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A method is proposed for describing the scattering and bound states of two particles (which may be either 
elementary or composite) whose interaction consists of short- and long-range terms with very different ranges. 
The method is a generalization of Landau and Smorodinskffs theory of proton-proton scattering, which 
describes the combined effect of Coulomb and nuclear forces, to include forces of any nature and the case of 
composite particles. As an example, the problem of elastic protondeuteron scattering at low energies is solved 
by reducing it to the analogous neutron-deuteron scattering problem. 

PACS numbers: 11.80.La, 13.75.C~ 

1. INTRODUCTION a t o m s ,  molecules ,  and excitons, the  interaction of the  
magnetic moments  of nucleons, and t h e i r  nuclear  a t -  It i s  well known that inclusion of the  long-range Cou- 
t ract ion.  T h e  t e r m  V, may cor respond  t o  the nuclear  lomb interaction great ly complicates  the  solution of the  
interact ion of charged complexes, the  exchange repul- three-body problem by the s tandard  method using the 

Faddeev integral  equations, which then no longer  have s ion  of a n  e lec t ron  o r  ion by the  e lec t ron  she l l  of a n  

Fredholm kernels .  It i s  only very  recently that  genera l  ion, and t h e  repulsive hard  c o r e  in the  interaction of 

p rocedures  f o r  overcoming this  difficulty have been nucleons. 

found, but they lead to complicated equations and r e -  In t h e  genera l  c a s e ,  the  t e r m s  of such  a composite 
q u i r e  extensive numerical  calculations ( s e e  Ref 1 ) .  interact ion in te r fe re  so strongly that  the  solution of t h e  

problem cannot be  e x p r e s s e d  in t e r m s  of  the solutions In the presen t  paper ,  w e  draw attention to a s i m p l e  
of the Schrlidinger equations with the  potentials V, and possibility of radically simplifying the solution of many 
Vs separately.  Such a solution is possible  if the  ranges  problems of this  type by reducing them to analogous of the  f o r c e s  are v e r y  different,  

problems without Coulomb interaction. Such prob lems  
include the  descript ion of the  sca t te r ing  and the bound R,<R,. (1.1) 
s t a t e s  of two charged complexes that  a r e  each bound by when the d i r e c t  in te r fe rence  between the  potentials VL 
shor t - range  forces.  T h e  s i m p l e s t  example of th i s  and V, due t o  t h e i r  s imultaneous act ion in the s a m e  re- 
kind-the sca t te r ing  of the  proton (p) on the deuteron gion of s p a c e  i s  s m a l l  and each  of them a c t s  mainly in  
(d)-will s e r v e  a s  a n  i l lustrat ion of the approach,  which 

its "own" domain. 
der ives  f r o m  Landau and ~ m o r o d i n s k f i ' s  well-known 
theory of pp scat ter ing.  T h i s  l a s t  a s s e r t i o n  i s  obvious f o r  V,, which by def- - - .  - 

inition i s  s m a l l  in  the  f a r  region. With r e g a r d  t o  VL, 
This  approach cons i s t s  of a general izat ion of the two- in the  near  region it i s  s m a l l  compared with ei ther  Vs 

par t i c le  problem with Coulomb interact ion to the c a s e  o r  with the  kinetic energy R;2. Thus ,  f o r  the Coulomb 
of composi te  par t i c les  ( the usual  approach i s  t o  gener -  interact ion i t s  r a t i o  t o  t h e  kinetic energy i s  of o r d e r  
a l i ze  the  nuclear  three-body problem t o  the c a s e  when R,/a,<< 1 ;  t h e  s a m e  i s  t r u e  f o r  nuclear  a t t ract ion,  
a Coulomb interaction i s  included). Such a p r o g r a m  can  

