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theoretical calculations are compared with the available experimental results. 
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1. INTRODUCTION 

The radiation produced by relativistic charged parti- 
cles a s  they channel through crystals i s  intensively in- 
vestigated at present both theoretically and experismcan- 
tally. An analysis of the main results  obtained in this 
field, a s  well a s  a sufficiently complete list of the 
original papers, can be found in the review articles by 
Wedell1 and Bazylev and Zhevago,' and in the proceed- 
ings of the Firs t  National Conference on Radiation of 
Charged Particles in  crystal^.^ 

In particular, general equations for the cdculation 
of the radiation spectrum at relatively soft Crequencies 
in the case of axial particle channeli~~g, were obtained 
by Bazylev, Glebov, and Z h e ~ a g o . ~  Actuai calculations, 
however, could be carried out4-' only for electrons in 
the classical approximation and under the assumption 
that their trajectories in a plane perpendicular to an 
axis can be regarded a s  periodic. In addition, Kumak- 
hov and Trikalinoss have considered only the dipole and 

radiation. For  the same reason, in axial quasichannel- 
ing the transverse trajectories become aperiodic and 
therefore the radiation effects connected with the co- 
herence of the action of the different axis becomes in- 
essential. Radiation produced in axial quasichanneling 
has properties that differ substantially from the analog- 
ous properties in axial channeling of  electron^.^" The 
existing theory of coherent bremsstrahlungs likewise 
fails to describe this phenomenon, since no account i s  
taken in this theory of the aforementioned particle 
scattering. 

Investigations of radiation in axial quasichanneling of 
particles in a crystal seem to us sufficiently important 
for the understanding of the complete picture of radia- 
tion in a crystal and for a correct explanation of the 
available experimental data.lO-l8 The point i s  that, in 
contrast to planar channeling of light particles, the 
fraction of particles in the case of stable axial chan- 
neling (hyper~hanneling)~) i s  relatively small from the 
very outset (20-3%). 

near-dipole cases  of emission by electrbns, while 
In the case of electrons the region i s  that relatively more general results, when the emission can be essen- 

stable channeling se ts  in only when the particles have 
tially :on-dipole, was considered in Ref. 4,') a s  well a s  a sufficiently large orbital momentum relative to the 
by Baier, Katkov, and Strakhovenko.' No analogous 

axis." To this end, the entry angle of the electrons 
calculations were performed for positrons, owing to 

relative to the axis should differ from ze1-0,~) and a s  a 
the relatively complicated character of their transverse result some of the particles acquire transverse ener- 
motion, which i s  quite far from periodic. 

gies larger than the depth of the potential well of the 
Along with axial channeling of particles, there i s  al- channel- 

so  axial quasichanneling. In this case,  the energy of 
the transverse motion of the particles exceeds their 
binding energy in the potential well produced by the 
axis. The transverse motion of the particles i s  now in- 
finite, but the field of the axes bends strongly the tra- 
jectories of the particles in a plane perpendicular to the 
axes. As a result, the initially parallel particle beam 
becomes distributed in the crystal along generators of 
a cone. producina at the output a characteristic annular , - - 
transverse-momentum distribution. Such a scattering 
of particles in a crystal ("doughnut" scattering) was 
observed by Uggerhoj et U Z . ' * ~  in experiments with K +  

and K -  mesons up to particle entry angles, relative to 
the axis, greatly exceeding the critical angle for their 
axial channeling. 

As shown in our preceding paper (Ref. 3, p. 39), the 
relative scattering of quasichanneled particles in a 
transverse plane should lead to intense electromagnetic 

In axial channeling of positrons, the situation i s  
somewhat different. The most favorable conditions for 
axial channeling of these particles corresponds to a 
zero angle of incidence of the particles on the axis. 
The fraction of the channeled (hyperchanneled) parti- 
cles i s  then determined by the ratio of the area  of the 
potential well to the total a rea  of the transverse unit 
cell, and amounts to 10-40%. 

Thus, besides the channeled particles there i s  always 
present an appreciable fraction of quasichanneled ones, 
and this must be taken into account in the analysis of 
the experimental radiation spectra. On the other hand 
if the incidence angle of the particles on the axis ex- 
ceeds the critical channeling angle O , =  (~u, /E) ' /~  (U, 
is the depth of the potential well and E is the particle 
energy), all the beam particles a re  quasichanneled. 

The main theoretical results  obtained by us earlier 
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for the study in axial quasichanneling a re  presented in 
concise form in the proceedings of the conference (see 
Ref. 3, p. 39). At the same time, Yakamura and Otsuki 
(see Ref. 3, p. I), on the basis of the synchrotron for- 
mula for the spectrum, calculated by computer simula- 
tion the radiation from 56-MeV electrons moving at a 
small angle to the (110) axis of silicon, with account 
taken of the contribution of the quasichanneled parti- 
cles. No account was taken in these calculations, how- 
ever, of the coherence of the radiation from different 
sections of the particle trajectory within the confines 
of the unit cell of the crystal, an important factor at 
such e n e r g i e ~ . ~ )  Qualitative estimates of the form of 
the radiation spectrum in the quasichanneling were ob- 
tained for some limiting cases by Shul'ga,2' but he took 
into account only planar trajectories. A related prob- 
lem i s  the subject of a paper by ~e losh i t sk f i  and Kuma- 
k h ~ v , ' ~  who considered radiation from particles in the 
region of the transition from axial to planar channel- 
ing, when coherence is important in the radiation pro- 
duced by scattering by different axes. 

We present here the results of the theoretical calcu- 
lation of the spectral and angular characteristics of the 
radiation produced by electrons and positrons in quasi- 
channeling, and also of the integrated (over the fre- 
quencies and angles) losses of energy to radiation, a s  
functions of the angle of incidence of the particles on 
the crystallographic axes. The developed theory i s  
used to analyze the positron-emission spectra obtained 
in the experiments of Alguard e t  al." 

2. CLASSICAL EQUATIONS OF MOTION OF 
CHANNELED AND QUASICHANNELED PARTICLES 

Let the angle 8, of the entry of the particles into the 
crystal, relative to the crystallographic axes, be close 
in order of magnitude to the critical Lindhard angle 8,. 
It can then be assumed that the particles a re  acted 
upon by the continuous potential of the axes, which de- 
pends only on the coordinate in the transverse (relative 
to the axis) plane (see, e.g., Ref. 19). 

