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It is shown that allowances for the finite rate of heat dissipation in the decay of "frozen" metastable states 
(FMS) leads to a thermal instability of the "explosive" type for the phase-transition front velocity. The critical 
parameters for the realization of this instability are calculated as functions of the heat-dissipation intensity 
and of the parameters that determine the thermal stability of the FMS. 
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5 1. INTRODUCTION the high-temperature ~hase ' ) ) ,  and the latter with the 

It is known that a supercooled state of the high-tem- activation character of the decay of the FMS (if u i s  

perature phase can be obtained in a first-order phase the velocity of the phase-transition front, then u 

transition. This metastable state is stable within ce r -  -exp(-E/T) a t  sufficiently low temperatures, where E 
is the activation energy. tain limits, but sooner o r  later goes over into a phase 

that is stable a t  a given temperature T by formation b) Appreciable exothermy of the transition of the 
and subsequent growth centers of this phase. The ra tes  FMS into a stable phase (the transition heat Q i s  usual- 
of these processes, and hence the rate of the relaxa- ly of the order of the latent heat AH of the phase tran- 
tion of the metastable state, with the external condi- sition). 
tions unchanged, a re  determined by the attained super- 

c )  In contrast to the case of small supercoolings (AT cooling AT = T, - T, where T, is the temperature of 
<< T,), where the release of the transition heat hinders 

the phase transition between two equilibrium condensed 
phases of matter (for example, between a crystal and 

the relaxation into the stable phase, since &/dT < 0, 
the release of the transition heat in the decay of FMS 

i t s  melt or  between two polymorphic o r  liquid-crystal (T<< T,) accelerates this process, since du/dT > 0 for 
modifications). It i s  important that the temperature 
dependence of the relaxation rate i s  qualitatively dif- FMS. 

ferent in the case of small and large supercoolings. This positive feedback, with allowance for the activa- 
tion character of the FMS decay, creates conditions 

If the supercooling i s  small (AT<< T,) the relaxation 
for the appearance of thermal instability of the 

rate (which is proportional to AT in first-order ap- 
4explosive" type, when relatively small changes of a 

proximation) increases with decreasing temperature. parameter can alter abruptly the FMS decay rate. 
In the other limiting case when the supercooling i s  - - 
large (ATzT,,  i.e., T<<Tt),  the relaxation rate de- In this paper a re  considered in detail the conditions 
creases with decreasing temperature because of the for the appearance of the indicated instability and i ts  
exponential decrease of the diffusion mobility of the character, using a s  an example the motion of a plane 
atoms of the substance (in other words, because of the front of a diffusionless phase transition in an FMS. 
exponential increase in the viscosity of the metastable Since the front velocity i s  determined by competition 
phase). We shall hereafter call this substantially between the heat release on the front of the phase tran- 
supercooled state of the high-temperature phase a sition (PT) and the rate of heat dissipation, we con- 
"frozen" metastable state (FMS). sider first  in Sec. 2 the pertinent self-consistent cal- 

culation, and introduce on i ts  basis the concepts of 
A well known example of FMS are  amorphous sub- fast and slow PT front propagation. 

stances (glasses), which a r e  afrozen" liquids. Other 
examples of FMS can be realized when various struc- 
tural first-order transitions a re  frozen in the con- 
densed state of matter. The best known methods of 
obtaining substances with FMS are  fast cooling of the 
high-temperature phase (quenching) and various means 
of condensing substances on cold substrates. 

The question of interest in this paper is the thermal 
stability of FMS, and it  is therefore appropriate to 
emphasize some pertinent FMS features. 

a )  Strong disequilibrium in conjunction with a prac- 
tically infinite lifetime at  T<< T,. The former i s  con- 
nected with the freezing of the latent heat of the phase 
transition (in other words, the structural entropy of 

A successive analysis of the instabilities that se t  in 
is given in Sec. 3. In the concluding section a re  dis- 
cussed briefly questions connected with organizing an 
experiment, and the conclusions a re  formulated. 

