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A semiclassical theory of collective spontaneous emission in a onedimensional system is developed, which 
takes account of the forward and backward waves of the.radiation field in the active medium. The basic 
equations of the theory are derived witheut the assumption that the space derivatives of the radiation field 
amplitude and the atomic inversion are small. The process of collective spontaneous decay of nuclei in a 
periodic lattice is investigated under Braggdiiraction conditions and for arbitrary deviations from these 
conditions. The superradiance of samples of dimensions of the order of the wavelength of the radiation field is 
considered for the limiting case of a continuous medium. The property of a superradiant system to retain part 
of its energy in the form of a localized collective excitation of the medium is discovered. The criterion for 
transition from the regime of pure (single-pulse) superradiance to the oscillatory regime differs fundamentally 
from the criterion given by the quantum mode theory of superradiance. 

PACS numbers: 03.65.Sq, 42.50. + q 

I. INTRODUCTION 

The possibility in principle of the collectivization of 
the spontaneous decay of an assemblage of excited at- 
oms was first  demonstrated by ~ i c k e , '  using a s  an ex- 
ample a system of N closely spaced atoms (R << X; R is 
the dimension of the region occupied by the atoms and X 
is the wavelength of the radiation). In this case the in- 
teraction between the atoms via their radiation self- 
field leads t o  the result that the intensity of the spon- 
taneous radiation emitted by such a system is propor- 
tional to N ~ ,  while the lifetime -N". Dicke's paper' be- 
came the starting point for further theoretical and ex- 
perimental investigations of this phenomenon, which is 
called superradiance. In i t s  general formulation this 
problem is a multiplanned one; for it is necessary to  
answer a number of questions: the question of the for- 
mation of macroscopic correlations from an initially 
uncorrelated state, of the role of the geometry of the 
active medium, of t h e  allowance for the nonlinearity of 
the system, etc. Also diverse a r e  the methods used in 
the theoretical invest igat i~n.~ Thus, the superradiance 
of extended systems, i.e., systems with R >> X, i s  in- 
vestigated by two entirely different methods: the quan- 
tum mode approach, in which the radiation field is 
quantized and one o r  several important modes of the 
quantized field a re  considered, and the semiclassical 
approach, in which the field is considered to be classi- 
cal. The advantage of the f i rs t  approach is that it can 
lead to  the correct  description of the initial phase of the 
spontaneous decay, when there is  no correlation be- 
tween the atoms and the quantum fluctuations of the 
field a r e  substantial. But the limitation of the number 
of modes negates the description of the spatial inhomo- 
geneities of the field and the atomic characteristics. 
The semiclassical approach, on the other hand, allows 
us to take the inhomogeneity of the decay process into 
account, but is not capable of correctly describing the 
initial phase of the process, and therefore requires the 
specification of the atomic currents initiating the decay 
at zero  time. Let us also note that the normal semi- 
classical approach is essentially based on the assump- 

tion that the space derivatives of the field amplitude 
and the atomic characteristics a re  small: aF/ax<< F/X, 
where F is any function describing the state of the sys- 
tem (the radiation-field amplitude, the polarization, o r  
the inversion). It is clear from the foregoing that it is 
expedient to use t h e  normal semiclassical approach in 
the R >> X case,  in which the inhomogeneity of the decay 
process is slight in the sense of the above condition; 
the quantum description, on the other hand, is effective 
only for sufficiently short samples, in which no in- 
homogeneity occurs at all. In the present paper we in- 
vestigate the question: What is the greatest active- 
sample length for which the collective-decay process 
will still be homogeneous? We propose a semiclassi- 
cal method that takes account of inhomogeneities of ar- 
bitrary scale, and goes over in the limit of long-wave 
inhomogeneities into the method proposed by MacGil- 
livray and ~ e l d . ~  

