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Generating functions are found for the Green functions for a photon in an inhomogeneous medium of general 
form, for electrons in an inhomogeneous electron liquid, and also for the inverse permittivity tensor. Similar 
relations, of very general character, are satisfd also by other Green functions for inhomogeneous systems 
under stationary conditions. Use of the relations found for the Green function of a photon in a medium 
enables one actually to sum in general form, for arbitrary inhomogeneous media, the diagram series for the 
contribution of van der Waals forces to the free energy, and to reduce the result to a form convenient for 
applications. It is shown that the expression obtained earlier [Yu. S. Barash and V. L. Gizburg, JETP Lett. 
15,403 (1972)l for the free energy due to van der Waals interactions between bodies has a very broad range of 
applicability. 

PACS numbers: 65.50. + m 

1. INTRODUCTION 

The contribution of van der Waals forces to the f ree  
energy of an inhomogeneous condensed medium, in the 
general case," was f i rs t  considered by Dzyaloshinskii 
and P i t a e ~ s k i i . ' ~ ~  The diagram series found in Ref. 1 
for the free energy could not be summed directly. But 
in order to find general expressions for the contribu- 
tions of van der Waals forces to the s t ress  tensor of an 
inhomogeneous condensed medium and to its chemical 
potential, it was sufficient to find a formula merely for 
the variation of the contribution of van der Waals forces 
to the free energy in a small cvhange of the permittivity 
of the medium. Dzyaloshinskii and ~ i t aevskf i  found that 
this formula has the form 

Here and below, a prime on the summation sign means 
that the term with n = 0 is  taken with weight one half. In 
(1.1), the components of the temperature Green function 
of a photon in the medium satisfy the following equa- 
tions: 

Wn2 rotfkrobl D l m ( u n ,  r, r l )+ -j dr, 811 (iun, r, r i )Btn(wn,  rt7 r') 
c2 - -4nft6,.6 (r-r') . (1.2) 

The relations (1.1) and (1.2) a r e  written here for the 
case of an inhomogeneous anisotropic medium, with al- 
lowance both for its frequency dispersion and for its 
spatial. In this form, allowance for spatial dispersion 
is possible, for example, for a plasma in the random- 
phase appr~ximat ion.~ 

The general expressions that result from formula 
(1.1), after the calculations carried out in Ref. 1, for 
the contributions of van der Waals forces to the s t ress  
tensor and chemical potential of the medium make it 
possible, in principle, to calculate, in specific prob- 
lems, the van der Waals parts of any thermodynamic 
quantities of the body. For such calculations, it would 
be possible also to use the expression (1.1) itself di- 

rectly; but usually this method of solving problems i s  
found to be more cumbersome, because of the neces- 
sity for carrying out in (1.11, in each specific case, an 
integration over the spatial coordinates in the inhomo- 
geneous medium. But in the expression mentioned for 
the s t ress  tensor, the necessity for such integration 
does not arise,  a t  least when one neglects the spatial 
dispersion. 

The question whether there exists a general expres- 
sion for the contribution of van der  Waals forces to the 
free energy, convenient for use in the solution of spe- 
cific problems, is  of interest not only from the meth- 
odological point of view but also for applications. 
Thus, for example, it is found that the van der  Waals 
force of interaction between macroscopic bodies can be 
conveniently found by use of a general expression for 
the free energy (this has been clarified in the example 
of transparent media4). On the other hand, for a com- 
paratively long time the contribution of van der Waals 
forces to the s t ress  tensor of a condensed medium was 
studied better theoretically than was the analogous con- 
tribution to the f ree  energy. Consideration of this last 
quantity is conveniently begun with the following re- 
mark. It is  well known that the energy of the electro- 
magnetic field in the presence of charged particles con- 
tains the energy of interaction between these particles. 
Similarly, the energy of the fluctuational electromag- 
netic field in a condensed medium should contain, in ad- 
dition to the energy of thermal radiation, also the en- 
ergy of such interaction between the particles a s  has a 
fluctuational origin. This is  precisely the van der  
Waals interaction, if we consider the long-wave com- 
ponents of the fluctuational field. In the case of trans- 
parent media, the energy of the equilibrium fluctuation- 
a1 electromagnetic field is obviously described by the 
Planck expression with allowance for the zero-point 
oscillations: 

Here w, are  the eigenfrequencies of the electromag- 
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netic field in the medium. 

Since the frequencies w, a r e  found by solving a 
boundary problem for the macroscopic Maxwell equa- 
tions, it is  clear that the expression (1.3) gives the en- 
ergy of the fluctuational field in a transparent medium 
in the form of a functional of the permittivity. In in- 
homogeneous media, the spectrum of characteristic 
oscillations of the electromagnetic field contains fre- 
quencies substantially dependent on the inhomogeneity 
parameters. In particular, in a system of two bodies 
there a r e  characteristic frequencies dependent on the 
macroscopic distance I between these bodies. The de- 
pendence, resulting from formula (l.3), of the energy 
(and of the corresponding free energy) of the fluctua- 
tional field on distance leads to the appearance of a 
force acting on the bodies. Thus it is  seen that formu- 
la (1.3), valid for the case of transparent media, con- 
tains, in accordance with what was said above, not only 
the energy of thermal radiation but also the energy of 
van der  Waals interaction. As a result, with neglect of 
absorption, the problem of van der  Waals forces be- 
tween bodies reduces to finding the spectrum of char- 
acteristic waves in the system, i.e., it turns out to be 
comparatively simple (it is  true that clarification of 
this question has occupied much time4*'; see  also Ref. 
3). 

