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The binary correlation function of the random field of a heteropolar semiconductor is calculated by using very 
simple model representations that take the presence of intermediate order into account. It is shown that the 
character of the random self-field, which is a Coulomb field in the absence of intermediate order, changes in 
the presence of the latter, and can be regarded as smooth in a wide range of the intermediate-order parameter 
y = rc / rO (here r ,  is the screening radius and r, is the correlation radius, i.e., the distance in which the binary 
correlation function of the atoms becomes effectively equal to zero). 

PACS numbers: 71.10. + x 

$ 1. INTRODUCTION s.,, (q) =6...+ (n.n.V)'"j dr[g,,, (r) - l ] e l q r ;  

Many properties, particularly electric and optical, of na= 51;' i s  the average concentration of the atoms of the 
amorphous semiconductors can be interpreted on the given type, G n a t  is  the Kronecker symbol, and gaan(r) 
basis of the concept of a random force field acting on the i s  the binary correlation function of the atoms. 
carriers.  

In a number of problems it is  important to know the 
behavior of the correlation functions that describe the 
random field, and primarily the binary correlation func- 
tion 

Y (r, r')=<6V(r)6V(rf)). 

Here 

V(r) i s  the potential energy of the electron in the ran- 
dom field, and the symbol ( ) means averaging over the 
random field. We confine ourselves to macroscopic, 
homogeneous, and isotropic systems, for which it i s  
known that Q ( r , r l ) = Q ( l r  -r'l ). The objects of our 
investigations a r e  heteropolar materials (such a s ,  
e .  g . ,  a-Si : H). 

As shown in Ref. 1, a binary correlation function can 
be expressed in terms of atomic pseudopotentials that 
describe the structure of the compound: 

The indices a and a '  number here the types of atoms 
(or ions), i s  the atomic volume, and va(q) i s  the 
screening pseudopotential of the ion in the empty-core 
approximation, 

v.(q) =4nZ. cos q R,l~R.(q~+r,-~), (2 

where Za i s  the charge of the ion of the a-th type in units 
of the modulus of the electron charge e ,  yo is the 
screening radius, c i s  the inertialess dielectric con- 
stant of the substance, Ra i s  the radius of the empty 
core (it will be shown later that the region r < R, does 
not play a substantial role,  and we therefore assume 
from the outset that Ra=O). The quantity Saae(q) in the 
right-hand side of (1) is the well known interference 
function, which describes the intensity of the elastic 
scattering of x rays,  electrons, and neutrons with 
change of the wave vector by q: 

In amorphous substances we have gane(r) - 1 a s  r - 
and it i s  possiblf to introduce the concept of the corre- 
lation radius ran defined a s  the distance over which the 
quantity [gaa,(r) - 1] effectively vanishes. We shall use 
hereafter a single correlation radius r,, chosen to be 
largest of the lengths c'. The ratio y = r , / r  will play 
the role of the dimensionless parameter of the theory 
(the intermediate-order parameter ). In Ref. 1, \k(r) 
was calculated under the assumption y << 1. In this pap- 
e r  this restriction i s  lifted and the correlation function 
is calculated for the values of the parameter y in the in- 
terval 0 < y < m. We calculate Q(r) by invoking very 
simple model representations that reflect the main fea- 
tures of systems with intermediate order. 

The presence of intermediate order in certain amor- 
phous materials (e. g. ,  in amorphous Se and A1,0,) has 
been established in experiment. The recent serious 
interest in it i s  connected, in particular, with inves- 
tigations of the atomic-matrix oscillation frequencies. 
In the present paper, the intermediate order is  consid- 
ered in general form with an aim at determining its in- 
fluence on the character of the "intrinsic" random field 
in amorphous semiconductors. 

$2. THE CORRELATION FUNCTION \k(r) AT 
SMALL CORRELATION RADII 

We consider the case when the correlation radius r, 
i s  comparable with This situation is realized 
in a number of compounds-the binary correlation func- 
tion has several clearly pronounced peaks that atten- 
uate over a length of the order of several interatomic 
distances. In this case the function gaa,(r) can be ap- 
proximately represented in the form 

where g;,,(r) is the exact value of the function gna,(r) 
in the interval 0 -Cr cr,. 
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With (4) taken into account, the interference function 
(3) takes the form 

We note that by virtue of (2) the main contribution to the 
integral in the right-hand side of (1) i s  made by values 
of q that satisfy the condition 

Since the relation yo>> 51k1', where 51, is  the largest of 
the a,, is  satisfied a s  a rule in the materials consid- 
ered by us,  the inequality y =r,/ro<< 1 is  certainly sat- 
isfied. In this case we have qr,<< 1, for the values of 
q that satisfy the condition (51, hence '. 