Thus far ,  what has been considered is essentially the 
continuous-medium case, which obtains in the optical 
wavelength region. Let us now turn to  the problem of 
collective spontaneous emission in crystalline struc- 
tures,  when the radiant objects a r e  nuclei (the x- and 
y-ray regions) and the wavelength of the radiation is 
comparable to  the radiator spacing. The effect of the 
discreteness of the active medium on the possibility of 
collective spontaneous decay was first  discussed in 
Refs. 4-7. The assertion is made in Hefs. 5 and 6 that 
the spontaneous decay process in a crystalline struc- 
ture can become collective only when the condition k 
=2?rb, where k is the wave vector of the radiation field 
and b is a reciprocal-lattice vector of the crystal, is 
fulfilled. But subsequent more detailed i n ~ e s t i ~ a t i o n s ~ ' ~  
have shown that this condition i s  not a necessary one. 
Thus, Afanas'ev and ~ a ~ a n '  have shown that the super- 
radiance effect can be realized in an arbitrary crystal  
with the aid of a special coherent excitation of the crys- 
tal. But let us note that in Ref. 4 the real  nuclei are  
modeled by damped linear oscillators, while in Refs. 
5-7 the results  a re  obtained in first-order perturbation 
theory; therefore, there ar ises  the question of the' an- 
alysis of more realistic nonlinear models. The main 
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purpose of the present paper i s  to  consider this prob- 
lem. Let us note that the results of the nonlinear treat- 
ment differ in many respects from the results obtained 
in the linear approximations. Let us discuss the main 
features of the model in question and the assumptions 
made. 

First, the analysis i s  carried out in the approxima- 
tion of a dipole interaction between the nuclei and the 
radiation field. The problem for the periodic structure 
then turns out to be equivalent to some problem for a 
continuous sample of a definite length. It i s  precisely 
this equivalence that allows a parallel consideration of 
the above-discussed two outwardly different problems: 
the superradiance of a sample with R - X and the super- 
radiance of a crystal, the first pr6blem being charac- 
teristic of the infrared region and the second of the x- 
and y-ray regions. 

Second, the study of the one-dimensional model i s  ex- 
pedient now because the anisotropic emission process 
is of greatest interest in the real three-dimensional 
case, and in such a process the state functions of the 
active medium depend essentially on one space coor- 
dinate. As the possible causes of the anisotropy we can 
cite the geometry of the active medium, the discrete 
periodic structure of the medium, o r  the special initial 
conditions imposed on the radiators. The one-dimen- 
sional radiators are  actually planes in three-dimen- 
sional space, each filled with identical atoms (nuclei) 
whose states (inversion, polarization) are identical at 
all moments of time. The problem of the spontaneous 
decay of one such radiator is solved in Ref. 9. 

Third, the analysis is limited to  the case of a nonab- 
sorbing rigid crystal. The neglect of the absorption 
can be justified if we choose a crystal of sufficiently 
small length in comparison with the absorption length, 
and also note that, in view of the higher probability for 
radiative decay in the collective process, the relative 
weight of the internal-conversion effect occurring in the 
nuclei is smaller.' But the neglect of the lattice dy- 
namics is apparently a major simplification of the real 
situation, in view of the recoil that accompanies the 
collective emission by a group of neighboring nuclei, 
and can be advisable only at the first stage of the inves- 
tigation. Another argument for the necessity of the con- 
sideration of the nuclear motion will be adduced in the 
final section. 

II. DERIVATION OF THE BASIC EQUATIONS 

1. The equations for the nucleus. We shall treat the 
nucleus as  a two-level quantum system with ground- 
state energy El =Awl and excited-state energy E2 =Aw2; 
w =  w2 - w1 is the transition frequency. The state of the 
nucleus is described by the two-component wave func- 
t ion 

the Schradinger equation for which has, in the dipole 
approximation, the form" 

iAdC,/dt=-E(t)dC2 exp ( - i d ) ,  

i l~dC=/dt=-E ( t )dC ,  cxp ( i o t ) ,  
(1) 

335 Sov. Phys. JETP 55(2), Feb. 1982 

where E(t) i s  the electromagnetic field intensity and d 
is the matrix element of the dipole-moment operator. 
Let us introduce the new variables 8, cpi, and (p, with 
the aid of the following relations: 