FIG. 1. Potential energy of positron in the field of the (111) 
axes of a silicon crystal at 297 K. The calculation was based 
on the Moliere model with allowance for the isotropic thermal 
oscillations of the crystal atoms [see Eq. (I)]. The unit cell 
is marked by dashed lines. The numbers on the curves cor- 
respond to the values of the potential energy in eV. 

Figure 1 shows the equal-potential-energy levels of 
the particles in the field of the (111) axes of silicon at a 
temperature T = 297 K. The calculation was based on 
the Moliere approximation for the potential of an indi- 
vidual atom and with allowance for the isotropic ther- 
mal oscillations, just a s  was done by Appleton et al.23 
We used, however, a simpler analytic formula5) 

e zZ ' p't ' a t  
~ ( ~ ) = ~ ~ E a , e x p ( q ? )  j e x p  (-F--!$) 7. 

d. 
(1) 

*-I 0 

In this formula Ze, means the charge of the atomic nu- 
cleus, d ,  is the distance between neighboring atoms, u 
is the square root of the mean squared amplitude of the 
thermal vibrations, ai  = (0.1; 0.55; 0.35) and Pi  = (6.0; 
1.2; 0.3) a re  the Moliere constants, q ,  = Piu/2aTF, 
where a,,= 0.8853a,~-l1~, and a,= 0.529.10-8 cm is the 
Bohr radius. The upper sign in (1) and in all the ex- 
pressions that follow pertains to the electrons, and the 
lower to the positrons. 

It can be shown by analytic transformations of ( I ) ,  a s  
well a s  by numerical computer calculations that expres- 
sion (1) i s  fully equivalent to the more cumbersome ex- 
pression (23) of Ref. 19. 

As seen from Fig. 1, in the case considered the elec- 
trons move for the greater part of the time in regions 
in which they a re  acted upon mainly by the potential of 
one of the axes, and the influence of the neighboring 
axis can be neglected. This approximation is accurate 
enough both for channeled electrons (whose transverse 
motion around the axis is restricted to approximately 
the distance between the axes), and for electrons with 
transverse energy larger than the potential barrier be- 
tween the neighboring channels (these electrons a re  
scattered in succession by different axes). 

As for the positrons, the one-chain approximation is 
patently violated for them under channeling conditions, 
when a transverse-motion potential well is produced 
between axes precisely by the action of several neigh- 
boring axes (see Fig. 1). At the same time, for quasi- 
channeled positrons the single-chain approximation is 
applicable to  the same degree a s  for electrons. 

In the approximation employed, the potential U(p) act- 
ing on the particle depends only on the distance p to this 
axis. The integrals of motion are6) the total particle 
energy E: 

the longitudinal momentum component PI, of the particle: 

a s  well a s  the projection M of the angular momentum 
relative to the axis: 

In (2)-(4), v,, = v,,(t) denotes the longitudinal velocity, 
b(t) i s  the transverse velocity of the particle, p is the 
radius vector of the particle in the transverse plane, 
and g i s  the angular velocity of the transverse motion. 
All these quantities depend on the time. With the aid 
of (2)-(4) we obtain for the radial component f i  of the 
particle trajectory the equation 
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where El, =(I  + P , , ~ ) " ~  is the longitudinal energy of the 
particle. The transverse component of the trajectory 
p(p) is given by the equation 

which follows from relations (2)-(4). 

Equations (5) and (6)admit of simplifications connect- 
ed with the smallness of the potential energy U(p) com- 
pared with the total particle energy. We designate the 
transverse energy by c = E - E,,.  Then, neglecting in 
the right-hand sides of (5) and (6) the terms that a re  
quadratic in U(p) and c ,  we arr ive  at the equations of 
motion in the transverse plane, which coincide in form 
with Newton's nonrelativistic equations. However, the 
role of the particle mass  in these equations i s  played 
by the relativistic mass  E,,: 

In the region of distances p larger than the radius u 
of the thermal vibrations of the axis atoms, but smaller 
than half the distance to the nearest axis d/2, the cal- 
culated potential can be represented with good accuracy 
in the form 

where a is a constant that depends on the material of 
the crystal and on the Miller indices of the axis (see 
Table I). This form of the potential in the indicated 
range of distances from the axis is not accidental. It 
follows also from calculations based on the simpler 
Nielsen model [see, e.g., Eq. (12) of Ref. 241 for the 
atom potential U(r) = Ze$aT,/1.7706 9 (which i s  valid 
at r > 2aT,) and without allowance for the thermal vi- 
brations. The constant a i s  then expressed in terms of 
the nuclear charge of the atom Ze,, the radius of the 
atom a,,, and the average distance d, between the 
atoms of the axis: 

More accurate values of a (see Table I) a re  obtained 
by fitting a relation similar to (8) to a more exact form 
of the potential. These values can differ somewhat 
from those calculated from Eq. (8'). Equation (8') can 
be useful for an estimate of the relations between the 
obtained properties of the radiation in channeling (or 
quasichanneling) and radiation in an amorphous medi- 
um. 

TABLE I. 

In the region p s u ,  the potential of the axis is close 
to  a parabola, but i t s  gradient i s  relatively small, so  
that in f irst  approximation at p S  u the potential can be 
regarded a s  constant ~ ( p )  = Uo, where Uo= a/u is the 
depth of the potential well (the height of the potential 
peak in the case of positrons). 

Diamond (110) 
Si (110) 
Si ( i l l )  
Ge (110) 
Ge ( i l l )  
W ( l i 1 )  

Solution of the equations of motion (7) entails no dif- 
ficulty in this case, in view of the formal similarity of 
the problem to the Kepler problem. At E < 0 the elec- 
trons move in a transverse plane along elliptic orbits. 
At c > 0 the transverse motion of the electron o r  posi- 
tron near the axis follows hyperbolic trajectories. 

For  the model potential (a), the solutions of the more 
exact equations of motion (5) and (6) can also be repre- 
sented in analytic form. In particular, the transverse 
component of the channeling trajectory of an electron 
(c < 0), when account i s  taken of terms quadratic in the 
potential, i s  given by 

A=2l e 1 EM-', B=uEM-', C=i-a2M-', 

where p,,, = (B/A) - [(B/A)~ - (C/A)]'/~ is the perihelion 
of the orbit. 