For the theory of van der Waals forces, the passage 
to consideration of absorbing media is  very important. 
The point is  that the fluctuational mechanism that leads 
to van der  Waals interaction between bodies is  usually 
importantly related to the spontaneous occurrence of 
fluctuational polarization in the bodies (the only excep- 
tion is the limiting case of large distances 1  >>A,, 
where A, is  a characteristic wavelength for the absorp- 
tion spectrum of the bodies). As i s  clear from the 
fluctuation-dissipation relation, this process is de- 
scribed by means of the anti-Hermitian part of the per- 
mittivity and therefore is  directly dependent on absorp- 
tion in the media. In consequence of its fluctuational 
origin, the free energy of the equilibrium longwave 
electromagnetic field in the medium is a functional of 
the permittivity even with allowance for absorption. 
This fact is in general not self-evident. Thus, for ex- 
ample, it is known that the energy of a nonequilibrium 
longwave electromagnetic field in an absorbing medium 
is in general not expressible in terms of a single per- 
mittivity alone. At the same time, in the special case 
of a transparent medium such an expression for the en- 
ergy of a nonequilibrium field  exist^.^ 

An expression for the contribution of van der Waals 
forces to the free energy, with allowance for absorp- 
tion, was found, in the form of a functional of the per- 
mittivity, earlier7 (see also Ref. 3). In Ref. 7 ,  the fact 
was used that the general expression for the free ener- 
gy of the fluctuational field in a medium must be appli- 
cable, in particular, to a description of electromag- 
netic fluctuations in electric circuits. By starting in- 
itially from a treatment of an elementary RCL circuit 
and then passing to a general dielectric description of 
inhomogeneous absorbing media, the following expres- 
sion was obtained7 for the free energy of van der Waals 

interaction (for simplicity of writing, we suppose that 
the system under consideration consists of two macro- 
scopic bodies located a t  a distance I from each other): 

The function D(8, w, I )  that occurs here has the form 

where the quantities 8,(8, w, I )  a r e  eigenfrequencies for 
certain auxiliary macroscopic Maxwell equations [see 
equation (2.2) of (2.3) below]. The variables 8 on which 
the eigenfrequencies a,(@, o, 1)  depend run through a 
continuous spectrum of values. In a homogeneous me- 
dium, the components of the wave vector play the role 
of the variables 8. In inhomogeneous media, the spe- 
cific choice of the variables 8 depends on the character 
of the inhomogeneities. The function dB) under the 
integral sign in formula (1.4) is  the density of states, 
s o  that for a homogeneous medium this quantity i s  V/ 
( 2 ~ ) ~  (V is the volume of the system). The roots of the 
equation 

a r e  the eigenfrequencies in the system under consid- 
eration, and they depend on the distance between the 
bodies.3e7 In this sense, the free energy of van der  
Waals interaction is found, even with allowance for 
absorption, to be connected with the spectrum of char- 
acteristic waves in the system. 

An RCL circuit is  an example of an inhomogeneous 
absorbing system with frequency dispersion; thus it 
contains all the traits  of the system being studied that 
a r e  most important for the theory. Nevertheless, after 
derivation7 of formula (1.4) it remained not completely 
clear what its range of applicability and its relation to 
the result (1.1) were. It is  to this question that the 
present paper is  devoted. A path to its solution was 
marked out earlier,3 but some essential points were 
omitted. Furthermore, the formulation presented in 
Ref. 3 of the auxiliary-problem method is applicable 
only for nonmagnetoactive media. In the present paper, 
a more general approach is used, which permits us to 
consider magnetoactive absorbing media as well. 

It is shown in the paper that there exists a very gen- 
era l  representation for the Green function of a photon 
in a medium, in the form of the variational derivative, 
with respect to the permittivity, of the function D(8, w) 
that occurs in (2.6). Similar representations exist also 
for other Green functions. By means of this represen- 
tation for the Green function, it is  possible actually to 
sum the diagram series for the contribution of van der 
Waals forces to the free energy, for the general case 
of inhomogeneous dispersive media, and to reduce the 
result to a form convenient for applications. It is  fur- 
ther shown that the expression (1.4) for the free energy 
can be obtained also with the approach used here. 
Hence it follows that the expression (1.4) has a broad 
range of applicability, a s  did other general results, 
known earlier, of the theory of van der  Waals forces. 
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2. A REPRESENTATION FOR GREEN FUNCTIONS 

In this section, we consider a new and very general 
representation for the Green function of a photon in a 
medium. Other Green functions as well satisfy similar 
relations. 

We consider an arbitrary inhomogeneous, anisotropic 
medium with frequency and spatial dispersion. The 
equations for the retarded Green function of a photon in 
such a medium have the form (see,  for example, Ref. 
8 ,  075) 

W e  now introduce two systems of eigenfunctions, 
(b+,a(o), r ) )  and {b',,(w, r)), of the following auxiliary 
integrodifferential equations (macroscopic Maxwell 
equations for characteristic waves in the auxiliary sys- 
tems): 

rot rot @.;(a, r) = ' J dr' @.;(u,r')i(u, rf ,  r ) .  
c2 

The caret on the permittivity here indicates its matrix 
character. The permittivity in Eqs. (2.2) and (2.3) 
is independent of the frequency 0, which corresponds 
to a Fourier transformation of the fields in an auxiliary 
system with respect to time. At the same time, the 
permittivity in the auxiliary equations depends on the 
frequency w as a parameter, and this dependence is 
such that at all frequencies a, the permittivity of the 
auxiliary system is exactly equal to the permittivity of 
the real medium [for which equations (2.1) were written] 
at frequency w. 