Then from the system (1) we obtain for the variables 8 
and (p = cp, - rpl in the case of a prescribed external 
field E(t) a closed system of two equations, which it i s  
convenient to represent in the form of one complex 
equation 

1 d -- (sin Be'.) - i - 2Ed e'.'. 
m e  dt , A 

If E ( t )  = $(t)e"Oi, where df8'/dt << w g, we obtain from 
(2) the equation 

2. The equations for the eZectromagnetic.field. Let 
us express the field intensity E(x, t) in terms of the 
currents of all the nuclei of the system. To do this, let 
us proceed from the one-dimensional Maxwell equation 
for the intensity 

where J i s  the transverse-current density (Jl ex). The 
retarded solution to Eq. (3) has the form 

The current density in the system of plane radiators i s  
given by the expression 

where n i s  the surface density of the nuclei in the plane 
radiator and d(x,, t )  i s  the dipole moment of the nucleus 
at the point x,, given by the expression 

d ( x ,  t )  =d(C,  (x ,  t!Ca'(x, t )  e'*'+c.c.). 

In differentiating the last equation, we should use the 
equations (1). We obtain in the variables 6' and cp the 
expression 

a 
- d (2 ,  t )  = o d  sin 0 (x ,  t )  sin(cp ( z ,  t )  - o t )  . 
a t  (6) 

Substituting successively (6) into (5) and then (5) into 
(41, we express the field intensity in terms of the states 
of all the radiators in the variables 6' and cp: 

where t , ~  t - [x -x, l/c. In (7) it is assumed that the w, 
differ from each other (inhomogeneous broadening). We 
shall limit ourselves below to the case w, =w. 

3. Closed equations for the nuclei k the Bloch vari- 
ables. The substitution of the expressions (7) for the 
intensity into Eq. (2) allows us to obtain an equation in 
which only the nuclear variables 0 and cp figure: 

1 d -- (sin 0 ,  exp (irp,,) ) =-2i exp ( i d )  sin Ok(tk)sin(rpk-ot,), 
cos 0, dr  

k 

(8 
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where T Z  2nnwd2t/tlc. Let us note that the variables 0 
and cp are slowly varying quantities in comparison with 
the quantity elu' [this can be seen from the equations 
(1 ): dcl, Jdt - ~d/fi<< w]. Therefore, i t  is expedient to 
separate in (8) the rapidly- and slowly-varying-in 
time-quantities, and then discard the rapidly-oscillat- 
ing terms, i.e., use the "rotary-wave" approximation!' 
The final equation into which only the "slow" quantities 
enter has the form 

1 d -- (sin 0, exp (iip,) ) 
cos0, dr 

9 

It should be borne in mind that allowance for the term 
with k =m in Eq. (9) corresponds to allowance for the 
self-action of the radiator via the self- field of the radi- 
ation. In the semiclassical description this self-action 
i s  responsible for the spontaneous decay of a radiator. 
The relatively slow variation in time of the quantities 0 
and cp allows us to simplify Eq. (9): specifically, when 
the condition 2nnwdL~/tlc<< C/R is fulfilled, the func- 
tions 0, and cp, change little during the time At  =R/C  it 
takes the field to propagate through the system; there- 
fore, the retardation in the right member of (9) can be 
neglected: 

1 d -- 
cos 0, dr (sin 0, exp(iip,)) = - 7 sin O,erp[i(rqk+ k,Is-x,l) 1. (1 0) 

A 
k 

Let us emphasize that the transition from (8) to (10) i s  
made under the condition that w - a, c -- -, and w/c 
=kg = const. 

Ill. THE CASE OF A CONTINUOUS MEDIUM 

For a continuous medium Eq. (10) should be repre- 
sented in the form 

where T= 2npd2t/tl and p i s  the volume density of the at- 
oms, or in the equivalent differential form 

(2 + k: ) [ j d  (sin &*) ] --2tk: sin Oe*. 
a t.1 cos 0 a~ 

Let us consider some properties of Eq. (11). 

1. The traveling wave 

E(x, t )  =PP exp [i(k,z-at) I ,  a 8 l a t a ~ 8 ,  a 8 l a ~ ~ k a .  