9.0 
11.5 
12.4 
20.0 
15.0 
55.0 

Integrating in the right-hand side of (9) we obtain 
P 

100 
112 
105 
200 
185 
935 

I -e  cos ( C i 2 ~ )  ' 
MZ p=- 1-- 21elMz 2 1 ~ 1 ) .  

(10) 
( :). = (  . 

159 
258 
2.33 
2.68 
2.43 
z.71 

The elliptic trajectories a r e  obtained from (10) by 
neglecting the small terms I c I /E and a2 /M2s  I EI / E .  
Otherwise the character of the trajectories i s  somewhat 
altered. Precession of the ellipse se ts  in, with a fre- 
quency 

40.4 
21.8 
23.5 
64.4 
GG.9 
1380 

where wo= (2 l c I ) ~ / ~ E - ' ' % - ~  i s  the frequency of the elec- 
trons on the elliptic orbit. Corrections of the order of 
aVM2 arise also in the values of the perihelion and 
aphelion of the orbit. As expected from the general 
analysis, the effects connected with allowance for the 
t e rms  quadratic in the potential a re  in this case of the 
order of Ic I ,/E. This quantity turns out to be in prac- 
tice so  small (< that the indicated effects do not 
play a noticeable role. It suffices to state that the cal- 
culation of the potential U(p), a s  well a s  i t s  approxima- 
tion by the model relation (8), a re  much less  accurate, 
s o  that allowance for these effects i s  meaningless. 
Similar conclusions follow also from an analysis of the 
trajectories of the above-barrier electrons and posi- 
trons. Thus, in contrast to the usual relativistic Kep- 
l e r  problem (see, e.g., Ref. 25), where the role of the 
t e rms  quadratic in the potential U(p) increases with in- 
creasing energy, in the axial-channeling problem the 
tendency is directly opposite. 

60 
62 
58 
34 
30 
4 

3. ENERGY LOST BY PARTICLE TO RADIATION 
1735 
1609 
1769 
2205 
2620 
€130 

19.8 
20.9 
20.3 
28.0 
26.9 
G0.5 

The simplest to solve i s  the problem of the energy 
losses, integrated over the frequencies and over the 
radiation angles, in the continuous potential of the axis. 

0.23 
0.13 
0.13 
0.28 
0.25 
1.65 
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The integrated losses over the entire time of interac- 
tion of the particle with the axis can be represented in 
the form (see, e.g., Ref. 26, 8 73) in the form 

where vu(p)/eo i s  the intensity of the electric field of 
the axes. With the aid of the equations of motion (2) 
and (3) we obtain 

Thus, expression (11) for the energy losses takes the 
form 

The energy loss per unit time (the integrated radia- 
tion intensity) by quasichanneled particles is obtained 
by dividing (13) by the time of flight of the particle 
through the region of i t s  interaction with the crystal 
axis. For channeled particles that execute finite trans- 
verse motion in the range from p,,, to p,,, it is rea- 
sonable to introduce the energy lost per unit time, 
averaged over the period T, of the radial vibrations: 

Accurate to corrections of the order of I c l /E, the 
longitudinal energy in relations (13) and (14) can be re- 
placed by the total energy, and the particle trajectory 
p(t) can be calculated using Eq. (7). 

Thus, the energy lost by an electron o r  positron to 
radiation in the continuous potential of the crystal axis 
turns out to be proportional to the square of the particle 
energy and to the square of the gradient of the potential 
that acts in the effective region of particle motion. 
These conclusions a re  valid provided that classical 
electrodynamics is applicable. It must therefore be as- 
sumed that the energy loss i s  due mainly to emission 
of sufficiently soft photons with energies t iw << E. 

To avoid from the very beginning the difficulties 
connected with the singularity of the potential (8) at p 
= 0, we use in the calculation of the radiation losses a 
more correct form of the potential: 

The channeled-electron trajectories in a plane per- 
pendicular to the axis are  in a field of the form (8) the 
ellipses (see Ref. 27, 5 15): 

~ ( t )  =a(cos E-e) ,  y ( t ) = a ( l - e z ) ' "  s ine ,  t=a(E/2I E I ) '" ( t - e  sin p) ,  ( 1 6 )  

where 5 i s  a parameter that runs through values from 
-a to m ,  c < 0 i s  the transverse energy of the electron, 
E is its  total energy, a =  a /2  I c 1 i s  the minor semiaxis 
of the ellipse, e = (1 - 21 c I M ~ / E ~ ~ ) ~ ~ ~ G  1 is the eccen- 
tricity of the ellipse, and M i s  the orbital momentum of 
the particle about the axis. This form of the trajectory 
is retained also in a field of the type (15) provided that 
the perihelion of the orbit p,,,= a(1- e) exceeds the 
radius of the thermal vibrations. In the opposite case 
(p,,,< a )  part of the particle orbit inside the radius of 
the thermal vibrations is transformed into a segment 

tangent to the ellipse at the point where the ellipse 
crosses  the circle p =  u.  It is convenient to calculate 
the energy radiation loss (15) by changing from the 
variable t to the particle rotation angle about the axis, 
dt = Ep2~- 'dq ,  and using at the same time the trajec- 
tory equations in the form (10) with allowance for the 
inequality I E I / E  << 1. The results of the calculations 
for the channeled electrons of the form 

dE,,- 8Lyz X' ez cos cp, 

dl n ( l - e" ) ' /~  2  2 e )  sin cp,] 

x [ 
e(1-e2)'" sincp, 

I -2e  cos rp,+e2 +arc ,  ((E)"' t - e  ,,:)I-' q ( e z - 2 ~ x ~ + i ) ,  

where eo is the electron charge, ~ ( x )  is the Heaviside 
step function: ~ ( x )  = 0 at x < 0 and V(X) = 1 at x 2 0. 

