 
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