In this case cpk, t) =n/2 +k#, as follows from Eq. (2'). 
Substituting this expression in (111, we obtain the equa- 
tion 

a"0la$r=-sin e (q==k.~), (1 2) 

which coincides with the equation of the standard single- 
wave semiclassical theory developed in Ref. 3. On the 
other hand, this is the so-called sine-Gordon equation, 
which is well known in the theory of nonlinear waves 
(see, for example, Ref. 12), and has soliton solutions, 
which we easily obtain by seeking the solution in the 
from O(q, T) = 0(q - VT), v > 0. The solution,with zero 
boundary conditions at infinity 

q-vz 
0=2 amcos (W (T)) 

describes the propagation in the medium of a pulse of 
self-induced transparency (SIT)." For v < 0 we obtain 
another steady-state solution: 

with the following condition at infinity: 0(*-) =r. This 
solution describes the motion of the de-excitation region 
through the completely inverted medium, the direction 
of propagation of this region being opposite to  the direc- 
ection of propagation of the photons in it (v,, =w/ko 
> 0), i.e., such a soliton reminds us of the property of 
a "hole:" i ts motion in one direction i s  accompanied by 
the transport of energy in the opposite direction. The 
interpretation of this solution i s  the following: during 
the motion of the de-excitation region to the left (Fig. 
l a ) ,  photons are emitted backwards (i.e., to  the right) 
at the leading edge of this region, and subsequently ab- 
sorbed by the trailing edge of the region. As a result, 
the shape of the inversion distribution at the next in- 
stant (it i s  indicated by the dashed curve) will shift to 
the left. This apparently curious property of an invert- 

FIG. 1. a) Propagation of an inverted soliton; w i s  the 
level population inversion. The vertical arrows indicate 
the variation in time of the inversion at the soliton fronts, 
and the horizontal arrows indicate: U) direction of radia- 
tion and C) direction of soliton motion. b) Inversion dis- 
tribution in an extended continuous medium under the con- 
dition of the oscillatory regime of superradiance [the solu- 
tion to Eq. (12)l; T is  an arbitrary time interval. c) In- 
version distribution in a crystalline structure in the case of 
coherent initial conditions (the right wave predominates at 
zero time); L = h / 4  and T i s  an arbitrary time interval. 
The relaxation of the inversion at the left end of the system 
i s  due to the presence of a weak backward radiation wave. 
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ed medium t o  produce inverted solitons, has, however, 
a fundamental effect on the collective decay process." 
Let us turn to  Fig. lb ,  which illustrates the results of 
the numerical solution of Eq. (12) (these results were 
first obtained by MacGillivray and ~ e l d ~ ) .  De-excita- 
tion regions with parameters close to  the parameters 
of the inverted solitons successively appear at the 
boundary of the medium in the course of the collective 
decay, and the appearance of each such region is ac- 
companied by the emission of a radiation pulse. Con- 
sequently, i t  is natural to  interprete the oscillatory re- 
gime of superradiance a s  the decay of the nonlinear 
system through the production of a succession of ele- 
mentary nonlinear excitations-solitons (no soliton in- 
terpretation of the oscillatory r e g m e  is given in Ref. 
3). Let us note that the nonlinear essence of the oscil- 
latory regime of superradiance, that is manifested in 
the semiclassical description, does not fit into the 
quantum mode treatment of this phenomenon, since in 
the quantum treatment the oscillations of the radiation 
intensity appear in the linear problem. Below we shall 
see that the parameters characterizing the transition t o  
the oscillatory regime in these two approaches also dif- 
fer. 