which in the  f a r  region i s  of o r d e r  of t h e  kinetic energy 
be  effectively real ized because the deuteron radius1 '  (shallow levels) ,  increasing with decreasing dis tance 
h- '=(2f id) - ' I2= 4 frn (Ed  is the  deuteron binding energy)  is m o r e  slowly than i t s  square .  
s m a l l  compared with the charac te r i s t i c  length of the 
Coulomb interaction a/r .  which i s  the  Bohr rad ius  a, 
= l /  1 a / "43  f m  of the  system. Because of th i s ,  the  
deuteron part ic ipates  to  a considerable  extent in the 
Coulomb interaction a s  a s ingle  entity. and i t s  internal  
s t r u c t u r e  i s  manifested in a comparat ively s m a l l  c o r -  
rection. A s  a resu l t  of this ,  t h e r e  i s  a l s o  a compara-  
tively s imple  connection between t h e  c h a r a c t e r i s t i c s  of 
pd and rzd sca t te r ing  (r2 i s  the  neutron). 

In fact,  the approach appl ies  to  a fair ly  l a r g e  c l a s s  of 
problems in not only nuc lear  but a l s o  a tomic  physics ,  
and a l s o  sol id-state  physics  when it  i s  necessary  t o  d e -  
s c r i b e  the  interaction of two complexes represent ing the 
s u m  of a long-range t e r m  V, ( range  RL) and shor t - range  
t e r m  Vs ( range  Rs). T h e  Coulomb interaction, above 

The  s m a l l n e s s  of the  d i r e c t  interference of the poten- 
t i a l s  V, and Vs (which it  is sufficient t o  take into a c -  
count by perturbat ion theory in VL in t h e  short-range 
region) does  not mean  that  the  in te r fe rence  effects  a r e  
s m a l l  altogether. T h e r e  i s  a l s o  indirect  interference. 
s i n c e  the  long-range f o r c e s  d e t e r m i n e  the probability 
of the  complexes approaching t o  dis tances at which t h e  
shor t - range  f o r c e s  c o m e  into play. If the condition 
(1.1) i s  sat isf ied,  s u c h  effects  can  be  expressed  ent i re-  
ly  in  t e r m s  of t h e  solution ?!, of the  Schriidinger equa- 
tion f o r  the  potential V,, namely, in t e r m s  of AZ 
= 1*=(O) 1 2 ,  t h e  ra t io  of the  probabilities of finding t h e .  
complexes a t  coincident positions in the p resence  of 
V, and in i t s  absence.  

a l l ,  wil l  play the  p a r t  of V,, f o r  which t h e  range  R ,  in  T h e s e  considerat ions essentialLy provide the physical 
the inequalities given below can b e  replaced by a,. b a s i s  of the  Landau-Smorodinskii theory, which leads  
Other  possibi l i t ies  a r e  the v a n  d e r  Waals  interact ion of t o  the  relat ion 
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Here, 6, b,, and 6, are ,  respectively, the phase shifts 
for the potentials V, + Vs, V,, and V, (here  and in what 
follows, the indices identifying the moments. spins, 
etc., a r e  omitted), and K describes the direct  interfer- 
ence. The indirect interference corresponds to the de- 
viation of the factor A2 f rom unity: If A*- 0, then 6 = 6, 
(no short-range interaction). and if A* = 1 and K = 0, 
there  is  no interference a t  all, and 6 = 6, + 6,. 

The main qualitative conclusion of this paper is  that 
if the condition ( I .  1) i s  satisfied. then formula ( 1  2) is  
universal and valid for describing the scattering of both 
elementary and composite particles. The structure of 
the lat ter  affects only K, whereas the left-hand side of 
(1.2) i s  determined by the long-range interaction of the 
complexes as complete entities. Similar conclusions 
can also be drawn concerning bound states,  which we 
describe below as well a s  scattering, using the formal- 
ism of Jost  functions. 

