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Various mechanisms are analyzed which lead to nonlinear phenomena (e.g., the dependence of the absorption 
coefficient and of the velocity of sound on its intensity) in the propagation of transverse shortwave sound in 
pure superconductors (the wavelength of the sound being much less than the mean free path of the 
quasiparticles). It is shown that the basic mechanism, over a wide range of superconductor parameters and of 
the sound intensity, is the so-called momentum nonlinearity. The latter is due to the distortion (induced by the 
sound wave) of the quasimomentum distribution of resonant electrons interacting with the wave. The 
dependences of the absorption coe!Ecient and of the sound velocity on its intensity and on the temperature are 
analyzed in the vicinity of the superconducting transition point. The feasibility of an experimental study of 
nonlinear acoustic phenomena in the case of transverse sound is considered. 

PACS numbers: 74.30. - e, 43.25.Ba 

As is well known (see, for example, Ref. 1, p. 801, 
the absorption of transverse sound in superconductors 
can differ significantly from the absorption of longitud- 
inal sound. Thus, in the transition to the superconduct- 
ing state, the absorption coefficient of transverse sound 
decreases sharply in a number of cases, and upon a 
further lowering of the temperature T it falls off more 
smoothly, in proportion to exp[-&(~)/T], where A(T) 
is the width of the superconducting gap a t  the tempera- 
ture T. The qualitative explanation of this phenomenon, 
given in Ref. 1, i s  that the electromagnetic fields which 
accompany the propagation of transverse sound in a 
superconductor a r e  screened a s  a consequence of the 
Meissner effect. Therefore, whereas in a normal met- 
a l  the electromagnetic fields make a significant con- 
tribution to the sound absorption, on going to the super- 
conducting state they a r e  screened and the absorption 
decreases, Correspondingly, a singularity develops in 
the temperature dependence of the transverse sound 
velocity near the transition temperature T, (Ref. 2). 

Electromagnetic sound absorption has been studied 
theoretically and experimentally in a number of works 
(Refs. 3-8 and others). It was shown in these re -  
searches that the absorption coefficient of shortwave 
sound (with a wavelength 2n/q much shorter than the 
f ree  path length I of the electrons) in the vicinity of T, 
is  directly connected with the response function of the 
superconductor to electromagnetic excitation. This 
circumstance offers a unique opportunity of determin- 
ing the time and space dispersion of the complex elec- 
trical conductivity of the superconductor (we note that 
in the expression for the surface impedance, from 
which the response function is usually assessed, con- 
tains an integral of this function over all  the wave vec- 
tors q). Similar information can be obtained by using 
the temperature and frequency dependences of the ve- 
locity of transverse sound in the vicinity of Tc.2 In this 
connection, a number of works have recently appeared 
on the study of the electromagnetic properties of super- 
conductors by acoustical methods. 

At the present time, experimenters have succeeded 
in introducing sound waves of sufficient intensity (both 

longitudinal and transverse) into a superconducting 
crystal, s o  that nonlinear phenomena a r e  clearly ob- 
served in the absorption and change in velocity of the 
sound.g Along with this, in the overwhelming majority 
of theoretical researches on the electromagnetic ef- 
fects in transverse-sound propagation, the analysis has 
been carried out within the framework of a theory lin- 
ear in the sound wave amplitude. The only exception 
has been the works of Bulyzhenkov and I v l e ~ , ' ~ ~ "  where 
the effect on the sound absorption of the heating of the 
particles by the field of the superconductor, created by 
the sound wave, was considered in the case in which 
the sound wavelength is much smaller than the coher- 
ence length of the superconductor to, and also the work 
of Ivlev and Kopnin,12 where this phenomenon was con- 
sidered for  a very high frequency transverse sound 
[Ed> ~ A ( T )  where o is  the sound frequency]. 

The purpose of the present work was the considera- 
tion of different mechanisms of nonlinearity of absorp- 
tion and change in the velocity of transverse shortwave 
sound, and a comparison of their contributions. We 
limit ourselves to the case of shortwave sound of suffi- 
ciently low frequency, in which, along with the condi- 
tion ql>> 1, the conditions 

a r e  also satisfied. These inequalities a r e  compatible 
with the condition ql>> 1 only in very pure superconduc- 
tors,  for which I > >  5,. We shall consider just such 
superconductors. 