3. The collective spontaneous decay of  a sample of 
length R - X. This problem is of special interest in 
view of the fact that occurrence in it of a spatial in- 
homogeneity whose dimensions a r e  "dictated" by the 
dimensions of the active medium, i.e., a re  of the or- 
der of A, is to  be expected. Under such conditions the 
semiclassical method proposed in Ref. 3 i s  inapplica- 
ble, and Eq. (11) must be used. The results presented 
below were obtained by solving this equation numeric- 
ally with a computer. Before proceeding to analyze the 
results, let us discuss the question of the choice of the 
initial conditions in the system of radiators. As stated 
in the Introduction, the semiclassical method has the 
disadvantage that it is not capable of describing cor- 
rectly the initial phase of the spontaneous decay, since 
there is no agent impelling the atom (nucleus) to leave 
the steady state. We must specify the value Bo = 0(0), 
thus prescribing the initial current. An adequate value 
has been obtained for the semiclassical parameter Oo in 

FIG. 2 .  The relaxation in time of the energy of an active 
medium as a function of the sample length. The numbers 
on the curves correspond to the following parameters: 1) 
R e  1; 2 )  R =  0.5A; 3 )  R =  0.5751; 4 )  R =  A ;  5) R =  253 
and (relevant to Sec. IV) 6L = A/4. 

a number of papers (see, for example, Ref. 14) from 
the quantum analysis of the initial phase of the decay : 
0,= 2/N1I2. TO obtain an uncorrelated initial state, it 
is natural to prescribe the phase function cpk, t =0) in 
the form of a random function of the coordinate x. If, 
on the other hand, the initial state is obtained by means 
of a coherent excitation of the medium, then the phase 
at zero  time should be given in the form of the function 
cp = kx, where k is the wave number of the field pro- 
duced by the pump. 

Let us now consider the results  of the numerical an- 
alysis of Eq. (11). These results a re  shown in Fig. 2, 
which depict the decrease of the energy in the active 
medium in the course of the collective decay. The fix- 
ed parameter is the total number of radiators in the 
sample, the sample length varying from R << X to  R 
=25X. The coherent initial conditions were chosen in 
the form cpk) =k@, where ko is the wave number of the 
radiation field. The de-excitation rate has i ts  highest 
value at the initial stage when the wave number k is 
chosen in this way. It can be seen from Fig. 2 that, 
when the sample length is significantly shorter than the 
wavelength of the radiation field, the behavior of the 
system totally corresponds to  the regime of pure 
superradiance: the emission time is inversely propor- 
tional to  the number N of radiators, while the radiation 
intensity -N2. As the sample length increases, the pic- 
ture  significantly changes: a "plateau" is formed in the 
plot of the time dependence of the energy of the system, 
and the radiation intensity depends on the time accord- 
ing t o  a complicated law. As the sample length in- 
creases  further, this complicated law gradually goes 
over into the oscillatory regime considered by us earl- 
ier .  Figure 3 illustrates the phenomena that occur in 
the sample when the energy of the system reaches the 
"plateau:" there is formed a solitary inversion hump, 
the nature of the evolution of which is, at the initial 
stage, characterized by an almost periodic variation of 
i ts  shape a s  it moves in a stepwise fashion through the 
medium. As the energy becomes exhausted, the hump 
comes to a stop, further releasing energy from itself 

FIG. 3.  Inversion distribution in an active medium during 
the collective decay (solitary excitation). The sample 
length is  equal to: a) R e  1, b) R =  0.5A, c)  R =  A ;  re 
= T/N. 
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in the form of very small-scaled medium excitations 
successively breaking away from it. The formation of 
such a solitary excitation evolving in such a nontrivial 
manner has been found to occur in all the cases con- 
sidered (the sample length R reached a value of 25X in 
the numerical solution). As regards the experimental 
investigation of this phenomenon, let us mention Ref. 
15, which reports experiments with the following pa- 
rameters: X = l .5 mm, R = 5 mm. Apparently, it is 
precisely in such experiments that the decrease of the 
energy production during the emission i s  most likely to 
be detected. We can, on the basis of the results obtain- 
ed by us, give a rough estimate for the energy that will 
remain in the medium in the form of a localized excita- 
tion: El- E ~ x / ~ R ,  where Eo i s  the total pump energy. 
Finally, let us point out the definite analogy between the 
above-obtained solution and the solution given in Yuen 
and Lake's paper in Ref. 12 for a solitary wave on the 
surface of deep water, and characterized by a periodic 
(in space and time) variation of its shape. This simi- 
larity indicates the advisability of carrying out a de- 
tailed study of Eq. ( l l ) ,  which, however, is outside the 
scope of the present paper. 