I t  is easy to show that the eigenfrequencies Sl,(w) for 
equations (2.2) and (2.3) are the same. For the eigen- 
functions of these equations, we shall use below the no- 
tation 

In the case of nonmagnetoactive media, when the per- 
mittivity is symmetric with respect to  simultaneous 
interchange of the matrix indices and of the coordinates 
r ,  r ' ,  equations (2.2) and (2.3) coincide, and then 
a,'( W ,  r )  = @,'(w, r) .  In the case of nonabsorptive but 
magnetoactive media, when the permittivity is Hermi- 
tian, equations (2.2) and (2.3) are complex-conjugate, 
and then @,'(w, r )  = [ a a - ( w ,  r)]*. But in the general case 
of a magnetoactive, absorptive medium, the solutions 
of equations (2.2) and (2.3) must be considered indepen- 
dent, We shall also suppose that the medium is placed 
in a sufficiently large cavity, with ideally conducting 
walls. 

I t  is evident from equations (2.2) and (2.3) that the 
functions @,'(w, r )  and aam(w, r )  satisfy the conditions 

div{ l  drf ~ ( o ,  r ,  r') @.+(a, rt) 1-0, div { dr' @.-(a, r') i ( u .  r', r) =O. i 
(2.4) 

I t  is assumed below that the systems of functions 
{aai(w, r ) )  are complete, in the large cavity being con- 
sidered, for the classes of fields E t ( w ,  r ) ,  respective- 
l y ,  satisfying the conditions (2.4). This assumption has 

been proved at least in the simplest cases and justifies 
itself over a broad range of problems. 

The index a ,  on which the eigenfrequencies G,(w) of 
the auxiliary problem depend, denotes in general both 
discrete variables (used for enumeration of the 
branches of the oscillations) and variables that traverse 
a continuous or quasicontinuous spectrum of values ( f o r  
example, components of a wave vector). For what fol- 
lows, it is convenient to separate out the continuous 
variables. W e  shall denote them by the letter 0 ,  re- 
serving the index a solely for discrete variables. W e  
shall then write the eigenfrequencies of the auxiliary 
problem in the form S1,(0, w), and when it is necessary 
we shall go over from summation over the variable B to 
integration, 

where dB) is the density of states. 

I t  can be proved (see Appendix) that the Green func- 
tion gi,( w, r ,  r ' )  satisfies the following relation: 

where we have introduced the notation 

The index a here enumerates all the branches of the 
characteristic oscillations in the auxiliary system, with 
allowance for the multiplicity of their degeneracy. The 
quantities Q,, that occur in formula (2.6) are independent 
of the dielectric properties of the medium (but may, for 
example, be functions of the frequency w).  Therefore 
after the taking of the variational derivative, the quan- 
tities 52,,(w) no longer occur in the expression (2.5). 
Introduction of the frequencies 51,,(w) makes it possible 
to determine the function D(6, w )  as a dimensionless 
quantity. Furthermore, i f  in the system considered the 
number of branches of the characteristic oscillations 
is infinite (as  often happens), then the quantities LA,,( w)  
also insure convergence of the infinite product that OC-  

curs in the expression (2.6). Otherwise, the specific 
choice of the quantities O,,(w) is dependent on consid- 
erations of convenience. 

The representation of the Green function in the form 
(2 .5)  is the principal result to which the present section 
of the paper is devoted. For the case under considera- 
tion, longwave photons, equations (2.1) are linear, be- 
cause the permittivity, with good accuracy, is function- 
ally independent of the Green function of the longwave 
photons. I t  can be shown also that the relation (2.5) re- 
tains its form in those cases in which the functional de- 
pendence of the permittivity (or of the polarization op- 
erator) on the Green function of a photon is taken into 
account. Equation (2.1) is then nonlinear, while the 
auxiliary equations (2.2) and (2.3) should remain linear 
as before, but dependent on the Green function of the 
photon as a functional parameter ( in  consequence of the 
dependence of the polarization operator on this param- 
eter). 
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The relation (2.5) can be further transformed, i f  we 
bring in the expression for the inverse permittivity 
E;;(W, r ,  r ' ) ,  to a form similar to the representation 
considered for the Green function. For this purpose, 
we introduce the susceptibility ~ , , ( w ,  r ,  r ' )  of the medi- 
um: 

The quantity &,,(w, r ,  r ')  obviously satisfies the follow- 
ing relation: 

We now denote by y,*(w, r )  and pa(w) the eigenfunc- 
tions and eigenvalues of the auxiliary integral equations 

jdr'x(o,r,r')cp.+(o,r')=~.(e)o,+(~,3, (2.9) 

I t  can be shown (see the Appendix) that the inverse per- 
mittivity satisfies the following relation: 

where we have introduced the natation 

The variables a, in formulas (2.9) and (2.10) denote dis- 
crete variables y and the variables fl that occur sepa- 
rately in the expressions (2.11) and (2.12). The quantity 
pO in (2.12) is independent of the dielectric properties 
of the medium. Therefore after the taking of the varia- 
tional derivative, the quantity po no longer occurs in the 
expression (2.11); otherwise its choice is dependent on 
considerations of convenience. 