$2. PT FRONT VELOCITY WITH ALLOWANCE FOR 
FINITE HEAT DISSIPATION 

To solve the problems named in the heading of this 
section, it i s  necessary to specify a "bare" (nonre- 
normalized) kinetic relation u(T,) (T, is the tempera- 
ture of the P T  front), and then, taking into account the 
finite rate of heat dissipation that leads to superheating 
of the front relative to the thermostat temperature T,, 
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calculate self-consistency the "renormalized" velocity 
u(To) of the P T  front a s  a function of To (the tilde dis- 
tinguishes the renormalized velocity from the unre - 
normalized velocity u(To) a t  T =  Tf). 

We use below, for the sake of argument, the known1 
expression for the velocity of the front a diffusionless 
PT, produced by the normal growth mechanism2': 

u ( T ) = s  exp (--EIT) [exp (-AHIT,)-exp ( -AHIT) ] .  (1) 

Here s is a pre-exponential factor of the order of (and 
sometimes much less  than) the speed of sound, E is 
the activation energy, and A H  i s  the heat of the phase 
transition per particle a t  T = T,. A schematic plot of 
u(T) corresponding to (1) i s  shown in Fig. 1. Equation 
(1) is usually obtained1 by calculating the resultant 
particle f l u  through a phase-separation boundary with 
an average potential relief of the type shown in the in- 
se t  of Fig. 1. If AH -T, , i t  can be assumed in the re-  
gion T << T,, which corresponds to the FMS, that 

u=uo exp ( -EIT) ,  u p s  erp ( - A H I T t ) .  (2 ) 

We proceed now to take the heat dissipation into ac- 
count. It can be shown that in the experimental case of 
real  importance, that of thin layers (films) in the FMS, 
coated on substrates having high thermal conductivity, 
the heat-dissipation rate can be represented in the form 
W =  c(T -To)?,, where c is the specific heat of the sub- 
stance, To i f  the substrate temperature, and 7, is the 
time of thermal relaxation of the film. If d is the film 
thickness and a! is the effective transparency of the 
film-substrate interface for phonons; we have 7i1= CY/ 

dc. The criterion for the applicability of such a de- 
scription of the heat dissipation over the film thickness 
is satisfaction of the inequality (d/l,)"< 1, where I ,  is 
the thermal cooling length of the film (If = x ~ , ,  where 
n is the thermal diffusivity of the film). 

We consider now the propagation of a plane PT front 
with velocity u, choosing the z axis along the propaga- 
tion direction and the x axis perpendicular to i t  (in the 
film plane). In a coordinate frame tied to the P T  
front, the heat -conduction equation is of the form 

FIG. 1. Schematic plot of "unrenormalized" kinetic curve 
(bell-shaped). The three parallel inclined lines are the posi- 
tions of the heat-dissipation curve for three substrate 
temperatures; ui, uz, and u3 are the ordinates of the points of 
intersection with that head-dissipation curve for which To, 
< To < To, (dashed line). Inset-averaged potential relief on 
the interphase boundary. 

Here 0 = T - To and I,, = x/u. Equation (3) should be 
supplemented by the heat-balance condition on the P T  
front 

ae; a e f  QU=A!--A-  az az 

and zero boundary conditions for the temperature and 
i t s  gradient a t  z =* m, a s  well as by the condition that 
the temperature be continuous on the front, 0(O) = 0'(0). 
Here h i s  the thermal conductivity coefficient, and the 
primed quantities pertain to the stable phase. 

In the one-dimensional case which is of interest to us 
s o  far,  the solutions of (3) a re  simple in form 

8 ( z )  =Ofexp ( - y z )  (z>O),  

e l ( z )  =or exp ( y l z )  ( K O ) ,  (5) 
r=[  ( l+v~) '"+ l l l21 , , ,  y l = [ ( l + v ' ? )  '-11/21,,'. 

Here v = v/u, and the parameter v, which is essential 
in the analysis that follow and has the dimension of 
velocity, is connected with the previously introduced 
lengths by the relation v/u = 21,, /l, . 