IV. THE CASE OF A PERIODIC STRUCTURE 

1. The exact solutions to Eq. (10). Let us consider 
the case L =An,  where L i s  the lattice constant, X is 
the wavelength of the radiation field, and n is an inte- 
ger. In this case, as i s  easy to see, Eq. (10) does not 
depend on the specific value of n; therefore, let us set 
n =O. The spatial dependence then disappears from Eq. 
(1 0): 

I d -- (sin 8, axp (irpn) ) = - z sin B, exp ( i i q ~  . 
cos 0,  dr  (1 3) 

.k - 

Let us introduce the following collective functions: 

1 
E = - -  z cos Oh, P =z sin 0, exp (iiq,) . 

h h 

The three-dimensional vector s = { 2 ~ ,  ~e P, I ~ P }  is the 
total-energy-spin vector of the system of radiators, its 
modulus being conserved in the present case. Indeed, 
from (13) we obtain for the functions E and P the sys- 
tem of equations 

from which follows the vector-length conservation law: 

We also obtain from the system (14) an equation for the 
energy of the system: 

the solution to which has the form 

Here we have used the fact that Oo =2/N1I2 and that N 
>> 1. It can be shown that the radiation intensity is con- 
nected with the energy E of the system of radiators by 
the simple relation I= - d ~ / d t ,  which means that the total 
energy inside the sample is made up of only the radia- 

tor energy, and does not include the energy of the field. 
This circumstance i s  due t o  the assumption that c =a. 
Thus, we obtain from (15) an expression for the radia- 
tion intensity: 

This solution i s  similar to the solution obtained in the 
Dicke model for systems with dimensions much small- 
e r  than the wavelength of the radiation field.' 

The second case allowing the exact analytical solution 
of Eq. (10) corresponds to the condition L = ~ / 2  + X n ,  
where n is a whole number. Making the change of vari- 
ables 8,- G,, cp, - (-l?$,, we obtain Eq. (10) for the 
new variables 8, and $,. Thus, when the Bragg condi- 
tions are  fulfilled, Eq. (10) admits of analytic solutions, 
and the superradiance effect manifests itself most 
characteristically: as  will be established below, the 
collective-decay time for the system i s  shortest under 
this condition, while the radiation intensity i s  highest, 
and is described by the normal superradiant emission 
law (16). Let us note that the apparent disagreement 
with Ref. 7 in the dependence of the maximum intensity 
on the number of radiators (here this intensity i s  -N2, 
while in Ref. 7 it i s  -N4I3) is due to the one dimension- 
ality of our problem. 

The property of a Bragg crystal to conserve the total 
energy spin vector has an interesting consequence. Let 
us consider a system in which only one radiator is in- 
itially excited. Then the evolution of the state of this 
radiator is described by the following equation, which 
follows from (1 3): 

dO/dr=-sin 0- (N-1) sin (0-0.),  (1 7) 

where Bo i s  the initial angle of the excited radiator. As 
can be seen from (171, the rate of its decay at zero 
time coincides with the rate of spontaneous decay of an 
isolated radiator. But the process of emission from 
the crystal stops after a time period of the order of 7, 

=T/N, where T i s  the independent decay time, and the 
initially excited radiator loses in the course of the re- 
construction of the system into a collective state energy 
roughly equal to (sin 280) /2~ ,  after which it "freezes" 
in its state of excitation. Such behavior of the process 
contradicts the results obtained in Ref. 5, where the in- 
crease of the decay rate under Bragg-diffraction condi- 
tions is predicted. The nonlinear treatment shows that 
the radiation emitted by the excited radiator i s  screen- 
ed off in the crystal, and that the system goes over into 
the collective state, which, in turn, decays apparently 
at the independent decay rate. The latter assertion fol- 
lows from the fact that the energy spin vector, as  the 
quantum treatment shows, i s  conserved only over time 
periods significantly shorter than the spontaneous de- 
cay time. It is possible though that such a collective 
state will turn out to be stable in the exact quantum 
treatment of the present problem. 