With the aid of the relation (2.11), the representation 
(2.5) for the Green function of a photon can be written in 
the following compact form: 

(2.13) 
From a comparison of equations (2.1) and (2.2) and the 

definition (2.6) it is evident that the roots of the equa- 
tion 

are the frequencies of those characteristic waves in the 
inhomogeneous medium under consideration, with per- 
mittivity Eik(w, r ,  r ' ) ,  for which the electric induction is 
nonzero. But from the relations (2.7) and (2.9) and the 
definition (2.12) it is evident that the roots of the equa- 
tion 

are the characteristic frequencies for those electric 
fields in the medium for which the electric induction is 
zero ( in  the case of a homogeneous isotropic medium, 
for longitudinal fields). Thus as follows from the rela- 
tion (2.13) found here, the generating function for the 
Green function of a photon in the medium turns out to be 
directly related to the spectrum of all characteristic 
waves in the system. 

The quantities w2gi,,(w, I ,  r ' )  and E ~ [ ~ ( w ,  r ,  r ' ) ,  as is 
well known, are analytic functions in the upper part of 

the complex plane for the frequency w. I f  this property 
is possessed also by the permittivity &,,(w, r ,  r ' ) ,  then 
it follows from (2.5) that the function D(B, w) is also 
analytic in the upper part of the complex plane for the 
frequency w and furthermore takes no zero values 
there. The last fact is related to the fact that in an 
equilibrium system, only attenuating characteristic 
waves can exist. 

3. EXPRESSION FOR THE FREE ENERGY 

With the aid of the relation (2.5) obtained in the pre- 
ceding section, we shall transform the expression (1.1) 
for the variation of the van der Waals part of the free 
energy. We find 

Here the argument of the spur of the logarithm i s  the 
kernel of the integral operator that represents the per- 
mittivity of the inhomogeneous medium with allowance 
for spatial dispersion. The definition of a logarithmic 
function of an operator argument, as usual, involves 
the Taylor power series for this function. 

The expression in curly brackets on the right side of 
the relation (3.1) obviously describes the contribution of 
van der Waals forces to the free energy of an inhomo- 
geneous condensed medium to within a term independent 
of the properties of the medium. With the form of no- 
tation used, the finding of this term reduces to the find- 
ing of the quantities SZOa(w) that occurred in the defini- 
tion (2.6) of the function D(0, w) and that have not yet 
been fixed in definite form. I f  we are interested in the 
total contribution to the free energy from the interac- 
tion of particles with the longwave fluctuational electro- 
magnetic field, then the quantities n, ,(~) should be de- 
fined on the basis of the requirement that the desired 
expression 

shall vanish in the limit E , ~ ( ~ W , ,  r ,  r ')-  6,,6(r - r'). 
Then we have po = 1 and 

When the condition (3.3) is satisfied, the expression 
(3.2) is a direct result of summation of the diagram 
series for the van der W~aals part of they free energy, as 
defined by Dzyaloshinskii and ~itaevskii.' Since the re- 
lation (2.5) has a very general character, it is clear 
that the expressions (3.4) and (1.1) have the same range 
of applicability. From a comparison of these expres- 
sions it is also evident that the transformation carried 
out has enabled us, in the formula for the free energy, 
to avoid the necessity for performing an integration 
over spatial coordinates in the inhomogeneous medium. 
This is important in the use of the general formula for 
the free energy for solution of specific problems. 

The expression (3.2) can usually be simplified i f  we 
are interested only in van der Waals forces between 
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bodies, or in problems in which the only other thing of 
interest is the part of the free energy that is dependent 
on inhomogeneities. A contribution to  the interaction 
force is made only by terms dependent on the distances 
between the bodies. Therefore it is sufficient to  con- 
sider only the part AF of the free energy: 

The expression ~p ln[~,,( w, r ,  r ' ) ]  is independent of the 
distance between the bodies and makes no contribution 
to the value of AF, provided the dimensions and the 
permittivities of the bodies do not change by any signi- 
ficant amount when the bodies are shifted with respect 
to each other. W e  also take into account that the func- 
tion a@, w) can be factored with respect to the branches 
of the characteristic waves of the auxiliary problem. 
Then from (3.2) and (3.4) we arrive at the expression 
(1.4) found earlier7 for the quantity AF; the function 
D(B, w, I ) ,  defined in (1.5), is now related only to 
branches of the characteristic frequencies that are de- 
pendent on the distance between the bodies. 

According to formulas (1.4) and (1.5), in order to find 
the free energy of van der Waals interaction it is suffi-  
cient to find the quantities A,(B, w, 1 )  that occur in (1.5). 
From (1.5) it is evident also that these quantities can in 
turn be expressed in terms of characteristic frequen- 
cies 51,(8, w, 1)  of the auxiliary problem. I t  is found, 
however, that in the expressions for the quantities 
A,@, w, I ) ,  in which the frequencies w, I )  occur, 
on division of the numerator by the denominator a factor 
remains that is often difficult to  calculate analytically. 
For this reason, in specific problems it is convenient 
to find the quantities A,@, w, 1 )  by a method that avoids 
direct calculation of the characteristic frequencies 
51,(B, w, 1)  for the auxiliary equations (2.2). 