The trajectories of the quasichanneled electrons and 
positrons in the region p 2 u a re  hyperbolas: 

x ( t )  = a ( e T c h  E),  t=a (E /2e ) '" ( e  sh EFp) ,  

y  ( t )  =a ( e2 - I )  " sh E, a = a / 2 ~  
(18) 

with eccentricity e = (1 + ~ E M ~ / ~ ~ E ) ~ ~ ~ .  Inside the re-  
gion of the thermal vibrations (p 6 U) the trajectories 
a r e  straight lines. We consider only particles with 
transverse energy c greatly exceeding the potential en- 
ergy on the boundary of the region 2a/d of the interac- 
tion of the particle with the axis. This corresponds to 
the one-chain approximation used above. On the other 
hand, the contribution of particles having a transverse 
energy that does not satisfy this condition should be 
relatively small because of the small gradient of the 
potential on the periphery of the region where the par- 
ticle interacts with the axis. If E >> 2a/d, the time of 
flight of the particle through the region of interaction 
with the axis is determined by the formula ~ = d / ( 2 & /  
E)'12. Then the energy lost by quasichanneled particles 
per unit path in the crystal takes the form 

qo7=arc cos ( F i l e ) ,  cos q : x = ~ n i n  (1 ,  ( e ' - I F 2 x ) / ( 2 e x ) } .  

In the limit of large transverse energies compared 
with the depth of the well (the height of the peak when 
dealing with positrons), the energy loss (19) tends to 
the value L?. This result is obtained also in the fol- 
lowing manner. Since E >> Uo, the trajectories can be 
regarded in this limit a s  straight line (see Problem 1, 
§ 73 in Ref. 26), so that the distance from the particle 
to the axis is determined by the equation p2 = b2+ (2c/ 
E)t2, where ( 2 & / ~ ) ~ "  is the transverse velocity of the 
particle and b i s  the impact parameter. The asymp- 
totic value of the energy loss averaged over all the im- 
pact parameters from u to d/2 takes in this case the 
form 

where the integration is carried out in the plane of the 
variables t and b over an area  S bounded by two con- 
centric circles with radii u and d/2. The integral can 
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be easily calculated in cylindrical coordinates, and the 
result takes the form dE,/dt = LP. 

Expressions (17) and (19) obtained for the energy lost 
to radiation must be averaged over all possible particle 
trajectories in the crystal, i.e., over the eccentricities 
of the orbits and the transverse energies. We shall as- 
sume for simplicity that the crystal i s  thin enough to be 
able to neglect incoherent scattering processes that 
lead to nonconservation of the transverse energy. Then, 
a s  i s  well known, the transverse energy of the parti- 
cles i s  determined by the relation E = E8:/2+U(po), 
where po i s  the coordinate of the point of entry of the 
particle into the crystal and 8, i s  the angle of entry 
relative to the axis. Assuming pi to be equally prob- 
able in the range from 0 to d/2, and using a model po- 
tential of the form (15), we obtain the following proba- 
bility distribution for the transverse energies referred 
to the depth of the well: 

where 8,= (~u , /E)"~  i s  the critical angle, whose nu- 
merical values a re  listed in Table I. Since the impact 
parameters of the particles in the transverse plane a re  
equally probable, the averaging over the orbital mo- 
menta reduces in this case to integration over the ec- 
centricities of the orbit in the range from e;,,= 1 
-2802(002+ IxI8,")' toe;,= min{l-21xI;Dlxl- 1) 
(for channeled electrons), o r  from unity to eL,= Dx i 1 
(for quasichanneled particles). 

The energy lost to radiation, averaged in this man- 
ner, i s  shown in Fig. 2 a s  a function of the ratio of the 
entry angle to the critical angle. The quantity L, which 
characterizes the energy loss per unit path, i s  listed in 
Table I for different axes and crystals. 

The energy lost by the electrons increases with de- 
creasing entry angle from 8, to 0, this being due to the 
increase of the fraction of electrons that become axially 
channeled. For positrons the picture i s  reversed. The 
reason i s  that when the positron entry angle 8, decreas- 
e s  from 8, to zero the peak in the positron transverse- 
energy distribution shifts towards smaller c [see (20)]. 

6: / 9, 

FIG. 2. Average radiation energy ( d ~ + / d l ) , , ,  lost by an 
electron (curve 1) and positron (curve 2 )  per unit path in a 
silicon crystal, a s  a function of the ratio Oo/OL of the incidence 
angle of the particles on the axis to the Lindhard angle. 

Positrons with such values of c are  prevented by the 
repulsion from the axis from penetrating into the re- 
gion of a relatively large field gradient, and this leads 
to a decrease of the radiation energy losses. 

4. SPECTRAL DISTRIBUTION OF THE RADIATION 
FROM QUASICHANNELED PARTICLES 

In the classical-electrodynamics approximation, the 
spectral-angular distribution of the radiation energy 
during the entire time of particle interaction with the 
field i s  given by (Ref. 26, § 66) 

where r(t) and v(t) are  respectively the coordinate and 
velocity of the particle at the instant of time t; w and k 
a r e  the frequency and wave vector of the radiated wave, 
do is the differential of the solid angle and e, is the 
particle charge. 

In the case of motion of quasichanneled electrons and 
positrons in an axis field of the type (a), the depend- 
ence of the transverse coordinates on the time i s  given 
by relations (18). 

The longitudinal velocity of the particles can be ex- 
pressed in terms of the square of the transverse veloc- 
ity and the total particle energy E ,  using the approxi- 
mate equation 

This equation is obtained from the condition (3) for 
the conservation of the longitudinal momentum in the 
limit of ultrarelativistic energies E >> 1 and with ac- 
count taken of the weaker condition E >> c. 

Integration of (22) yields the following dependence of 
the longitudinal coordinate on the time: 

1 
z ( n =  a (&)"'[(l-F) (esh &=F&) 

When expressions ( la) ,  (22), and (23) a re  substituted 
in the general equations (21) for the spectral-angular 
distribution of the radiation energy, one can neglect in 
the pre-exponential factor the difference between the 
longitudinal particle veiocity and the speed of light. At 
the same time, when calculating the phase ik,z(t) ac- 
count must be taken of the small term 1/2EZ in the ex- 
pression for the longitudinal coordinate, a term result- 
ing from the difference between v,, and the velocity of 
light, a s  well a s  the term proportional to E/E, which 
is the consequence of the influence of the axis field on 
the longitudinal velocity of the particle [see (2211. Al- 
lowance for these small terms becomes essential be- 
cause of the cancellation of the principal terms in the 
phase of the exponential, with allowance for the second 
term, proportional to E/E, needed only at sufficiently 
high particle energies, when the inequality c /E2 1/ 
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( 2 p )  is satisfied. The resultant effects a re  considered 
in detail in Ref. 3 in the analysis of the emission spec- 
t r a  at ultrahigh particle energies. 