In the situation of interest to us, the interaction of 
sound with the quasiparticles of a superconductor is  
conveniently studied with the help of the kinetic equation 
for the distribution function n, of the quasiparticles of 
the superconductor:13"4 

an, a e  an a e  an, -+ -2-+- + 1 (n,) =0, 
at a p  ar ar a p  

where E(p, r )  is _the Hamiltonian function of the quasi- 
particle, while Z(n,) is the collision operator. The 
Hamiltonian function E(p, r) which describes the inter- 
action of the electrons with the sound wave can be rep- 
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resented in a se t  of coordinates comoving with the de- 
formed lattice in the form15 

where mo is the mass of the free electron, &,(p) is the 
bare energy spectrum, v =  a & , / ~ p  is the electron veloc- 
ity, A is the vector potential of the electromagnetic 
field (in our gauge, div A = O), u is the displacement 
vector in the sound field ( u l q l l x ) ,  and cF is the Fermi 
energy. The quantity A can be assumed to be a function 
only of the components of the quasimomentum that a re  
transverse relative to q; it is  even and the characteris- 
tic scale of its change is of the order of the Fermi mo- 
mentum pF. The Hamiltonian function (3) is  obtained 
with the help of the Bogolyubov-De Gennes equations" 
by substituting in them of the Hamiltonian function of 
the normal state 

The collision operator in (2) has the standard f ~ r m . ~ ' * ~ ~  

We now proceed to a comparison of the various mech- 
anisms of nonlinearity. One can imagine a competition 
between three mechanisms: 1) heating of the quasipar- 
ticles by the field of the sound wave, considered in 
Refs. 10-12 for the case qc0>> 1; 2) change in the mod- 
ulus of the order parameter A due to pair breaking by 
the vortex currents flowing in the sample; 3) "momen- 
tum nonlinearity," due to significant distortion of the 
quasimomentum distribution of the quasiparticles re-  
sponsible for the interaction with shortwave sound. For 
the case of a normal conductor, this mechanism i s  con- 
sidered in Ref. 15. 

We begin with the f i rs t  mechanism. According to  Ref. 
10, in the presence of an intense sound wave, the dis- 
tribution function n, averaged over the surface of con- 
stant energy & can deviate significantly from equilibri- 
um in the region of small energies, determined by the 
estimate 

where u, is the displacement amplitude in the sound 
wave, w is the speed of sound, v, is the Fermi velocity, 
T, is the relaxation time of the energy of the quasipar- 
ticles. We shall show that this estimate is also valid in 
the region of low frequencies (1). Integrating the kin- 
etic equation (2) up to second order in the amplitudes of 
the displacement andof the electric field, and then averag- 
ing over the constant-energy surface and over the per- 
iod of the sound wave, we obtain the following equation 
for n, in the region E - A  << A: 

where (Y is a number of the order of unity, Et is the 
amplitude of the effective electric field 

A 

I, is the operator of collision with phonons, :veraged 
over the constant energy surface. If we set  I,(n,\ 
=(n, -no)/r, (no is the equilibrium distribution function), 
we find that the nonequilibrium part of the distribution 

function is not small in a low-energy region, of width 

We shall be interested below in the region of compar- 
atively low frequencies, in which the electromagnetic 
effects play the dominant role in the normal state. This 
region is defined by the inequality 

where w, is the plasma frequency. In a typical metal, 
wlZ log sec-'. In the region (8)8eE~-mwZvFuo/w. Sub- 
stituting this estimate in (71, we again obtain the in- 
equality (5). We note that the right hand side of (5) con- 
tains the product of A and a quantity which is small a t  
any reasonable sound intensity, &, << A, Therefore, the 
heating cannot change the order of magnitude of the ab- 
sorption coefficient-only the logarithmic contribution 
changes, which is small at1' To - T << To (Ref. 8). This 
contribution is determined by the energies E - ~ = l w .  
Therefore the nonlinearity connected with the heating 
can appear a t  co2  h'w. For  a comparison of the heating 
with the momentum nonlinearity, we take it into ac- 
count that for the latter the characteristic parameter, 
a s  will be seen, is the quantity 