This can be done by at least two methods. For ex- 
ample, it is possible to use the fact that the denomi- 
nators in the Green function, as is evident from (2.5) 
and (1.5) [see also the relation (A.6) in the ~ ~ ~ e n d i x ] ,  
coincide, except for a factor, with the quantities 
A,@, W ,  1).  The factor mentioned can be fixed on the 
basis of the requirement A,@, w, I ) -  1 for I - - .  But 
usually the quantity 

can be found also by a simpler method, without carry- 
ing out a complete calculation of the Green function. 

In fact, assume that by solution of the boundary prob- 
lem, we have found a dispersion equation, dependent on 
the distance between the bodies, for the characteristic 
electromagnetic waves in the system, 

W(B, 0, 1)=0, (3.5) 

this equation is so written that as I - * 
W(B, 0, 1)-+1. (3.6) 

Since Eq. (1.6) has the same physical meaning as E q .  
(3.5), and since furthermore it follows from (1.5) 
that for I -m 

D($,  0,  1 ) - + 1 ,  
(3.7) 

it would be natural simply to identify the functions con- 
sidered, i. e., to set 

W(B, o, l)=D(B, 0, 2). 
(3.8) 

I t  might then be thought that the abstract mathematical 
possibility of constructing other functions [besides 
W ( B ,  w, I ) ]  that vanish at the same values of frequency 
as does the function W ( B ,  w, I ) ,  as was indeed found 
uniquely by direct solution of the boundary problem for 
the macroscopic Maxwell equations, has no physical 
meaning. I t  is furthermore clear that the factors that 
constitute the function W(B, w, I )  and that correspond to 
different branches of the characteristic waves also oc- 
cur directly in the denominators of the Green func- 
tions. I f  this is so, the problem of finding the van der 
Waals part of the free energy AF reduces to finding the 
dispersion equation (3.5) and then using the relations 
(3.8) and (1.5). This method of solution of specific 
problems justifies itself in all known cases and proves 
to be very convenient (see,  for example, Ref. 3 and the 
literature cited there). 

At the same time, a more rigorous establishment of 
the validity of the relation (3.8) than that given above is 
desirable. In order to find certain sufficient conditions 
for the validity of this relation, we shall investigate the 
analytic properties of the functions being considered. 
W e  note that the quantity D(0, w, I )  has no singular 
points in the upper part of the complex plane for the 
frequency w i f  the permittivity c ib(w,  r ,  r ' )  possesses 
the same property (see the end of Sec. 2 of the paper). 
Therefore the presence of these analytical properties 
for the function W(0, w, I )  as well is important for valid- 
ity of the relation (3.8). 

We now introduce into consideration a new function 
W(B, w, 51,l) such that the roots of the equation 

are eigenfrequencies a,(@, w, I )  for the auxiliary equa- 
tions (2.2). From a comparison of equations (2.2) and 
(2.1) it is evident that the value of W(6, w, 51,l) can be 
obtained directly from the expression for the function 
W(0, w, I )  = W(0, w, w, I ) ,  i f  in the latter we replace the 
frequency w, which is not an argument of the permit- 
tivity, by the frequency 51. Here the dependence of the 
permittivity on the frequency w must be le f t  unchanged. 
Consideration of the analytic properties of the quantity 
W(0, w, 51,l) as a function of the frequency 52, instead of 
investigation of the properties of the function W(0, w, I )  
in the complex plane for the frequency w, enables us to 
avoid assumptions about the character of the singulari- 
ties in the permittivity. These assumptions are unim- 
portant for the problem under consideration. We shall 
now show how it is possible to arrive at formula (3.8) 
by starting from certain assumptions about the analytic 
properties of the function W(P, w, 51,l). 

W e  assume that the quantity W(0, w, 51,l) is a mero- 
morphic function of the variable 51; that is ,  in any f i -  
nite part of the complex plane for this variable there 
are no singular points except poles. At the same time, 
the function W(0, w, 51,l) may have an essential singu- 
larity at the infinitely distant point, Furthermore, let 

380 SOV. Phys. JETP 55(2), Feb. 1982 Yu. S. Barash 380 



the function W(p, w, a, 1 )  approach unity sufficiently rap- 
idly when 0 - @. We now consider the follow ing inte- 
gral: 

We close the contour of integration in the integral in 
(3.10) with a large semicircle CR, with radius R = ISZ 1 ,  
in the upper part of the complex plane for the variable 
b. From physical considerations it is  clear that the 
dependence of the function W(B, w, 52,Z) on the distance 
between the bodies must show up significantly only in 
the frequency range Cis I/c. For this reason, the re- 
sult of integration over a sufficiently large semicircle 
CR will not depend on the distance 1. We shall assume 
that in the limit a s  R - +* the contribution from integra- 
tion over the large semicircle is finite, and we shall 
write it in the form 2*i lnI,(B, w). 