S,. ( q )  =6 ...+ 4n(n.r~ . )" j  [g:. (r)  -i]lfdr=S,. (0). (6) 
0 

Using this expression and changing in (2) to the usual 
units for the correlation function (I) ,  we obtain 

4 ' z sin Rz 
F ( R ) = - J  - dz=e-R, R=L, 

nR (1+2)2 rn 

Expression (7) i s  formally the correlation function of a 
random Coulomb field produced by pointlike ions ran- 
domly distributed in space and having a concentration 
n, given by 

We note that by going over in (7) and (9) to extremely 
small correlation radii, and recognizing that accord- 
ing to (6) 

we arrive at the result of Ref. 1. 

$3. SIMPLEST MODEL THAT ACCOUNTS FOR 
THE PRESENCE OF INTERMEDIATE ORDER 

In the case of an ideal crystal with a "rigid" lattice, 
the binary correlation function ga,,(r) in (3) is  of the 
form 

where a, a r e  the lattice vectors. The summation in (10) 
is  over all sites of type a',  and the prime on the sum- 
mation sign denotes omission of the term corresponding 
to the site located at the origin. In this case relations 
(1) and (3) yield, a s  expected 

s,. ( q )  =o, v ( r )  =o. 
The (probably) simplest function g,,c(r) that takes the 

presence of intermediate order into account can be writ- 
ten in the form 

where baa. is  a constant. The interference function (3) 

FIG. 1 .  Plots of the functions F 1 ( R ,  y )  (curve 1 )  and Fz(R, y) 
(curve 2 ) .  defined by Eqe. (14) and ( 2 0 ) .  respectively, vs the 
intermediate-order parameter y at R = 0 .  

corresponding to this expression is  

We consider the case r,>7 51k/3. Changing in (12) from 
summation over the lattice sites to integration with re -  
spect to r (this is valid for q values satisfying the con- 
dition q51L13<< I),  and expressing the constant baa# with 
the aid of (12) in terms of S,,.(O), we obtain 

sin qre c;;r:zrc] 
S..(q) =3Sw ( 0 )  [--- - 

For the correlation function (1) we obtain accordingly 

Here 

12 
FI (R,  Y )  = [y- 'I1 (R,  y )  -y-V2 (R,  y! 1. (14) 

sin R z  sin yz 
d x  

0 

" sin Rz cos y x  
d x  

0 

It follows from (14)-(16) that at y << 1 the function Fl(R, 
y) with R > y practically coincides with the function F(R) 
[see (8)], and a s  y - 0 we again arrive at expression 
(7) for the correlation function *(r). As y - m (which 
corresponds to a transition to a crystal), F,(R,y) tends 
to zero at all R.  

A plot of the function F,(r,y) at  R=O 

is  shown in Fig. 1 (curve 1). Figures 2 and 3 show 
plots of the function Fl(R,y) and plots of the relative 
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FIG. 2. Plots of the function F1, defined by (14). a t  g = 0 
(curve I ) ,  Y = 0.2 (2). y = 0.6 (3) y = 1 (4) and of the relative 
correlation function 5 =F1@ ,y)/Fl(O ,y) a t  y = 0 (I) ,  y = 1 (2). 

correlation function *= \Er(r)/*(O) a t  different values of 
the parameter y. 

$4. MODIFICATION OF THE SIMPLE MODEL 

The model (11) considered in 03 ,  which leads to 
reasonable physical results for the correlation func- 
tion \k(r), contains nonetheless an unphysical discon- 
tinuity at r=re [as a result, in particular, S,,(q) oscil- 
lates and takes on a number of negative values]. This 
discontinuity can be eliminated by replacing the factor 
B(rc - Y) in the expression 

by a continuous function that takes into account that the 
quantity [g,,,(r) - 1]  tends to zero a t  large distances. 
We choose this function to be, for simplicity, the expon- 
ential exp(-r/r,). In addition, we replace the 6-func - 
tion under the summation sign in (17) by some arbitrary 
6-like function, such a s  the normalized Gaussian 

-% 
n-'-on e q  (- (r-a,,) 2/u,2}, 

where on is a constant. Accordingly, the unity in the 
right-hand side of (17) should be replaced by a constant 
(which we designate by b) determined from the condition 
gn,~(O)=O. As a result, (17) i s  transformed into 

FIG. 4. Plots  of the function F2 defined by relatlon (20) at y 
= 0 (curve 1). y = 0.2 (2) y =  0.4 (3) v = 0.6 (4) y = 0.8 (5) y = 1 
(6) and of the relative correlation function 5 = F2(R,y)/5(0,y) 
a t  y = 0 (I), y = 1 (2). 