(the momentum nonlinearity can appear a t  a2  1). It fol- 
lows from (5) that 

Therefore, in order that the heating appear before the 
momentum nonlinearity, it i s  necessary that the coeffi- 
cient of aSl5 in (9a) exceed unity, or  

At A = 1 K, ' w= 2.108 sec-', T, = 10" sec the right side 
of (10) is of the order of lo5. We note that, even upon 
satisfaction of the condition (lo),  when the heating be- 
gins to appear earlier,  allowance for the momentum 
nonlinearity is  significant. Actually, the heating cannot 
change the order of magnitude of the absorption coeffi- 
cient. At the same time, the momentum non-linearity 
significantly changes the order of the magnitude of the 
absorption coefficient. Furthermore, in the regime of 
developed momentum nonlinearity, the region of low 
energies no longer determines the absorption. 

We now discuss the second mechanism. We compare 
the density of the vortical currents with the density of 
the pair-breaking current p,v,-A. Using the linear- 
theory expression for the current densitys we show that 
the dimensionless parameter that determines the role 
of pair-breaking has the form 

If the ratio (11) is small, then the corrections a r e  de- 
termined by its square. If the ratio is of the order of 
unity, then the pair breaking effects can lead to a sig- 
nificant nonlinearity in the absorption of the sound. At 
typical values of the parameters of the metal and a t  T, 
= 10 K, the coefficient of a Z  is 10(ql)-2[Tc/(T, - T)I3l2. 
We shall assume it to be small (by virtue of the large 
value of q l )  and neglect the pair breaking effects. 
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W e  now proceed to a more detailed analysis of  the 
momentum nonlinearity. The first part of the problem 
consists in the calculation of the nonlinear response of 
the flow to the acoustic perturbation, for which we must 
solve the kinetic equation ( 2 )  in the approximation lin- 
ear in the sound amplitude. For this, as also in the 
case of a normal metal,15 it is convenient to transform 
to new variables p' and r ' ,  so that the kinetic equation 
takes on a much simpler form. W e  carry out this 
transformation with the help of the function 

@ (r, p', t )  =pfr-m,A(v'u) . (12) 

With account of the condition I &,/ax, I << 1 that the de- 
formation in the sound wave be small, this transforma- 
tion has the form 

The Hamiltonian function for the normal state in the 
new system of variables is 5(p1) - eAev'/c, where t (p )  
= co(p) - Elr. Its substitution in the Bogolyubov-De 
Gennes equation gives 

~'(p' ,  r') =E (p') -eA'vtlc, e(pt) =[Ez(p') +Az]"'. (14) 

We note that the energies of the quasiparticles in the 
coordinate frame comoving with the deformed lattice, 
as expressed in the new coordinates E ' (p l ,  r ' )  - m 0 ~ ( v 1 u ) ,  
should appear in the arguments of the 6-functions in the 
collision operator of the kinetic equation. With account 
of this, representing the solution of the kinetic equation 
in the form no[E(p', r ' ) ]+n" ' ,  we can obtain the follow- 
ing formal solution of the kinetic equation ( 2 )  ( for  brev- 
ity, we shall omit the primes on the variables in what 
follows), c f .  Ref. 15: 

where 

is the operator of the kinetic equation. The second 
term in the square brackets in (15) describes the so- 
called mechanism of incomplete dragging of the elec- 
trons. At ql>> 1 this mechanism makes a negligibly 
small contribution to the sound absorption in the range 
of frequencies of interest to us. Moreover, this mech- 
anism is determined by the nonresonant electrons, and 
therefore the indicated contribution to the absorption 
does not depend on the sound intensity S for reasonable 
values of S. By virtue of this fact, we shall not take 
into account below the second term in the square brack- 
ets in (151, and for the determination of all the quanti- 
ties of interest to us we need only construct the opera- 
tor %-' that is the inverse of the kinetic-equation oper- 
ator i. Actually, knowing n"', we can calculate the 
mean absorbed power P ,  which determines the sound 
absorption coefficient r: 

where the angle brackets denote averaging over the 
period of the sound wave, and the operator 

determines the effective conductivity. The field Ee in 

(17) should be determined with the help of Maxwell's 
equations with the bare current density 

where No is  the concentration of the electrons. The ex- 
pressions for the tensors C,, and K,,, which describe 
the nondissipative part of the electromagnetic response, 
are easily obtained from the kinetic equation. For 
brevity, we shall only write them down for an isotropic 
quadratic spectrum, when these tensors degenerate into 
scalars: 