Calculations of the Fourier components of the particle 
current (21') lead to the result 

Here 

O,= ( ~ E I E ) ' " ,  v=  (oa/2O,) (8'-€l,'+E-'), 

~1=roaO cos 9, sh Eo=q/E, 

K,,(5) and K; kt) a r e  the Macdonald function and its de- 
rivative. It was assumed in the calculation that the 
particles a re  ultrarelativistic and that the radiation 
angles O with the crystallographic axis a re  small: 
8 << 1. The azimuthal radiation angle cp i s  measured 
from the symmetry axis of the transverse trajectory 
(hyperbola). Inessential phase factors that a re  common 
to all three current components have also been left out 
of (24). 

After substituting the Fourier components in (21) and 
carrying out additional algebraic transformations, the 
results can be represented in the form 

The general expression obtained from the spectral- 
angular distribution of the radiation energy in scatter- 
ing of a particle by the continuous potential of the axis 
admits of substantial simplification in a number of 
limiting cases. 

5. DIPOLE RADIATION 

When the particle travels at the impact distance b 
from the axis, it acquires a transverse momentum Ap, 
-(a/bZ)r,  where a/b2 i s  the average force acting on the 
particle, T -b/u, i s  the effective time of action of the 
potential, and v ,  - [ 2 ( ~  - ~ ( b ) ) / E p / ~  i s  the transverse 
velocity of the particle. The particle deflection angle 
O,, is proportional to the ratio of Ap, to the longitudinal 
momentum of the particle p,, = E. We thus obtain the re- 
lation 

The maximum deflection angle of the electron corre- 
sponds to impact parameters b =u ,  therefore, recog- 
nizing that Uo= a/u,  we obtain 

Odjy'- UO/[2E(e+Cio)  1'". 
Let the maximum angle of particle deflection by the 

field be much less  than the effective radiation angle 
or,-1/E, i.e., assume the following inequality (in the 
case of electA*ons) 

Let -also the transverse energies of the particle not be 
too large: E -  Uo. Then the average angle at which the 
particle moves relative to the crystal axis is also 
small compared with the effective radiation angle. 

In this case the following approximations a re  valid: 

As a result, the general expression (25) coincides 
with the analogous expression (18) of our preceding pa- 
per (Ref. 3, p. 39), obtained in the dipole approxima- 
tion, for  all velocities and angles 8, if we assume in 
the latter equation that the radiation angles a re  small, 
O < <  1, and the particle velocity i s  relativistic, u, -1 
- 1/ (2~ ' ) .  

We integrate the spectral-angular distribution (25) 
over the radiation angle. Taking the approximations 
(27) into account, the integration with respect to the 
azimuthal angle cp i s  elementary. Integration with re- 
spect to the polar angle can be carried out only numeri- 
cally. We divide (25) by the time of interaction of the 
particle with an individual axis and average next the 
result over all the impact parameters of the collision 
(over the eccentricities of the orbits). After integrating 
with respect to the aximuthal angle, the spectral-angu- 
l a r  distribution of the energy radiated by the particle 
per unit path takes the form 

d3WqP ) =I.yX"G7 (Q ,  By; x ) ,  ( dld(ko)d(Oy)'  

where 
'?'lzeoz Uo8ha 

1, = ---. ----- w 
Q=- 

ntie d2(rnc2)"' o , ( y z ) "  ' 
2'lqJoY' 

0 ,  = -, x=elUo, v = Q [ ( O ~ ) ~ + l l ,  

,. . 
mar 

xexp (& v n )  5 [ ( I  - e-2) Ktl (ve)  + ( ~ : ~ ( v e ) ) ~ ]  de. 

e Z n  

The quantities ~ ~ g ' ~  and wly3l2, a s  will be made clear 
below, determine in this case the characteristic values 
of the intensity and frequency of the radiation of a par- 
ticle with transverse energy E = Uo. 

At relatively high frequencies, when 52 >> 1, the larg- 
est  contribution to the intensity i s  made by trajectories 
with eccentricities e =  1, so that the Macdonald function 
and i ts  derivative can be replaced by the asymptotic 
valuesz7 

346 Sov. Phys. JETP 55(2), Feb. 1982 Avakian eta/. 346 



Taking into account the character of the behavior of the 
functions K,,, and K,,, at large values of the argument, 
we obtain the following result. 

The spectral-angular density of the positron-radia- 
tion intensity decreases exponentially at frequencies 
and angles determined by the condition 

Q[l+(9E)'] 21. 

The analogous condition for the electrons i s  

Q(ez-i)s[1+(~E)2]>l. 

In the region of relatively soft frequencies, when 51 
<< 1, we can use the approximationslq 

where C,=1.782 is the Euler constant. Thus, in the re- 
gion of relatively low frequencies, the spectral-angular 
density of the intensity of radiation by both electrons 
and positrons is practically independent of frequency. 

The results  did not take into account the effects of 
polarization of the medium, i.e., of the fact that the 
crystal has a nonzero average dielectric susceptibility 
x'(w) = - w;/w2, where w, is the plasma frequency of 
the medium. 

As shown by us in Ref. 3 (p. 391, the polarization ef- 
fect can be taken into account by replacing SZ in (28) by 

This suppresses the radiation intensity in the frequency 
region w s  u s .  At harder frequencies, u>> w&, the 
polarization has a negligible effect. 

We now average the spectral-angular distribution (28) 
over the transverse energies of the particles, using 
for this purpose the distribution function (20). The nu- 
merical calculations yield the spectral-angular intensi- 
ty density of the radiation a s  a function of the particle 
incidence angle on the axis. Figure 3 shows the re- 
sults for the incidence angle 0, = @, and two values of 
the radiation observation angle, 8 = 0 and 0 = Y-'. We 
took into account in the calculations the polarization of 

FIG. 3. Spectral-angular density of the radiation intensity 
(28) in silicon, averaged over the transverse energies of the 
particles, a s  a function of the ratio of the radiation frequency 
to wiy3/' and of the observation angle for the electrons (a) and 
for the positrons (b). The solid curves correspond to an o b  
servation angle 0 =?-I, and the dashed curves to 8 = 0. The 
numbers a t  the curves indicate the values of the Lorentz 
factor of the particles y. The values (d3~/dldwd(B~)'),,, a r e  
measured in units of I~'/'/*, and the angle of incidence Oo of 
the particles on the axis is taken equal to BL. 

the medium, so  that the behavior of the radiation spec- 
t r a  at relatively soft frequencies, other canditions be- 
ing equal, depends on the ratio w,y/w [see (29)]. To 
illustrate the polarization effect, the curves of Fig. 3 
a r e  plotted for different y = r n c 2 / ~ ,  namely loa, lo3, 
and lo4, and at the plasma frequency wb= 30.8 eV cor- 
responding to silicon. The spectra integrated over the 
radiation angles, a s  functions of the ratio of the parti- 
cle incidence angle on the axis to the Lindhard angle, 
a r e  similar in form. 