We shall consider only elastic scattering, for which 
only the case of low energies (kR, << 1, kR, arbitrary;  
k is  the momentum of the relative motion) is  nontrivial. 
But if kRs 2 1, then kR, >> 1, and the long-range effects 
a r e  small  and can be described simply by means of 
perturbation theory. '' For same  reason, the long-range 
forces a r e  important in the case of inelastic scattering 
(to which we shall devote a separate paper) only in the 
immediate vicinity of the threshold for the disintegra- 
tion of the colliding complexes. 

2. JOST FUNCTION 

There exists a function that, possessing simple math- 
ematical properties, nevertheless contains many -sided 
information about a quantum-mechanical system (see,  
for example, Ref. 3). In this section, we consider the 
two-body problem with central potential V, + V, (V, 
= av,, in which 0 is the coupling constant) which de- 
creases sufficiently rapidly a t  infinity; here and below 
we shall consider only the s state. Let y ( r )  be the r a -  
dial solution of the Schrijdinger equation 

that tends in the limit r-* to the asymptotic behavior 
exp(ikr). By definition, the Jost  function is  u(k) = q(0). 

It has the following formal properties: a) u( -k) 
=u*(k); b) u(k)- 1 on a large circle in the half-plane 
Im k a  0; c) u(k) is  analytic with respect to k (together 
with the function p) in the same region; d) u(k) is  an en- 
t i re  function of a. If the potential decreases with the 
distance faster than the Yukawa potential, the region of 
analyticity of u(k) extends to the entire complex plane of 
k; otherwise, singularities of u a r i se  in the lower half- 
plane (dynamic singularities). 

The Jos t  function contains the following physical in- 
formation. Its phase is  equal to the phase shift with op- 
posite sign, 

u ( k ) = l u ( k )  l e x p ( - i 6 ( k ) ) .  (2.1) 

and its modulus determines the quantity A introduced in 

Sec. 1: 

The zeros of the Jos t  function in the half-plane Im k >  0 
l ie on the imaginary half-axis and determine the ener- 
gies E,  = - x;/2 of the bound states: 

(the zeros in the half -plane Im k < 0 a r e  associated with 
virtual states and resonances). 

Below, we a lso  need the wave function 5 = ipeib, which 
has the asymptotic behavior 

and also the regular, X = Im 5 ,  and irregular. = Re 5, 
solutions of the Schrodinger equation with asymptotic 
behavior 

%-sin(kr+6) ( r + - ) .  x - l ; r / l u ( k )  1 ( r - 0 ) .  
. -  3 cos(kr+0) ( r - m ) .  z- ltz(k) 1 ( r - 0 ) .  

The function X is a rea l  wave function of the considered 
system. 

The Jos t  function is determined by the equation3' 

2 - 
d ln u ( k )  l d a  - j druL (j(Xi-iX2), 

which describes its evolution with variation of the cou- 
pling constant a (see  Ref. 4) with initial condition rt = rts 

a t  a =  0 ( rcs  i s  the Jos t  function for the potential V,). 
Equation (2.4) follows from the asymptotic behaviors of 
the functions x and ji just given and the relation 

where x , ,  , a r e  arbitrary solutions of the Schrodinger 
equation. and the prime denotes the derivative with r e -  
spect to v. The relation (2.5) itself is  obtained by dif- 
ferentiating the Schrodinger equation for X ,  with respect 
to a, multiplying the result from the left by x , .  inte- 
grating over v from 0 to infinity, and applying Green's 
theorem. 

Equation (2.4) contains the laws of evolution with 
varying 0 of the phase shift, the quantity . A .  and the en- 
ergies of the bound states. Taking the imaginary and 
real  parts of (2.4). we have in accordance with (2.1) and 
(2.2) 

The f i rs t  of these equations has already been widely 
used (see Ref. 4). Further, using the relation 

we continue (2.4) to the point k =in, [see (2.3)). This 
leads to the well-known equation 

dE./da = J dr~r~n', 
m 

where 
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i s  the normalized wave function of a bound state. 