Here m is the effective mass of the electron, 6 ,  
= ( 4~~ , , e~ / rnc~ ) " '  is the London penetration depth, 

is the so-called concentration of  superconducting elec- 
trons, equal to 2N0(Tc - T ) / T ,  at T ,  - T << T,. Thus, the 
first  paft of the problem is the construction of the op- 
erator B" and the determination of the effective conduc- 
tivity operator. A similar procedure for the case of the 
normal metal was carried out in Ref,  15. W e  shall now 
show that over a rather wide range of sound intensities, 
we can use the results obtained for the normal state. 

As in the normal state, the principal contribution to 
the absorption and the electronic correction to the 
sound velocity are made b y  quasiparticles whose group- 
velocity x component is  close to w. Since w << v, and, 
as will be seen, typical values of  the ratio 5 / &  are of 
the order of unity, the quasiparticles with small v, are 
important. Therefore, only the "departure" part in the 
collision opyator is important and we can represent it 
in the form I(n"')  =n"'I 5  I/&?. Setting 

we have the following equation for X: 

The equations of the characteristics for (21) have the 
first  integral 

E (p) -pxw-eA'vlc-const. (22) 

As in the linear regime, the principal role is played by 
resonant quasiparticles, for which the difference U 
= u,[/E - w is  small. I t  can be seen from Eq. ( 2 2 )  that 
the trajectories of these quasiparticles are generally 
more complicated in the superconducting state than in 
the normal conductor. Actually, in the case of motion 
along the trajectory, both v, and the ratio 5 / &  change. 
To  sum up, two types of processes of reflection of the 
quasiparticles from the profile of the sound wave are 
possible: 1) ordinary reflection, when u, vanishes at 
a certain point, and 2 )  reflection of the Andreev type, 
when 5 vanishes at some point and the group velocity 
changes sign without change in the sign of u,-the 
quasielectron transforms into a quasihole after reflec- 
tion. The role of Andreev reflection for th? case of 
longituvdinal sound has been studied b y  Galaiko, 
Shumeiko and ~rzysz ton ' . '~  We  restrict ourselves here 
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to the case in which the Andreev reflection is  unimpor- 
tant; this case occurs over a wide range of sound in- 
tensities. We shall prove this. Let the difference U 
vanish a t  some value P,=Po. Expanding U in powers of 
(p, -po) near this point, we get2' 

It then follows that if ~ l u 2 ~ 2 / ( i < <  1, account of the 
term -P,w in (22) is  unimportant. Since we a r e  inter- 
ested in the case of the immediate vicinity of T,, this 
ratio is of the order of mw2(Tc - T)/Tz, which i s  al-  
ways a small  quantity under the conditions of observa- 
tion of the electromagnetic contribution to the absorp- 
tion. If we assume that the ratio 5/c changes little 
along all  the entire trajectory, we get from (22) 

where $- 1 is  the dimensionless energy, Ae(x, t) 
=A: b(x - wt) ,  8, = sign (vAE ), 8,= sign 5,; b plays the 
role of the dimensionless "profile of the wave." Thus 
the characteristic value of U on the trajectory is  max 
(E, w), where 'L =(e~Ev , /mw ).'". By comparing the am- 
plitude of the change in U (which is  of the order of v )  
with the characteristic width of the region making a . 
contribution to the linear absorption -(qr)-',' we show 
that the momentum nonlinearity i s  important under the 
condition q z r z  1. (It is seen that the parameter a intro- 
duced above is  equal to 9E.r.) 

We now find the extent to which the ratio 5/c changes 
in motion of the quasiparticle along the trajectory. The 
relative change of this quantity i s  

At 'L << w this ratio is identical with what we estimated 
above, and is  always small. If C >> w, we have the fol- 
losing condition for applicability of our theory: 
mC2(TC - T)/Tz<< 1. Combining these two cri teria and 
expressing Z in terms of the dimensionless parameter 
a ,  we have 

As a rule, the second quantity is  the larger; the ratio 
T,/[(T, - ~ ) c , ] ' / ~  under the conditions of observation of 
the electromagnetic absorption in a superconductor 
amounts to0 .1 -1  (at T c = 5  K, c F = l  eV; T c - T = 0 . 1  K, 
this ratio is equal to 0.16). Thus, there exist a broad 
region of sound intensities in which the momentum non- 
linearity is  important ( a >  1) but the Andreev localiza- 
tion still does not appear. We shall consider precisely 
this case. 