The function g,,n(r) obtained in this manner satisfies at 
any finite rc the requirement 

lim g... (r) = I ,  ...- 
and goes over into (10) a s  q - 0 and re - (in this case 
b - 1 and b,. - SE,.). 

The quantity 0, should generally speaking be regarded 
as increasing with increasing distance a, from the given 
site to the origin, in accord with the fact that the peaks 
of the experimentally determined binary correlation 
function broaden continuously with increasing distance. 
For simplicity we put nevertheless 

o,,=o=const, 

assuming at  the same time that o<< min{SE:I3). Repeat- 
ing next the same sequence of operations a s  in the cal- 
culation of the interference function S,, #(q) in 93, we ob- 
tain under the same assumptions concerning the values 
of rc and q 

s,. (0) s.., ( q )  = 
(i+qh2)' ' 

The correlation function (1) corresponding to this ex- 
pression i s  of the form 

(0)Fz ( R ,  g),  
C I , ~ (  

(19) 

where 

FIG. 3. Plots of the function_F1 (curves 4 ,  5,  and 6) and of the 
relative correlation function @ corresponding to Fl (curves 1, 
2,  and 3) a t  different values of the intermediate-order para- 
meter y a 1 :  y = 1  (curves 1, 4). 11-2 ( 2 , 5 ) a n d v = 3  (3,6). 

FIG. 5. Plots of the relative correlation function @ =  F2(R,y)/ 
F2(0,v)  a t  different values of the intermediate-order parame- 
t e r r 2 1 :  y = l  ( c u r v e l ) ,  v = 2  (2). y = 5 ( 3 ) ,  v = 8  (4). 
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4 " z sin Rz 
PZ ( R ,  y )  = -5 

nRo ( I + l . )  2 ( l + y ' 2 ) 2  

It follows from (20) that at y << 1 the function F2(R, y)  
can be approximated by the function F(R); we arrive 
thus again a t  the result obtained in 62. As y - - the 
function F2(R, y) tends to zero for any R. A plot of the 
function F2(0, y) = (1 + y)-= i s  shown in Fig. 1 (curve 2). 
Figures 4 and 5 show plots of the function F 2 ( R , ~ )  and 
of the relative correlation function 5 =rk(r)/rk(O) a t  dif- 
ferent values of the parameter y. 

§5. CONCLUSIONS 

The results of 002-4 lead to general conclusions con- 
cerning the influence that can be exerted by the pre- 
sence of intermediate order on the binary correlation 
function qr). 

First ,  an increase of the intermediate-order param- 
eter y leads to a decrease of the mean squared fluc- 
tuation of the potential energy rk, = rk(O), which vanish- 
e s  as y - -, i. e. , on going to the limit of long-range 
order (see Fig. 1). Of course, the character of the 
dependence of rk, on the intermediate-order parameter 
is  somewhat more complicated than that shown in Fig. 
1, since the effective density n, also depends on y via 
the quantities S,,.(O) that must be determined from ex- 
periment. This, nevertheless, does not change the con- 
clusion that *, decreases with increasing intermediate- 
order parameter y . 

Second, with change of the intermediate-order param- 
eter,  a changes takes place in the very character of 
the random field. Thus, a t  extremely low values of the 
intermediate-order parameter, y << 1, the random self- 
field in a heteropolar material can be approximately re -  
garded a s  a Coulomb field' and described in terms of 
the theory of strongly doped semiconductors. Within 
the framework of the models considered in 603 and 4, 
however, the random field is ,  strictly speaking, not 
Coulomb even at any nonzero value of the parameter y. 

In the interpretation of a number of experiments5-lo 
i t  was found to be quite convenient to use the concept of 
a smooth random field, introduced in Ref. 11. It seems 
important therefore to check on the conditions under 
which the presence of intermediate order makes it pos- 
sible to regard the random self-field in a heteropolar 
semiconductor a s  smooth. 