3. JOST FUNCTION FOR COMBINED INTERACTION 

We continue our study of the two-particle problem, 
having a s  our aim the explicit finding of the Jost  func- 
tion when the condition ( 1 . 1 )  is  satisfied. We shall not 
restrict  ourselves to the region of small momenta but 
attempt to obtain a general expression that in the limit 
of large k  goes over into the result of applying pertur- 
bation theory in VL. 

We separate from the function u ( k )  the Jost  function 
u,(k) for the potential V,: 

u = u ~ ~ r .  ( 3 . 1 )  

The quantity zti. which goes over into z i s  when a=O, de- 
scribes not only the effects of the potential V s  but also 
the interference of V ,  and V,. It follows from ( 2 . 4 )  that 

where X L  and z, a r e  the corresponding wave functions 
for the potential V,. 

First. we shall take into account only the effects of 
the indirect interference. which corresponds to the fol- 
lowing mixing of the wave functions (8 = 6  - 6,):  

X'XL cos 8+&sin 8 ,  p-XL sin &faLeos  8,  

which leads to the correct phase shift. Denoting the 
corresponding approximate expression for u1 by ul,, we 
obtain from ( 3 . 2 )  and ( 2 . 5 )  

Using the asymptotic behaviors given in Sec. 2 ,  we can 
write the expression in the brackets in the form 

Finally, integration of the obtained equation using the 
boundary condition a t  a= 0 gives 

Im u. 
wo-US + - Z ( k ) ,  

k ( 3 . 3 )  

The function C ( k )  tends to zero on a large circle in 
the half-plane Im k>0, has Im C  = k ( l /  ( u ,  l 2  - 1 ) .  and is 
analytic together with q,  and u,  in this region every- 
where except the points k  =in,,, which correspond to 
the bound states in the field V,. At these points. C  - - 2xnL  IuL l a ,  which follows from the expression for 
the Wronskian &YE - qL&' = 2ik corresponding to the 
point r =O.  In view of all this. we can use the Cauchy 
formula for the contour C shown in Fig. 1: 

This gives 

FIG. 1. 

Note that the analyticity of the Jost  function in a 
(property d) in Sec. 2  makes it possible to find the 
function Z f i rs t  in the region of a in which there a r e  
no bound states and P = 0 and then continue the result 
analytically to the required region. This approach also 
leads to ( 3 . 5 ) .  

It remains to describe the effects of the direct inter- 
ference between the interactions, which, a s  we have 
already noted in Sec. 1, corresponds to a manifestation 
of the interaction V ,  in the near region that can be tak- 
en into account with sufficient accuracy in the f i rs t  or-  
de r  in a. Below, we shall s e e  the importance of these 
effects, which ensure correct description of the region 
of momenta k R s a  1, and for the Coulomb interaction 
eliminate the inherent logarithmic divergence. It can be 
shown that the effects of the direct interference canbe 
taken into account by replaceing ( 3 . 3 )  by the expression 

where I, which is proportional to a, will be calculated 
below. 

We denote the right-hand side of ( 3 . 2 )  by S ( w )  [and the 
right-hand side of the analogous equation for w o  by 
s,(w,)]. Then 

@(w)=@o(wo)=us.  

Hence, bearing in mind that w ,  is  the inverse of the 
function cp0, we readily arrive a t  (3.6), in which 

To f i rs t  order in a and noting that X and go over a t  
a= 0 into x s  and 2 s ,  the wave functions for the potential 
V, ,  we find 

2 -  
w = t t s [  1 + -j d r v L  (z5xq+ixs2-e'kr sin ( k r )  )] . 

0 

In the same approximation, it follows from (2 .41 ,  ( 3 . 3 ) .  
and ( 3 . 5 )  that - 

Z=-2 drVLetikr 
0 

and 

Using also the readily verified identity 
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we arr ive  a t  the expression 

As i s  necessary, only the region of the short-range 
interaction (the near region) contributes to  (3.7). The 
relations (3.11, (3.5), (3.61, and (3.7) completely solve 
the problem we have posed, 4 '  if the potential V, de- 
creases sufficiently rapidly a t  infinity (the special case 
of the Coulomb potential will be considered below). 