In the upper half-plane, by means of small circles Ca 
and C c ) ,  we now separate out small neighborhoods of 
the zeroes SZ,(P, w, 1) and poles SZc'(p, w), respectively, 
of the function W(@, w, a, I). We shall suppose that the 
poles of this function a r e  independent of the distance be- 
tween the bodies and that all  the integration contours 
used a r e  oriented counterclockwise. As a result, by 
means of the theory of residues, we arrive a t  the fol- 
lowing relation: 

We now note that the quantity W(B, w, Ci, I) is  an even 
function of the frequency SZ. This follows from the fact 
that in equations (2.2) only the quantity SZ2 occurs. Then 
the integrand in (3.10) turns out to be an odd function, 
and therefore I, = 0. We shall furthermore find the val- 
ues of the integrals over the small circles Ca and CAW'. 
For this purpose, we integrate by parts in each of them 
and use the argument principle. As a result, we get 
from (3.11) 

W ( B .  a. a. r ) = n  ( e 2 ( p .  a. z ) - ~ ~ ) ~ ~ ( p ,  a )  ,/TI ( ~ : ~ ) ' ( p ,  U) - w 2 ) .  

(3.12) 
The value of I,(P, w) can now be found by use of the con- 
dition (3.6): 

h ( p .  w )  = n (Q:-"($, @ ) - a a )  /n (Qe2 ( p ,  W ,  -) - a 2 ) ,  (3.13) 

It is  evident from (3.13) that if the equality SZ,(P, w,") 
=SZ'"'(@, w) is satisfied for all  the eigenfrequencies 
a,(p, w, I), then the integral over the large circle CR 
must vanish for R-+-. From (3.12), (3.13), and the 
definition (1.5) for the function (1.5) for the function 
D(P,  w, I ) ,  the relation (3.8) follows. 

The conditions used above in the derivation of formu- 
las (3.11)-(3.13) a r e  sufficient, but not necessary, fo r  
validity of the equality (3.8). Therefore the treatment 
carried out is  useful only for those specific problems 
for which the assumptions made above a r e  justified. 
But in consideration of specific examples of the ques- 
tion of the nature of the singularities of the function 

W(0, w, 0, I )  in the complex plane for the variable a, 
the following fact is clarified. It is  found that the na- 
ture of the singularities of the function under consid- 
eration depends substantially on whether the system is 
bounded by ideally conducting walls a t  a sufficiently 
large distance from the bodies. If the system i s  
bounded, then for a physically correct formulation of 
the problem, the function W(@, w, SZ, I) is  mermorphic 
in the variable a. Then the other assumptions made 
above, in the formal proof of the equality (3.8), a r e  also 
satisfied. But if in the problem we pass to the "ther- 
modynamic" limit of a spatially unbounded system, 
branch points appear in the function W(j3, w, Q,1) a t  fi- 
nite values of a. The sufficient conditions used above 
for proof of the equality (3.8) a r e  then obviously not 
satisfied. Nevertheless the equality (3.8) is found to be 
valid even in the limit of a spatially unbounded system. 
From the physical point of view, this last  is entirely 
natural, since it is  clear that the forces in any mean- 
ingful problem cannot depend to a significant degree on 
the presence of the distant walls of the resonator. As 
regards the lormal derivation of the relation (3.8) car- 
ried out above, it follows from what has been said that 
the assumption regarding the meromorphic character of 
the function W(B, w, a, I) in general is of a special char- 
acter. It is justified for a class of certain spatially 
bounded systems, whereas the relation (3.8) is  valid 
also for a broad range of systems not bounded in space. 
But to  get rid of this assumption and find necessary 
conditions for satisfaction of the relation (3.8) in a gen- 
eral  treatment is impossible because of the complica- 
tion of the mathematical side of the problem that 
arises.  

The situation described above applies, in particular, 
to a system of two thick plates, separated by a plane 
gap filled with a liquid.'' It i s  easy to show that in the 
case of the system shown in Fig. l a ,  when the thick 

FIG. 1. Figure lb shows a system consisting of two crystalline 
plates with permittivities c l ( w ) ,  f$w) and thicknesses 1  l 2  
respectively. The system i s  bounded by ideally conducting 
planes at z = 0 and z = L + 1  + 1 2. The gaps are assumed to be 
filled with a liquid with permittivity Cj(w) and total thickness 
L. In the limit 1 i,z/l - ", L /1- the thick plates can obvious- 
ly be represented a s  two half-planes, a s  i s  shown in Fig. la .  
But then the analytic properties of the function W @ ,  w , a , l )  
change significantly. 
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plates a r e  represented a s  half-planes, the function 
W(q, w,Q, I) has branch points Q,'(w, q) =*cq/&,f(w) (p 
= 1,2,3; here q i s  the value of the component of the 
wave vector parallel to the plane of the gap). These 
branch points a r e  caused by the dependence of the func- 
tion W(q, w, a, I) on the quantities 

At the same time, if we take into account the finite 
thickness of the plates and place the whole system be- 
tween ideally conducting walls (see Fig. lb),  then the 
function W(q, w ,  a, I ,  E , ,  I,, L) corresponding to  this case 
is  found to be meromorphic and also satisfies the other 
conditions used in the derivation of formulas (3.11)- 
(3.13). 