The fact that we can assume [(p) to be constant on the 
trajectory simplifies the problem considerably. Essen- 
tially, it reduces the problem to that already solved in 
Ref. 15 for the case of a normal metal, and we shall 
give here only the corresponding results. In sum, the 
operator of the effective conductivity is  connected with 
the corresponding operator for the normal metal, con- 
structed in Ref. 15, by the relation 

In the case Tc - T << T, of interest to us, this integral 
i s  determined by energies of the order of T,. There- 
fore the nonequilibrium of the distribution function n, 
in the region of low energies is unimportant in its cal- 
culation-the heating of the excitations by the field of 
the sound wave, which is  important in a regime that is 
close to linear, has practically no effect in the 
regime of developed momentum nonlinearity. 
Therefore the function n, in (25) can be replaced by 
the equilibrium value no. The right side of (25) can 
then be represented in the form 1 + 1.80(~/T) .  In the 
immediate vicinity of T,, where the electromagnetic 
contribution to the absorption is observed, the deviation 
of this quantity from unity i s  small. Thus, in the non- 
linear regime, the effective conductixity (at  T, - T << Tc) 
is  close to the corresponding conductivity of the normal 
metal and is  smaller than the conductivity in the linear 
regime by a factor a. 

The subsequent analysis is  similar to that given in 
Ref. 15 for the case of a normal metal (the difference is 
essentially connected with the presence of a nondissipa- 
tive current response which, however, is  determined 
by the nonresonant electrons and does not depend on the 
sound intensity). With the help of such an analysis, we 
can analyze the dependence of the absorption coefficient 

on the sound intensity S for all  the cases of inter- 
est. 

We pause to consider the most interesting case, in 
which the electromagnetic absorption dominates in the 
normal state and r increases with increase in S. This 
is  the range of parameters 

where s = S/S,, S, = and p is the density of the 
crystal. Numerically, pw3= 4 x lo9 W/cm2. Setting w 
= 2.10'~-l, I = 0.3 cm, we get S,=0.5 W/cm2 (here w,/w, 
= 5). In the indicated region in the normal state, r,/ 
ro,- 6, where ro, is  the linear absorption coefficient. 
The electromagnetic contribution to the linear absorp- 
tion coefficient in the superconducting state is  (cf. Ref. 
8) 

It dominates over the contribution of the mechanism of 
incomplete dragging at 0 < @, which is  satisfied in all 
the regions of interest. We note that the dissipative 
part of the response of the superconductor in the non- 
linear regime decreases by a factor a compared with 
the linear response, and the parameter a ,  just a s  in 
the normal state, should be determined self-consis- 
tently from Maxwell's equations-it depends on S and 
0. A calculation similar to that given in Ref. 15, for 
the case of the normal metal gives 

Thus, a t  8s << 1 we have a = 6 ,  a s  in the normal met- 
al ;  a t  Os >> 1 we have a"O'112s114 . The electromagne- 
tic contribution to the nonlinear coefficient of absorp- 
tion is then 
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This expression describes the r ( S )  dependence in the 
vicinity of To. At sufficiently small values of the dif-  
ference T, - T (when 0s << 1)  r-6r0,z I?, as in the 
normal metal. I f  8 s  >> 1, then r- r00-1/2s-1/4. W e  
note that the linear absorption coefficient in the regime 
of rapid falloff of the absorption is proportional to 8'2. 
Thus, the ratio ~ , / ~ o , ~ 0 1 1 2 s " 1 4 .  This ratio can be 
either smaller or greater than unity. The r ( S )  depen- 
dence i s  nonomotonic at a given temperature: with in- 
crease in the soundintensity, r initially increases like & 
and then begins to fall o f f  likes-'I4. This falloff takes place 
up to the point where the contribution of incomplete drag- 
ging begins to dominate, after which the absorption 
ceases to depend on the sound intensity. The tempera- 
ture dependence of the sound absorption in the nonlinear 
regime differs from the corresponding dependence in 
linear regime. In the linear regime, I' depends weakly 
on the temperature at 8< 1 and then falls o f f  like 0". 
In the nonlinear regime, r depends weakly on the 
temperature at 8 <  s" << 1, and then falls o f f  like 8-'". 