4. SCATTERING AND BOUND STATES. THE 
COULOMB CASE 

The most important physical information about the 
scattering and bound states is  already contained in the 
function w. For scattering, this can be seen by com- 
paring the expressions (2.1) and (3.11, since (up to the 
sign) the phase of the function w is  equal to the phase 
shift difference 6 - 6,. With regard to the bound states, 
which a r e  determined by the zeros of the function u, 
when the interaction Vs is absent, they a r e  associated 
with the zeros of the function w when Vs i s  present. 
This i s  due to the appearance of poles of w a t  points a t  
which u, = 0 [the term P in (3.511, and it i s  completely 
necessary if the bound levels a r e  to be shifted under the 
influence of the interaction Vs. 

Accordingly, using the formula cot(6 - 6,) = -Reull 
Imw and (3.6) and (3.7) to describe the scattering, and 
noting that I << 1,  we obtain 

L - 2 - j  ~ ~ ~ ( x ~ ~ - . . - i ~ ~ ~ k r + a ~ ) ) .  
sin' 6 s  

The structure of (4.1) i s  fully analogous to the Lan- 
dau-~morodinskG formula (1.2). In the limit k - 0. 
introducing 

(as is  the scattering length associated with the poten- 
tial Vs), we find 

As we have already noted, the energies E n  = -x ,? /2  of 
the bound states a r e  determined by the equation w(iwn) 
=O. Introducing the amplitude of scattering on the po- 
tential V,, which has the form f = -Imus/kus, we find 

fs-'(rz,,) + L ( i z , )  =~( i z . ) .  (4.4) 

We consider f i rs t  deep levels near the levels Ens in the 
field Vs. Then perturbation theory with respect to V, 
is  valid, and we readily arr ive  a t  the obvious formula 

The second term derives from L, i.e., ultimately from 
I [see (3.7)]. In the opposite limiting case, when the 
levels a r e  near EnL = -niL/2 and their energy is small 
on the scale of Vs, the arguments on the left-hand side 
of (4.4) can be replaced by zero and (4.3) used. This 
gives, when (3.5) i s  used, 

We now consider the most important class of prob- 
lems of the type discussed in this paper, which i s  when 
the Coulomb interaction l/(ra,) plays the part of V,. 
In this case. the procedure described above i s  not 
strictly valid, since the long-range Coulomb interaction 
makes it impossible to use the formalism of Jost  func- 
tions fully. Nevertheless, the quantity w ,  which de- 
scribes the short-range interaction Vs and its interfer- 
ence with the Coulomb interaction, preserves  all  i ts  
properties." In particular, one can extract from this 
function in the usual manner information about the scat-  
tering and bound states ( see  the beginning of this sec- 
tion). 

With regard to the actual determination of w ,  this can 
be based on Eq. (3.21, which leads to the expression 
(3.61, in which Z can be found directly by explicit solu- 
tion of the Schriidinger equation for the Coulomb inter- 
action. To this end, it is  necessary to rewrite (3.4) in 
the form 

where is the irregular solution of this equation. and 
replace the argument 0 for the time being by the small 
quantity c. The result is  

where C is Euler's constant, and 

~ (=) - r~(=) / r (z ) - -c+(z- i )~  I-l [ , z ( ~ + z - ~ )  1 - I  

Note that the same result is obtained by using (3.5) (in 
the region of repulsion and with subsequent analytic . 
continuation with respect to a,), in which I N ,  must 
be replaced by (see  Sec. 1) 

In the case of the Coulomb interaction, the integral 
I (3.7) also diverges. Truncating it a t  the same c a s  
above, we obtain 

This gives 
2 

w==u,(l-211kao)+ Im[us(l-2Nka,)]  - ($ ( l+ i /ka l )+  In(-ikla.l) +2C) 
kao 

which does not contain divergences. 