2. Small deviations f rom the Bragg condition. Let L 
=An  + 6L, where 6L << A. As has already been noted, 
the value of the integral parameter n does not affect the 
solution to Eq. (10); therefore, let us, a s  before, 
choose n = 0. Let us now note that the radiator spacing 
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is then significantly smaller than the wavelength of the 
radiation, and the case under consideration is essen- 
tailly the case of a continuous medium whose length is 
equal to R = 6L (N - I ) ,  where N is the number of radia- 
tors. For a quasi-Bragg crystal this quantity i s  pre- 
cisely the important parameter determining the course 
of the collective decay. The numerical computer analy- 
s i s  shows that the solution for a crystalline structure 
coincides to within 1% with the solution for a continuous 
medium of equivalent length R = 6L(N - 1) over the en- 
t i re  duration of the decay process provided ~ L / X  < 0.025. 
We specially investigated with the aid of a computer the 
possibility that a continuous sample with a regular dis- 
position of the radiators and a continuous sample in 
which the disposition of the radiators is random will be- 
have differently, but no differences were found within 
the limits of the indicated error .  Thus, we in fact have 
solutions, shown in Figs. 2 and 3, for crystalline struc- 
tures. It i s  only necessary to  remember that the length 
of the continuous sample in the case of a crystal  corre- 
sponds to  the quantity R = 6L(N - 11, the actual length of 
the crystalline system being R, =L(N - 1) >> h. Another 
important difference between a crystalline structure and 
a continuous medium is the fact that, if in the continu- 
ous medium the dimension of the localized excitation 2' 
- X/5, in a crystal the dimension of this localization can 
significantly exceed the radiation wavelength, i.e., 2' 
- 1 / 5 ~ ~ / 6 ~  >> X. In other words, the localized excitation 
in a crystal has macroscopic dimensions and, conse- 
quently, a relatively large amount of energy that is not 
released from the crystal  in the form of a radiation 
pulse. 

3. Arbitrary deviations from the Bragg condition. 
Let us note that the basic equation (10) for the case of a 
crystalline structure is invariant under the following 
transformation: 

{e*+Oh; cph+-cp,; L-c-L), 

which can be verified directly. From this it follows, in 
particular, that the deviations +6L and - 6L from the 
Bragg diffraction conditions a re  equivalent. In this 
sense the criterion for  maximum deviation from the op- 
timum ( ~ r a g g )  conditions for superradiance can be 
represented in the form L = A(+ +n/2). Let us note that, 
when a traveling wave propagates through such a lattice, 
the radiation emitted in the backward direction by 
neighboring radiators cancel each other because of a 
phase difference equal to n; therefore, the intensity of 
the backward wave is significantly lower, and the prob- 
lem can be considered in a single-wave approximation. 
For the purpose of illustrating the foregoing, we pre- 
sent Fig. Ic. which shows the results of the numerical 
solution of the exact two-wave problem in the indicated 
lattice in the case in which coherent initial conditions 
a re  imposed on the phase function: cp,=koLm. Under 
these conditions the radiation wave traveling to  the 
right predominates at the initial moment of time. AS 
can be seen from Fig. I c ,  the behavior of such a sys- 
tem is almost iJentical to the behavior of a continuous 
medium in the single-wave theory (see Ref. 3 and Fig. 
la) .  In Fig. 3 we have inserted for comparison with the 
Bragg case the variation in time of the energy in the 

structure under consideration. This comparison shows 
that, in spite of the fact that the spontaneous decay i s  
speeded up in both cases,  on the whole the superradi- 
ance effect is more strongly pronounced in the Bragg 
case. The present conclusion differs from the conclu- 
sion drawn in Ref. '7 on the basis of the result obtained 
in first  order perturbation theory, which is  that these 
two cases a re  identical. 