The radiation spectra of quasichanneled particles, 
shown in Fig. 3, differ substantially in character from 
the corresponding radiation spectra of channeled parti- 
cles. This difference should manifest itself most no- 
ticeably when observed at fixed angles @ (A@<< @). The 
spectra of the channeled particles should consist in 
this case of individual lines o r  bands corresponding to 
different  harmonic^.^" At the same time, the spectra 
of the radiation of the quasichanneled particles (Fig. 3) 
a r e  continuous without any characteristic maxima.') 
This is the result of the random transverse motion of 
the quasichanneled particles. 

6. COMPARISON OF THE RESULTS OF THE 
THEORY WITH THE EXPERIMENTAL DATA 

The results  enable us to draw a number of general 
conclusions concerning the observed increase of the 
radiation intensity when the crystallographic axis a re  
oriented along the beam of the incident particles. Dis- 
tinct maxima in the electron radiation spectra, ob- 
served in the experiments13-l6 at different electron en- 
ergies and for different single crystals, can be attribut- 
ed only to the fact that a substantial fraction of the 
electrons passed axially channeled through the targets. 
On the other hand, the absence of maxima of this type 
in the spectra obtained by Swent et &.I2 indicates that 
the predominant contribution to these spectra was made 
by quasichanneled electrons. 

Since the form of the radiation spectrum in axial 
channeling and quasichanneling turns out to be quite 
sensitive to the distribution of the particles with respect 
to the transverse energies, an important role in the de- 
tailed comparision of the experimental results  with the 
calculation of the particles in the beam, and also of the 
subsequent evolution of the particle distribution. 

In most  experiment^'^-'^ the initial angle scatter of 
the particle was comparable with the critical angle. 
The angular distribution of the particles was not mea- 
sured in this case. On the other hand, the kinetic theo- 
ry of axial channeling of particles is much more com- 
plicated than in the case of planar channeling, and the 
calculation of the particle distribution a s  they move in 
a relatively thick crystal i s  a rather complicated prob- 
lem in itself. 

We confine ourselves here therefore to an analysis of 
the spectra of the radiation produced by positrons of 
energy 56 MeV, when a beam of particles having an 
angular divergence A@ = 3 x in the vertical direction 
and 9x in the horizontal direction passes along the 
(110) axis of a silicon crystal 18 p m  thick. The regis- 
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FIG. 4. Spectral intensity (d2w/d ld ) , ,  of positron emission in 
a silicon crystal in the interval of the angle from zero to 
8. in relative units. These units are chosen such that the 
theoretical value of ( d 2 ~ / d l d w ) , , ,  is equal to two at l w = 5 0 0  
keV. In the calculations, the spectra were also averaged over 
the angles 8, of the positron incidence on the (110) axis in the 
range from zero to 1.5 OL (curve 1) or 20L (curve 2) under the 
assumption that the angles 8, have an equiprobable distribu- 
tion. The points show the experimental results of Aulgard 
et al." 

tered radiation was contained in an angle interval A0 
c 1.6 around the direction of the crystal axis." 

Under these conditions, the overwhelming majority 
of the positrons pass through the crystal in the quasi- 
channeling regime, with the beam divergence in both 
directions exceeding the critical angle 8,= 2.0- 
(see Table I). The results  of the theoretical calculation 
a r e  given in Fig. 4. 

The spectra were calculated by us in the dipole ap- 
proximation (28), which in this case was accurate 
enough. The redistribution of the transverse energies 
of the positrons propagating in the crystal was neglect- 
ed, since the crystal was thin enough. Since the true 
form of the initial angular distribution of the positrons 
was unknown, the sensitivity of the spectrum to the ini- 
tial angular distribution of the positrons was illustrated 
by choosing two angle widths, within which the distribu- 
tion was assumed equally probable. 

The theoretical curves explain the principal charac- 
teristic feature of the measured spectra, namely the 
presence of a broad frequency range S l O O  keV, in 
which the spectra density of the radiation energy ex- 
ceeds unity noticeably. The small characteristic peaks 
in the observed spectra were attributed" to the contri- 
bution from the positrons that become planarly chan- 
neled. We did not take this contribution into account. 

It should be noted that the assumption made in Ref. 
11 that at sufficiently high frequencies the radiation 
spectrum in an oriented crystal should coincide with the 
spectrum in an amorphous medium is unfounded. As 
shown by the calculation above, in a sufficiently hard 
region of the spectrum the radiation in the crystal can 
be suppressed compared with an amorphous target. 
Therefore the ratio of the spectral radiation densities 
shown in Fig. 4 cannot be regarded a s  the true ratio of 
these quantities for oriented and amorphous targets. 

7. QUANTUM THEORY OF RADIATION IN  
QUASICHANNELING 

The classical theory of radiation in axial quasichan- 
neling shows ;hat the integrated energy lost by the par- 

ticle to radiation is proportional to  the square of the 
particle energy. At sufficiently low particle energies 
(U&S 1), when the radiation is dipole, the character- 
istic radiation frequencies a r e  proportional to E3I2, 
and the spectral density of the radiation power is pro- 
portional to E"~. In the opposite case,  when U& >> 1, 
the characteristic frequency is proportional to E2, and 
the spectral power density does not depend on the par- 
ticle energy E .  These results  a re  in fact independent 
of the model of the axis potential. 