It is known that a field i s  called smooth if the function 
@(r)  has continuous derivatives with respect to the 
coordinates r at zero, and these derivatives decrease 
successively with increase in their order. Usually the 
condition of "smoothness" of a random field i s  of the 
form 

where m is the effective mass of the carr ier  (defined a s  

FIG. 6. Plots of the function cpl defined by relation (24) at dif- 
ferent values of the intermediate-order parameter y s 1: y 
= O  (curve 1). y = 0 . 2  (2); y=0 .6  (3); y = 1  (4). 

in Ref. 11, and rk, is half the mean squared gradient of 
the potential energy. 

Y,= ' / z (  [ V 6 V ( r ) I Z > .  

For a Coulomb random field, the last  quantity diverges 
and the "smoothness" condition (21) does not hold. 

We shall also use a more general smoothness condi- 
tion 

which goes over into (21) as r' - r. 
Taking (91, (13), and (19) into account, the conditions 

(21) and (22) a r e  transformed into 
CIv t (0 ,  Y )  I 

where 

and F, = Fl(R, y) and F, = F,(R, y ) a r e  the functions de- 
fined by Eqs. (14) and (20). 

The functions cp, and cp, were calculated with a com- 
puter for different values of the parameter y. The 
differentiation of the functions F, and F, at R 2 0.01 was 
carried out approximately-the differential of the argu- 
ment was replaced by i ts  finite increment AR = lo4. 
The values of cpi(O, y ) were calculated from the exact 
formulas 

cp, (0 ,  y )  =3e-y{3y-3[~-e-~(y2+~y+~)]}-'-y-', (25) 
~ ~ ( 0 ,  y) =( l+y )"y - ' ,  (26) 

FIG. 7. Plots of the function cpl at different values of the in- 
termediate-order parameter y s 1 : y = 1 (curve 1). y = 2 (2), 
v =  5 (3). 
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FIG. 8. Plots of the function cp2 defined by relation (24) a t  
different values of the parameter y < 1: y = 0 (curve 1). y 
= 0.1 (2). y = 0.2 (3), y = 0.6 (4) y = 0.8 (5). 

obtained from (14) and (20). Some of the calculation re -  
sults a r e  shown in Figs. 6-9. 

For an approximate estimate of the coefficient C we 
put in (23) 

(we note that for many heteropolar materials this quan- 
tity is  undervalued; we thus obtain an overestimate). 
We next set  the effective concentration n, equal to 10'' 
cm", using an estimate given in Ref. 1 and correspond- 
ing to y - 0; the effective mass m i s  set equal to the 
free-electron mass. At & = 10 we then obtain 

It follows from (21a), (25), and (26) that within the lim- 
its of the validity of the estimates [27(a), (b) at low val- 
ues of the intermediate-order parameter, y<< 1, which 
a r e  compatible with the requirement r,=yr,>> 52:I3, the 
smoothness condition [21(a)] i s  satisfied. At y>> 1 the 
satisfaction of the inequality [21(a)] becomes less ob- 
vious [at least in the case (26)], for as y -a the effec- 
tive concentration n, decreases and consequently the 
coefficient C increases. 

The smoothness condition [22(a)] i s  definitely violated 
a t  large distances. Calculation shows, however, that 
this violation takes place aidistances such that the re -  
lative correlation function @ = @(r)/@(O) i s  negligibly 
small compared with unity. For the intermediate-order 
parameters considered by us  in the interval 0.01 G y  
GI0 the condition [22(a)] was found to hold for values 
R =r/ro corresponding to variation of @(r)/@(O) in the 
interval 1 2  @(r)/@(O) 2 0.001 even when the coefficient 
C in (23) was estimated using an effective concentra- 
tion n, smaller by 4-6 orders  than that used to obtain 

FIG. 9. Plots of the function cp2 a t  different values of the par- 
ameter V >  1: y = 2  (curve 1). y e 4  (2). y = 8  (3). 

the estimate [27(b)]. A more detailed estimate calls 
fo r  experimental data, primarily concerning the values 
of Saa.(0). 

In calculations of a number of properties of a dis- 
ordered semiconductor (such a s  the state density in the 
band gap, the position of the Fermi level, and others), 
the character of the behavior of the correlation function 
@(r)  at large distance does not play a major role. In 
this case,  a s  follows from all  the foregoing, the random 
self-field in a heteropolar semiconductor with inter- 
mediate order a t  r,>> in a wide range of the inter- 
mediate order parameter y = r/rO can be regarded a s  
smooth, then the smooth-field model can be used for 
the interpretation of the experimental data. 
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