V. SUMMARY 

1. The phenomenon of collective spontaneous emis- 
sion in one-dimensional continuous and discrete peri- 
odic systems of radiators has been theoretically inves- 
tigated within the framework of the semiclassical ap- 
proach and in the dipole electromagnetic field-atom 
(nucleus) interaction approximation. The absorption of 
the radiation in the sample, the inhomogeneous line 
broadening, and the lattice dynamics were neglected in 
the analysis. Basic equations, (1 0) and (1 1 ), containing 
only the state functions of the atoms (nuclei) have been 
obtained for the collective decay process. The indi- 
cated equations take account of the two opposite radia- 
tion-field waves, and a r e  valid in the presence of ar -  
bitrary, and not just long-scaled, radiation-field and 
atomic-inversion inhomogeneities inside the active 
medium. The proposed method coincides with the 
method given in Ref. 3 in the long-scaled-inhomogeneity 
and single-wave limit. 

2. The problem of superradiant emission by a con- 
tinuous sample of dimension of the order of the wave- 
length of the radiation field is solved on the basis of the 
proposed method. It is shown that, a s  the sample 
length R increases from R << X to R-  X, the single-pulse 
regime of superradiance goes over into the multipulse 
regime, which is accompanied by the formation of a 
localized collective medium excitation distinguished by 
a relatively small  scale -X/5 and a complicated charac- 
t e r  of i ts  evolution, during which the excitation energy 
i s  gradually dissipated. 

3. In the semiclassical approach the transition from 
the single-pulse superradiance regime to  the multi- 
pulse regime is determined by the parameter R/X, 
where R is the length of the active medium and h is the 
wavelength of the radiation field: when R/x<< I the 
single-pulse emission regime obtains; when R/X- I ,  the 
multipulse emission regime; and when R/x>> I ,  the os- 
cillatory emission regime. The analogous parameter in 
the quantum-mode treatment2 i s  the quantity T/T,, 
where 7 is the time of flight of a photon through the 
medium and 7, is the duration of the collective pro- 
cess. In our treatment T = O ,  since c =-, but the 
emission regime is not the single-pulse regime. This 
inconsistency indicates that it i s  necessary to  seek a 
more satisfactory approach to the description of the 
spatial evolution of the superradiant emission process, 
and this approach should possess the advantages of both 
methods. 

4. A ser ies  of spontaneous-emission problems for 
one-dimensional periodic structures are  solved. It is 
established that the optimum conditions for superradi- 
ance a re  the Bragg-diffraction conditions: L =h(n  
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+ 1)/2, where n i s  a whole number, L is the lattice 
constant, and X is the radiation wavelength. Exact an- 
alytic solutions are obtained for this case. Under these 
conditions the radiation-pulse length is shortest and 
proportional to N", while the maximum radiation in- 
tensity is proportional to N2, where N is the number of 
radiators. The superradiance of near-Bragg crystals, 
i.e., crystals satisfying the condition 6L<< X, is  ac- 
companied by the local excitation of a crystal of di- 
mension - 1 / 5 ~ ~ / 6 ~ .  The energy of such an excitation 
formation is approximately equal to E ~ A / ~ N ~ L ,  where 
Eo is the nuclear-transition energy. 

5. The problem of the decay of a single excited radi- 
ator in an unexcited Bragg crystal i s  solved. The en- 
ergy emitted in such a decay is equal to EJN, i.e., al- 
most all the energy remains inside the system. Hence 
it can be inferred that the spontaneous radiation emit- 
ted by an excited nucleus in a three-dimensional crys- 
tal can be highly anisotropic; for the diffraction condi- 
tion may be fulfilled in one of the directions in the 
crystal. Let us emphasize that, for acompletely excited 
system, this direction will, on the contrary, be the 
direction of maximum intensity. These questions are  
currently being investigated. 

6. In view of the fact that even a small deformation, 
6R =N6L - A, of the Bragg crystal leads to a significant 
change in the picture of the collective process, there 
arises the question of the role in this process of the 
thermal and quantum fluctuations of the positions of the 
nuclei. 

In conclusion, the authors express their gratitude to 
their associate at the Computing Center of Moscow 
University, V. P. Gor'kov, for his help in the comput- 
e r  investigation. 
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