The restrictions on the applicability of the theory de- 
veloped above a r e  due to quantum effects. A distinction 
can be made between two types of such effects. The 
f i rs t  can be significant at relatively low particle ener- 
gies (-1 MeV),l7@l8 when the deBroglie wavelength of 
the transverse motion X , = ( ~ E E ) - ~ ~ ~  i s  of the same order 
as the dimensions of the unit cell, and a quantum de- 
scription of the particle scattering i s  essential. The 
second should manifest itself when the photon energy 
becomes comparable with the particle energy and the 
recoil accompanying the photon emission i s  significant, 
a s  well a s  the interaction of the particle spin with the 
radiation field. A corresponding theory that takes both 
these effects into account i s  considered below. We 
note that according to classical estimates (Ref. 3,  p. 
39) the particle energy at which the characteristic radi- 
ation frequency in the average potential reaches the re- 
gion w-  E is determined by the quantity E, = arn3c5/ 
( E U ~ )  (see Table I). However, channeled and quasi- 
channeled particles with transverse energy E can in 
principle emit photons with energy w-E also at ener- 
gies E, - l / c  which a r e  lower than E,. To this end, the 
change of the transverse energy upon radiation should 
be of the order of the initial energy c ,  and the radiation 
probability turns out to be relatively low. At still lower 
energies, E 2 El,  the energy and longitudinal-momen- 
tum-component conservation laws forbid the emission 
of photons with energy w-  E [see (32) below] in the 
average potential of the axes. Such photons can be 
emitted in this case only when account i s  taken of the 
deviations of the potential of the atomic chain from the 
mean value, and also a s  a result of the scattering of 
the particles by the crystal electrons. These possibili- 
t ies  were not considered in detail in this study. 

The Dirac relativistic equation that describes the 
particle motion in an average potential U(p) can be re- 
duced to a SchrBdinger equation for the wave function 
of the transverse motion. This procedure i s  described 
in detail, e.g., in Sec. 1 of Ref. 29 for the case of 
planar channeling of the particles. In perfect analogy, 
for axial channeling the wave function of the electron in 
the initial state can be written in the form 

where E ,  i s  the total initial energy of the particle, 
pl') is the initial particle momentum component paral- 
le to the axis, a a r e  Pauli matrices, p =  -iV i s  the 
particle momentum operator, and pi is the spinor cor- 
responding to the initial spin state. The wave function 
of the transverse motion satisfies in this case the equa- 
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axial quasichanneling. 

Most important i s  the circumstance that the wave 
functions and the corresponding transverse energies 
depend parametrically on the total energy of the parti- 
cles and consequently make up two different bases. 
This difference turns out to be significant in calcula- 
tions of emission spectra, even if the photon energy i s  
low compared with the particle energy, so that E, dif- 
f e r s  little from E,. A classical analog of this effect i s  
the influence of the field of the axis on the longitudinal 
velocity of the particle [see Eq. (3)] in the emission 
p r o c e s ~ . ~  

The spectral-angular distribution of the probability 
of the emission of a photon of energy w and polarization 
e per unit time i s  determined in the quantum case by 
the Fourier component of the correlation function [see, 
e.g., Eq. (4) of Ref. 291. By calculating it with the aid 
of the wave functions (30), we obtain the spectral-angu- 
lar  distribution of the probability, per unit time, of 
emission by an unpolarized electron (positron): 

dodo 2n , 

where u = W/(E - w), E i s  the initial energy of the par- 
ticle, n, is a unit vector in the direction of the projec- 
tion of the photon momentum on a plane perpendicular 
to the crystallographic axis k,= wen,, wi,= ci(E) - E,(E  
- w) is the difference between the transverse energies 
in the initial and final states, 

a r e  the matrix elements of the longitudinal and trans- 
verse components of the particle current. The summa- 
tion in (32) i s  over all the quantum numbers f of the 
final states of the transverse motion. 

If it i s  assumed formally that the transverse transi- 
tion current has only one spatial component (I!;)) , then 
the expression in the curly brackets of (32) coincides 
with the analogous expression (10) of Zhevago's paperz9 
for the probability of emission of unpolarized photons 
in planar channeling. The difference between the argu- 
ments of the 6-functions in Eq. (12) of Ref. 29 and in 
our equation (32) i s  due to the somewhat different char- 
acter of the influence of the quantum recoil on the lon- 
gitudinal motion in the field of the axis and of the 
planes. Compared with the results  of ~ a i e r  et al. [see 
Eq. (3.5) of Ref. 61, our general expression (32) takes 
into account a number of possible effects. First ,  the 
quantum character of the particle motion, second the 
influence of the quantum recoil on the transverse mo- 
tion, which turns out to be essential for hard frequen- 
cies w - E (for more details see Sec. 2 of Ref. 30), and 
third, Eq. (32) remains valid when the transverse par- 
ticle trajectories become nonperiodic, so  that they can 
be used to investigate also the radiation in the case of 

For soft frequencies (wc< E) and relatively low ener- 
gies (U,E<< I) ,  when the dipole approximation i s  valid, 
expression (32) takes on a much simpler form 

= -  6w ezu { (V+E-')'I tqXp,tl l z  
dodo 2n 

At low particle energies, E - 1 MeV, a definite role can 
be played by effects of diffraction of a transverse wave 
function by a periodic potential U(p). To this end we 
transform Eq. (34) for the radiation probability, taking 
into account the Bloch form of the wave functions 

where i = {K, n); f = {st, nt} a re  the quantum numbers 
(the quasimomentum and the number of the band) of the 
initial and final states respectively; @ ,  (p), @,, ( p )  
a r e  periodic functions having the period R of the two- 
dimensional lattice, and the quasimomenta n and wt 
a r e  assumed to be referred to the first  Brillouin zone. 

We substitute expression (35) in the general formula 
(34) for the matrix elements of the dipole moment of 
the transition, and transform the integral over the 
entire crystal cross  section into an integral over the 
a rea  S of the unit cell. Using the periodicity of the 
function $, we obtain 

We substitute next (36) in (34) and sum over the quasi- 
momenta of the final states. We take account here of 
the relation 

ei(x-R')R-,5,,,s., 
R 

where 6 is the Kronecker symbol. The spectral-angu- 
l a r  probability density of the dipole radiation can be 
rewritten in the form 

0 + (P - E-%). 1 nip,,,, ( x )  1.) 6 [T (0% + E-¶) - (en,, - en,, d ] : 
p n n , ( ~ ) =  J 4.. x (P) &:*, x (PI d2p. 