From (4.10) it is easy to obtain relations that deter- 
mine the phase shift and energies of the bound states 
(I, = Im l ls inZ 6,): 

2 
A ' ~ t g ( 6 - 6 , ) - c t g 6 ~  =-- (Re$(1+ilkao)+In(klo,l)+l,+2C), 

kao 
(4.11) 

2 1 
fa-' (in.) - - ($(L +-) +1n(n.ia.l)+l.(in.)+2~). (4.12) 

a0 xnao 
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The fiyrst of these is identical to the Landau-Smoro- 
dinskii formulaZ a s  improved by Jackson and Blatt5 (see 
also the detailed investigation in Ref. 6 of the Coulomb 
corrections to the scattering lengths). Equation (4.12) 
was obtained and investigated by Popov, Kudryavtsev, 
Lisin, and Mur.' 

5. SCATTERING AND BOUND STATES OF 
/ 

COMPLEXES 

In this section, which occupies a central position in 
the paper, the results obtained above a r e  generalized 
to the case of the interaction of composite particles 
(complexes), in contrast to structureless particles. 
The radius R,  of the composite particles determines 
the distance between them a t  which the interaction V, 
comes into play. Being, a s  a rule, greater than Rs, 
R, occurs in the condition which replaces (1.11, 

It is  convenient to introduce the coordinates r (the 
vector joining the centers of mass of the complexes) 
and p (the set  of interval coordinates of the complexes 
referred to the centers of mass); the symbol d p  de- 
notes an integral over all the interval coordinates. If 
the distance between the complexes i s  large compared 
with R,, the p dependence of the total wave function can 
be separated in the form of O(p), the product of the 
wave functions of the complexes. This function i s  nor- 
malized by the condition 

Under the same conditions, the interaction V, = ac ,  (it 
depends in the general case on r and p) goes over into 
pL = out ,  which depends only on r and represents the 
long-range interaction of the complexes a s  single en- 
tities. In what follows, the superscript 0 will be added 
to quantities which refer to the interaction Vi. 

Restricting ourselves in this paper to elastic scatter-  
ing and being interested only in the corresponding phase 
shift and the energies of the bound states. we do not 
need to consider the problem of the Jost  function of the 
complexes in its entirety. For what follows, it i s  suf - 
ficient that there exists a function ris(k) corresponding 
to the interaction Vs such that 

[see (2.1) and (2.3)] and also a function that directly 
generalizes (2.4): 

d l n u  2 - -- - --I dp 5 drvL(Xx+ixa). 
da li 

The boundary condition for (5.3) has the form u =us a t  
o = o ,  

~ . + @ ( p )  sin ( k r + 8 ) .  2 - @ ( p )  cos (kr+6)  as r+- .  

In the Appendix, it is shown that relations of the type 
(5.2) with the replacements us - u, 6, - 6, nn, - xn a re  
valid for the solution of (5.3). Therefore, physical in- 
formation can be extracted from the function u(k) in the 
usual manner. 

Turning to the solution of Eq. (5.3) when the condition 

(5.1) i s  satisfied, we shall proceed in exactly the same 
way as above in considering the two-particle problem. 
Introducing the function w [see (3. I)]. we find for it an 
equation that differs in form from (3.2) only by the 
presence of the additional integration over I )  on the 
right-hand side. This equation can also be solved in 
two stages. In the first ,  the direct interference of the 
interactions i s  ignored (as  in Sec. 3, this reduces to a 
mixing of the wave functions), and also the interaction 
V, is  replaced by p,, the long-range interaction of the 
complexes a s  single entities. This stage correspond to 
the equation 

where Zo,xo  and i i ,  X; are ,  respectively, the solutions 
of the ~chrad inger  equations with the potentials V, + 
and p,, containing in the limit r -  Oo the factor G(p). 
The explicit solution of (5.4) has a form analogous to 
(3.2): 

where us i s  the Jost  function for the interaction Vs cor- 
responding to (5.21, and the function C 0  i s  determined 
by (3.5) with V, replaced by Vi (in particular, u, is the 
Jost  function for the two-particle potential pL). 