We  now proceed to the consideration of the sound ve- 
locity in the vicinity of T,. As a rule, the nonlinear 
corrections to the sound velocity are small (of  the or-  
der of w2/v,2) and are beyond the limits of accuracy of 
contemporary experiment. An exception is the case of 
the propagation of transverse sound, in a superconduc- 
tor at Tc - T << T,. In this situation, the corrections to 
the sound velocity, as shown by Ozaki and Mikoshiba,' 
can depend strongly on the temperature and can be of 
the order of w/v ,  at the-maximum. The reason for such 
a dependence can easily be understood qualitatively: in 
the normal state a significant contribution to the rigid- 
ity of the lattice is made by the electromagnetic fields, 
diminish rapidly in the superconducting state with de- 
crease in temperature, as a consequence of the Meis- 
sner effect.  Therefore, the sharp decrease in the ab- 
sorption should be accompanied by a sharp peak in the 
sound velocity. The electronic corrections to the sound 
velocity are calculated by the standard method: the 
nonequilibrium distribution function of the quasiparti- 
cles is calculated from the kinetic equation and is then 
substituted in the expression for the force exerted on 
the lattice by the electrons. The dispersion equation 
thus obtained for sound waves gives the renormalized 
sound velocity. Such a procedure gives 

w - w  6w -- 1 ; 1 =D(N, /No)  [ (~ , /No)z+(3nw/4v~)2]~1 
W" 

(30) 

in the linear approximation. "he coefficient D 
(w/v,)', therefore, as T -  T ,  we have (dw/w ( 

5 (w/vF)'. However, at N, = 3rwNo/4v, the sound veloc- 
ity has a sharp peak, while the maximum change in the 
sound velocity is of the order of  w/vP The two terms 
in the denominator of (30) are proportional to the 
squares of the nondissipative and dissipative responses 
of the current to the vector potential. 

How does this picture change in the nonlinear re- 
gime? W e  have already seen that the nondissipative 
part does not change. As for the dynamic conductivity, 
both heating and momentum nonlinearity can lead to its 
change. In the first  case, the logarithmic contribution 
can change by an amount of the order its own magni- 

tude. This should lead to an increase in the change of 
the sound velocity and to a shift of the maximum in the 
direction of To." In the case of developed momentum 
nonlinearity, we have 

The function F(x) reaches at x =x,= 0 a maximum 
equal to 0.2. At x <<x, it i s  proportional to x ,  at x>>x,, 
it tends to x". Since under our conditions s >> 1,  the 
maximum change in the sound velocity can be much 
greater than in the linear regime; the absorption maxi- 
mum shifts toward T,, since it corresponds to the con- 
dition Oa s"/', while in the linear regime the maximum 
is achieved at 0z 1. Thus, both heating and the momen- 
tum nonlinearity lead to the same tendency of the change 
in the sound velocity-a shift of the maximum change of  
the sound velocity toward T, and an increase in its ab- 
solute value. In the experimental work of Ref. 9 ,  just 
such a behavior of the sound velocity as a function of its 
intensity was observed. However, it i s  difficult to 
identify the mechanism of the observed change in the 
sound velocity, since the condition for strong momen- 
tum nonlinearity has not been satisfied. Therefore the 
contributions of both mechanisms can generally be of 
the same order. It is also impossible to identify the 
mechanism of nonlinear absorption observed in this re- 
search. The point is that the absorption of a weak sig- 
nal was studied in this experiment against the back- 
ground of a powerful pump, with the frequencies of the 
signal and the pump significantly different. The sound 
intensity was then such that the conditions of strong 
momentum nonlinearity were not satisfied. In order to 
compare the experimental data with the theory, further 
experiments are necessary -a careful study of the r ( S )  
dependence over a wider drange of sound intensities, 
using a single powerful signal. 
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