The functions @(p) a r e  normalized by the condition 

The quasimomentum i s  thus conserved in dipole radia- 
tive transitions. The radiation takes place only in in- 
terband transitions and there a re  no intraband transi- 
tions (n = nt) in the dipole approximation. The more 
general matrix elements of the current (33), with the 
wave functions (35) of the Block type, can similarly be 
written in one of the following forms: 
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where K is the reciprocal-lattice vector that refers  the 
quasimomentum u1 = u - k, - K to  the first  Brillouin 
zone. However, allowance for the particle diffraction 
under non-dipole radiation conditions (E >> 100 MeV) is 
meaningless, for when the particle energy i s  increased 
the diffraction effects vanish and the problem of radia- 
tion produced in axial quasichanneling (channeling) can 
be solved in the approximation of the isolated axis 
(cell). In this case the quantum number for the quasi- 
channeled particles is the two-dimensional vector p,, 
which has the meaning of the transverse momentum of 
the particle in a region where the action of the potential 
of the axis can be neglected. The summation in (32) 
over the final numbers f must be understood a s  inte- 
gration with respect to 8 p  J ( ~ T ) ~ .  

In analogy with the three-dimensional scattering 
we can introduce a system of wave functions of 

the continuous spectrum of the transverse energies in 
the axis field, {$','!(p)}, and also the system {J)~Y)(~)}.  
The initial wave functions in the matrix elements of the 
transition current a re  chosen from the system #*), and 
the final from the system $(-). This corresponds to 
radiation by a quasichanneled particle scattered by the 
potential of the axis with change of the transverse mo- 
mentum by an amount p,' - p,. 

For a model potential of the type (-a/p), the explicit 
form of the wave functions i s  obtained by solving Eq. 
(31) in planar parabolic coordinates. The solutions are  
expressed in terms of confluent hypergeometric func- 
tions +(a, c ; x )  in the following manner8): 

9:: ( p )  =C[+)eXv'@(D ( i p ,  '/2: i (pLp+p,p) )  ; 

$:? ( p )  =C'-)e'*l'P(D (-ip', I/,; - i(pLp+pLp) ) ; 

~ ' + ' - ~ - % r ( y ~ - i ~ )  c(-)=~- sI'( ' /2+ipf)  enP'la; 

p,=(2eE)", p,'= [ 2 ( E - I B ) ~ ' ] ' ~ ,  p=*aE/p,, 

p f - f  a ( E - o ) / p , ' ,  

where E and E' are  the initial and final transverse en- 
ergies, the upper signs in front of the parameter of the 
potential a correspond to electrons, and the lower to 
positrons. The functions $(*) are  normalized to unity 
amplitude in the incident wave. 

The wave functions I);;) describe the scattering of a 
planar flux of particles by a two-dimensional potential. 
At sufficiently large p, the function $(+)(p) has asymp- 
totically the form of a sum of a plane wave and a di- 
verging cylindrical wave, which in this case a re  some- 
what distorted because of the long-range character of 
the model potential 

The amplitude of the scattered wave i s  

where x is the scattering angle in the transverse plane. 
The poles of the scattering amplitude in the complex 
plane of the variable p,, a s  is well known, determine 
the energy levels of the channeled particles. From the 
condition that the argument of the 6-function in the nu- 
merator (37) be a negative integer (-N) we obtain the 
condition for the quantization of the transverse energy 
for the channeled electron in the potential (-a/p). Ac- 
cording to (37), the cross  section for scattering of 
quasichanneled particles in a transverse plane i s  of the 
form 

The cross  section has the dimension of length, since in 
this case it constitutes the probability of scattering 
through an angle x in a unit time, referred to a unit 
planar particle flux. It is interesting to note that in 
contrast to the three-dimensional case of scattering in 
a Coulomb field, o ( ~ )  does not coincide now, generally 
speaking, with i t s  classical limit o,(x) = a / 4 ~  sin2(x/2). 
The matrix elements of the current (33) can be ex- 
pressed in terms of the unit integral 

I ( & ,  q, p,, p,') =C'+'C1-)' j P-' exp(-hp+iqp) 

by means of the relations 

after which i t  i s  necessary to put q =  p,- p,' - k, in (39). 
The integral J i s  calculated by an analytic method simi- 
l a r  to that used by Nordsieck3' and SommerfeldZ5 to 
calculate the bremsstrahlung in a Coulomb field. The 
results of the calculations takes in this case the form 

The following notation was introduced: 

and F(a, b, c ;  z )  i s  a hypergeometric function expressed 
at c = 1/2 in terms of Legendre functions.33 

For soft frequencies w<< E and large parameters p 
>> 1, and under the condition that the change of the 
transverse energy in the course of the radiation is 
small, I p f  - P I < <  p,  the matrix elements (39) go over 
into the previously calculated Fourier components (24). 
A detailed analysis of the dipole radiation of quasi- 
channeled electrons and positrons, with quantum ef- 
fects taken into account, i s  published in Ref. 35. 

We note in conclusion that the existing theory of for- 
mation of electron-positron pairs by a photon in a 
crystal, based on the Born a p p r o ~ i m a t i o n , ~ * ~ ~  should be 
also reviewed to take into account the effects of quasi- 
channeling of the particles in the final state. The cri- 
terion for the influence of the quasichanneling is in this 
case that the incidence angle of the photon on the axis 
and the pair-separation angle, get,- l /w, be close in 
order of magnitude to the critical angle ~,-(U,, /W)"~. 
The corresponding theory can be developed on the basis 
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of the results obtained in Sec. 7 and of the cross-sym- 
metry properties of the amplitudes of the processes 
considered. 

The authors are grateful to A.R. Avakyan and V.I. 
Glebov for help with the numerical calculations. 
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product wwoa in the definitions of the parameters X, 2, and g . 

' )~uasichanneled positrons a r e  sometimes called a lso  simply 
channeled. The truly channeled positrons, which execute 
finite transverse motion, a r e  then called hyperchanneled 
(Ref. 19, p. 193). 

3 ) ~ n  the opposite case,  relatively rapid &channeling takes 
place. 

 ore correct  calculation with allowance for coherence were  
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6 ) ~ e  use a system of units in which rn = c = 1 .  
')A weakly pronounced maximum appears only a s  a result  of 

the polarization of the medium, when the particle energies 
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