In the second stage, we take into account the effects 
of the direct interference and the effects of the differ- 
ence between VL and Ve. The effects of both kinds a r e  
associated with the region of short distances between 
the complexes, and therefore they can be considered in 
the lowest order in a. As in Sec. 3, the problem re-  
duces to making the  substitution 

where Z = ( w  -wo)/us a s  a- 0, in (5.5). In this limit, 
it follows from (5.5) that 

and from the equation for u1 that 

Hence, using the identity given in Sec. 3, we obtain 

Here, is and X s  a r e  the wave functions for the potential 
V,, which in the limit r- have, respectively, the 
asymptotic behaviors 

0 (p)cos(kr+bs) and 0 (p ) s in (kr f6a) .  

The relations (5.5)-(5.7) solve the problem we have 
posed of describing the interaction of the complexes. 
Summarizing our investigation, we see  that when the ' 
condition (5.1) is  satisfied, the composite nature of the 
particles is  manifested directly only in the direct inter- 
ference effects, leading to the appearance of the purely 
structural second term in (5.7). Of course, it i s  as- 
sumed that the formulas which a r e  transferred from 
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the two-particle problem now contain the quantities that 
refer  to the interaction of the complexes: us, XS, etc. 

T o  conclude this section, we consider the description 
of scattering and bound states of the complexes. The 
formulas (4.1) and (4.4) obtained above remain fully 
valid if u, and C correspond to the interaction p,, and 
for L(k) we use the expression 

The modification of these formulas in the case  of the 
Coulomb interaction will be considered in the following 
section in connection with proton-deuteron scattering. 

6. PROTON-DEUTERON SCATTERING 

Our above approach can be illustrated by the example 
of the scattering of a proton on a light nucleus; the de- 
scription of this process presupposes that we know the 
corresponding characteristics for the scattering of a 
neutron on the nucleus. The condition (5.1) res t r ic ts  the 
applicability of our approach to light nuclei with Z << 10. 
Below, we shall consider the simplest problem of this 
kind-proton-deuteron scattering a t  zero energy. 

As before, we use the coordinates r (the vector join- 
ing p and the center of mass of the d)  and p (the vector 
joining the components of the dl. In these coordinates. 

The wave function is identical to the d wave function, 
which has the well-known form 

Transformations exactly like those in Sec. 4 again lead 
to formula (4.111, which determines the phase shift. in 
which 2, now has the form 

In the limit k- 0, we obtain a formula similar to 
(4.3): 

where 

h-' =- lim kA'ctg(6-6,) 
k-0 

(it is this quantity that i s  extracted experimentally from 
pd scattering experiments), 

a,' =- lim k ctg 6,  
I-.( 

i s  the reciprocal nd-scattering length, and 

Here we have introduced for convenience the total wave 
function *s(k) =xs /k r  of the nd system. 

Although the relations (6.2) and (6.3) in principle 
solve the problem of describing pd scattering as k -  0, 
we shall not here use the cumbersome data on the wave 
function Sfs. particularly since the experimental data 
for the scattering lengths themselves have an appre- 
ciable spread. For the purpose of an estimate, we 
shall take a simplified expression for *s(0) and assume 
that it i s  equal to its asymptotic behavior @(p)(l -as/r)  
at r greater than the deuteron radius x-' (i.e., for r 
3 S X - ' ,  5 2  1) and replace 9s(0) a s  a function of r by a 
constant a t  short distances: 

The reasonableness of this approximation was verified 
for the example of pp scattering: For  matching radius 
[r, ( r o =  2.3 fm i s  the radius of the potential well) with 
0.8< 5 < 3, the value of Z varies in the range from -7.8 
to -14.3 fm; the experimental value is -7.8 fm. 