4. CONCLUSIONS 

The representation found in this article for the Green 
function of a photon in a medium, in the form (2.13), 
has a very general character. Similar relations can be 
obtained also for other Green functions (see also the 
Appendix). Use of formula (2.13) makes it possible 
actually to sum, in the general case, for arbitrary in- 
homogeneous media, the diagram ser ies  for the part 
of the f ree  energy of a condensed medium due to inter- 
action of the particles with the longwave equilibrium 
fluctuational electromagnetic field. As a result, the 
expression for the free energy is described by the re -  
lations (3.2) and (3.3). In the application to problems 
concerning van der  Waals forces between bodies, the 
expression for the free energy can usually be simpli- 
fied further and reduced to formulas (1.4) and (1.51, 
found earlier? The approach developed here enables us 
to explain the broad range of applicability of these re-  
lations and their relation to :he results of 
~ z ~ a l o s h i n s k ~  and Pitaevaskii.' It should also be noted 
that formulas (3.2) and (3.3) describe also the free en- 
ergy of an inhomogeneous plasma in the random-phase 
approximation. It is  important that in the solution of 
specific problems one can use, besides formulas (1.4) 
and (1.5), also the relation (3.8). As a result it is  found 
that it is  simpler to find the van der  Waals forces be- 
tween bodies by using the general expression fo r  the 
f ree  energy rather than for the s t ress  tensor. 

APPENDIX 

The eigenfunctions and eigenfrequencies of the auxil- 
iary equations (2.2) and (2.3) possess some very useful 
properties. To derive the f i rs t  of them, we multiply 
both sides of (2.2) scalarly by +,-(w, r )  and both sides 
of (2.3) by @,+(w, r). We then perform a volume inte- 
gration in both equations, using integration by parts and 
the boundary conditions on the ideally conducting walls 
of the large cavity. Then after some simple calcula- 
tions we find that for the nondegenerate modes, the 
eigenfunctions of the auxiliary problem satisfy the fol- 
lowing orthogonality relation: 

Here the normalization function N,(w) has the dimen- 
sions of energy. For degenerate modes, the orthogon- 
alization (A.l) can be carried out by appropriate choice 

of the independent eigenfields; this also will every- 
where be assumed done. 

We shall now find an expression for the variation 
b a a  of an eigenfrequency of the auxiliary problem. For 
this purpose we vary all the quantities in equation (2.2) 
with a small variation of the permittivity. The latter 
may be produced either by changes of the physical pa- 
rameters that describe the condensed medium o r  by 
change of the frequency w. We then multiply both sides 
of the resulting relation scalarly by @a-(w, r )  and inte- 
grate all terms over the volume of the large cavity. 
We furthermore transform the term on the left side of 
this relation, integrating by parts and using the bound- 
ary conditions on the ideally conducting walls of the 
large cavity and Eq. (2.3). As a result we get 

Below, we shall need also the following relation: 

The correctness of formula (A.3) can be shown by per- 
forming an integration by parts in its left member and 
then using Eq. (2.3) and also the boundary condi- 
tions for the fields on the walls of the large cavity. 

It follows from Eqs. (2.1) that the retarded Green 
function of a photon in the medium satisfies the condi- 
tions 

Hence, in accordance with formulas (2.4) and the dis- 
cussion of them, it is clear that the expression for the 
Green function can be represented in the form of the 
following expansion: 

We now substitute this expansion in (2.1) and use the 
relation (2.2). We then multiply both sides of the re-  
sulting equation scalarly by @,:(w, r )  and perform an 
integration over dr. We then find explicit expressions 
for the coefficients a,(w) by using the relations (A.3) 
and the orthogonality condition (A.1). As a result, we 
get the following expression for the Green function: 

It can be shown that in the special case of a homogen- 
eous and isotropic medium, the relation (A.6) corre- 
sponds to the well known result. 

The relation (2.5) follows from formula (A.6) by use 
of the definition (2.6) for the function D(@, w) and of the 
expression (A.2) for the variation of the eigenfrequen- 
cies of the auxiliary problem. 

The method of obtaining the relation (2.11) i s  com- 
pletely analogous to the derivation of formula (2.5) giv- 
en above. In this case, the orthogonality relation for 
the functions q,'(w, r )  and q,-(w, r )  has the form 
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= I drp...- (o ,  r) p.=+ (a, r) =~.,vN$' ( o )  . (A.7) 

The expression for the variation 6 I,( w) of the eigen- 
values is written a s  follows: 

Then from the expansion for the inverse permittivity, 

eIk-, ( a ,  r, r') = 
1 v:,<(o, r)v:,k(m, r') $ i+*n,(0) N:' ( 0 )  (A.9) 

and from formulas (A.8) and (2.12) we arr ive  a t  the r e -  
lation (2.11). 

Starting from formula (A.2), one can also find a gen- 
eral  expression for the variation 6w,(B) of the real  (not 
the auxiliary) system. In fact, let the eigenfrequency 
w,(B) correspond to the eigenfrequency n,(B, w) of the 
auxiliary problem. Since the frequency w,(B) is  a root 
of Eq. (2.14), it follows from the relation (2.6) that 
na2[B, w,(B)]= w,TB). Then for the variation of the 
quantities under consideration in a small  change of the 
physical characteristics of the medium, we get the r e -  
lation 

6{Qa(B, o=))p-conn+ a Q ~ ( B ~  0.) 6oa=60a. a@, (A. 10) 

For simplicity of the notation, here and below we do not 
write the arguments of the function w,(B) explicitly. 