Substitution of (6.4) in (6.2) and (6.3) shows that the 
second term in (6.3), which describes the dipole, 
quadrupole, etc., effects. makes a negligible contribu- 
tion on account of the small  numerical coefficients, and 
we ultimately obtain the simple formula (an elementary 
derivation of this formula is contained in our note Ref. 
9) 

As 5 varies from 1 to 3, formula (6.5) gives fo; the 
quartet state, for which as  = 6.4 F, a value of CY in the 
interval 12.3-14.4 fm (the experimental valueR is 10.2- 
13.2 fm). For  the doublet state, as  = 0.7 fm, 71 = 0.9- 
1.7 fm in accordance with Eq. (6.5). and = 1.1-1.5 fm 
according to the experiment of Ref. 8. We see  that for 
all  its simplifications, our approximation gives results 
that a r e  entirely reasonable. 

In following papers, we hope to apply the above ap- 
proach to other problems, in particular, the problem 
of electron scattering on a heavy ion. 

We a r e  grateful to the participants of the seminars a t  
the P.N. Lebedev Physics Institute, the Institute of Nu- 
clear Research, and the Joint Institute for Nuclear Re- 
search, and also A. E. Kudryavtsev for helpful discus- 
sions. 

APPENDIX 

Using a direct  generalization of the proofs of rela- 
tions (2.1) and (2.3) ( see  the end of Sec. 2), we can show 
that these relations a lso  remain valid for the Jost  func- 
tion of the complexes determined by (5.2) and (5.3). As 
regards the f i rs t  of these relations, the matter r e -  
duces to taking the imaginary part  of (5.3). 

(A. 1) 

and generalizing the relation (2.5) to the case of com- 
plexes [this reduces to adding integrals over p on both 
sides of (2.5)], after which the right-hand side of (A.l) 
can be represented in the form -dd/da, which corre- 
sponds to (2.1). 

To prove the validity of (2.3), it is  necessary to  con- 
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tinue (5.3) analytically to the neighborhood of the point 
k =in,. It is  then necessary to introduce the solution 
q(r, p) of the Schrodinger equation having the asymp- 
totic behavior *(p) exp(ikr) a s  r -a .  In terms of this 
function we can express the contents of the brackets in 
(5.3): 

Finally, direct generalization of the arguments that lead 
lead to (2.7) ( s e e  Ref. 3) show that this relation i s  also 
valid for complexes. Ultimately, we obtain the well- 
known equation [see (2.611 

which confirms the validity of Eq. (2.3), used in its de- 
rivation. 

Here and below, Planck' s constant and the reduced mass  of 
the system a r e  taken equal to unity. 
We do not consider here  the particular problem of the inter- 
ference of the Coulomb interaction and the nuclear interac- 
tion in high-energy physics. 

3, The combination jik + ix2 in (2.4) i s  not fortuitous; for this 
quantity is  not subject to exponential growth on a large 
circle with Im k >O in accordance with property b) (see 
above). 

')The presence in (3.6) of u 5 ( k )  us(-k) may ra ise  doubts, 
since, a s  was noted in Sec. 2 ,  this quantity may have dyna- 
mica1 singularities for Im k>O. However, these singulari- 

t ies a r e  in ~e region lk1Rs 2 1 ,  in which perturbation theory 
with respect  to V L  i s  valid, and in such an approximation w 
no longer contains 143 (see above). 
This can be seen by introducing L(r) = exp (ikr)y/cpL and de- 
fining w as b(0). The Schriidinger equation for b has a short- 
range effective potential, and this brings us back & the usual 
formulation of the problem of the properties of the Jos t  func- 
tion. 
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