We now take into account that for w= w,, the eigen- 
functions of the auxiliary equations (2.2) [or (2.3)] co- 
incide with the eigenfields E,*(@, r )  in a medium with 
permittivity ~ ~ ~ ( w , ,  r ,  r', BO) [or with the fields E,-(P, r )  
in a medium with permittivity &,,(w,, r ,  r', -B,); here 
B, is a magnetic field due to the magnetoactive proper- 
ties of the medium]. Then it follows from (A.lO) and 
(A.2) that 

A formula for the variation bw, of the eigenfrequency 
is  necessary, for example, in order to find an expres- 
sion for the variation 6F, of the f ree  energy of the 
characteristic electromagnetic wave E,(P, r )  in a 
transparent medium during an adiabatically slow change 
of the permiuttivity. This problem has been considered 
by Pitaevskii." In a linear transparent medium, the 
number of photons of a given mode is an adiabatic in- 
variant. Therefore we have, in analogy to the expres- 
sion for the adiabatic variation of the energy of an os- 
cillator, 

bFC(:F,=60,/m.. (A. 12) 

The expression for the free energy of a characteristic 
electromagnetic wave in a medium, with neglect of ab- 
sorption, can be written in the form (see, for example, 
Ref. 11) 

1 1 d(uazei~(ua, ri, r2 
F,= - J dr,dr, - ')Em,,(r2) E ~ , I  (rJ 

16n 0. do, 

Here formulas (A.1) and (A.2) have been used in pas- 
sage to the last  expression. From (A.12), (A.13), and 
(A,Jl) we now get, for nonabsorbing media, Pitaev- 
skii's result 

" 
In Pitaevskii's paper,'' the formula for the variation 

boa of the eigenfrequency in a transparent medium was 
obtained by consideration of nonattenuating electromag- 
netic oscillations in the simplest LC circuit. Here we 
have obtained the expression (A.ll)  a s  a general result 
of the electrodynamics of continuous media. Then the 
broad range of applicability of formula (A. 14) also be- 
comes clearer. 

Relations of the type (2.5) and (2.11) can actually be 
obtained for any Green functions. In closing, we shall 
consider by way of example the retarded Green function 
G,,(w, r,, r,) for an inhomogeneous anisotropic electron 
liquid. This quantity, a s  is  well known, satisfies the 
following relation (see, for example, Ref. 8, § 62): 

A* 
(o+p+ ,)G.(., s. r.1- j sCrc.. r,. r f ) ~ . c u .  r r ,  s)=ad(rl-r,).  

(A. 15) 

where c,,(w, r,, r') is  the self-energy function, and 
where the indices i, j, k now correspond to  spin vari- 
ables. Equation (A.15) i s  nonlinear, since the self-en- 
ergy function and the chemical potential depend func- 
tionally on the Green function of the electrons. 

We now introduce the following auxiliary equations: 

A 
( + )  r = d ,  I ,  , . (A. 17) 

The self-energy function and therefore the solutions of 
the linear equations (A.16) and (A.17) depend on the 
Green function of the electrons a s  a functional param- 
e ter  (which has not been written explicitly). The char- 
acteristic of Eqs. (A.16) and (A.17) is  that the self- 
energy function that occurs in them is independent of 
the frequency a, which corresponds to a Fourier ex- 
pansion of the solutions of these equations with respect 
to time. At the same  time the self-energy function de- 
pends on the frequency w a s  a parameter, and this de- 
pendence is  such that a t  all frequencies n the self-en- 
ergy function is taken for the electron liquid under con- 
sideration a t  frequency w. 

The advantage of introducing the auxiliary equations 
(A. 16) and (A. 17) is  that their solutions possess very 
useful properties. In fact, by starting from Eqs. 
(A.16) and (A.17) and proceeding in analogy to the deri- 
vation of formulas (A.l), (A.7) and (A.2), (A.8), it is  
easy to obtain the orthogonality relation 

JdqG(o ,  r ) ~ , , ( o ,  r ) = 6 , , , . ~ , ' ~ '  ( a )  (A.18) 

and the expression for the variation 651,(w) of the eigen- 
frequency 

The following desired representation for the Green 
function is  then obtained: 
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x:t(a, fi)~G(w, h) -- 
8 ( jp ( i )d f ln~( ' ' ( i .  a ) )  

Gi'w' r'* Q)=Z (wtP-Qv(w) )Nv'(a) 6Zjdw, rz,rt) 

(A. 20) 

The quantity D(=Y6,  w) that occurs here has the form 

The quantity ah') is independent of the properties of 
the electron liquid, and after taking of the variation 
derivation it no longer occurs in the expression (A. 20). 
The variables v here denote both discrete variables k 
and continuous (or  quasicontinuous) variables f , which 
occur separately in the writing of formulas (A.20) and 
(A.21). 

It is  evident from a comparison of the relations 
(A.15) and (A.16) that the roots of the equation 

give the energy spectrum of the electron liquid. Thus, 
a s  follows from (A. 20), the generating function for the 
Green function G,,(w, r,, rJ turns out to be directly re- 
lated to the spectrum of excitations of the electron liq- 
uid. 

')The difference between the analytic properties of functions 
from the dispersion equations for systems of plates bounded 
and unbounded in space were discussed earlier by ~chram. '  

We note that the system of plates bounded in space investi- 
gated by him differs from the system considered here and 
shown in Fig. lb. Furthermore, Schram considered only the 
case of a transparent medium, the permittivity of which has 
no singular points in the complex frequency plane except 
poles on the real axis. 
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