Substituting (5) in (4) we obtain another relation, on 
top of ( I ) ,  between the temperature on the P T  front 
and i ts  velocity 

If we assume, to simplify the equations, that c = c' 
and h = A', Eq. (6) takes a particularly simple form 

Here Of has the physical meaning of the renormalization 
of the PT front temperature (Tf = To + O f  ), and To = Q/c 
is, a s  follows from (7) as v - 0, the maximum possible 
value of this renormalization, which is reached only 
for adiabatic motion of the PT front. On the other 
hand i f  v -- m, then Of - 0, corresponding to isothermal 
motion of the front. Figure 2 shows schematically the 
u(Tf) dependence that follows from (7) for several val- 
ues of v = 2( H The smoother curves corre - 
spond to better heat dissipation (smaller values of 7,). 

The foregoing treatment of Of enables us, given v 
and To a s  functions of u, to introduce the important 
concepts of the rapid motion of the P T  front [relatively 
poor heat dissipation, s o  that the renormalization of 
the front temperature and velocity is large, i.e., O 
>>To, ;(T, >>u(To)], and of the slow regime [relatively 
good heat dissipation, small renormalizations, i .e., 
0 s  To, ii(To) -u(To)]. It is precisely the possibility of 
realizing fast regimes a t  To<< T, on account of "self- 
heating" of the PT front which is the characteristic 
feature of FMS. 

If the P T  front velocity i s  small enough so that the 
term l,'aB/az can be neglected in (3), this corresponds 
to the quasistationary description of the heat dissipa- 
tion (the thermal field manages to "adjust itself" r a -  
pidly to the changes of u )  . Such an approximation 
calls formally for satisfaction of the inequality l,, >>Z, 
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FIG. 2. FIG. 3. 

(or v >> 1). If v >>urn, where u, is the maximum veloci- 
ty on the kinetic curve (see Fig. 11, then the corre- 
sponding Ulinearization" of the heat-dissipation curve, 
when (7) is transformed into 

i s  always justified (without, incidentally excluding the 
possibility of the regime in question being fast). 

When the inverse inequality holds (v << urn) fast r e  - 
gimes that a re  close to adiabatic (v<< 1, 8, =To) be- 
come possible, they can no longer be described in the 
quasistationary approximation, although the condition 
v << urn does not by itself exclude the possibility of the 
slow regimes with v >> 1, which a r e  describable by Eq. 
(8). 

It i s  of interest to compare the characteristic di- 
mensions of the temperature inhomogeneity due to heat 
dissipation on the PT front in the limiting cases v >> 1 
and v << 1. It i s  easy to show that in the former case 
1 -21,, whereas in the latter 1 - 1 ,  where I, =u7, i s  the 
distance traversed by the P T  front during the time of 
the temperature relaxation. Since v = 21,/7,, i t  fol- 
lows that 1, -1~/1,, >21,. Thus, on going from the slow 
regime to the faster one corresponding to smaller I,, 
= H/U, the overheating of the front increases, and with 
i t  the characteristic thermal dimension I. 

Returning now to the analysis of relations (1) and (7), 
we note that to find the ii(To) dependence which i s  of 
experimentally of interest, i t  suffices in principle to 
exclude T, from relations (1) and (7) and solve the ob- 
tained equation with respect to u. However, in view of 
the nonlinearity of these relations and the associated 
possibility of ambiguity in u(To) in the FMS region, i t  
is convenient to perform the corresponding analysis 
graphically. To this end, one of the plots of Fig. 2, 
corresponding to the given value of v, must be super- 
imposed on the kinetic curve (see Fig. 1) and, varying 
To, the ordinates of the points of intersection of these 
plots must be plotted against To. One of the possible 
results of such a plotting of ii(T,) is shown in Fig. 3. 

To assess  the various qualitative possibilities that 
result from such a graphical analysis, we believe i t  is 
useful to simplify a s  much a s  possible the relations (1) 
and (7), expressing them in the forms (2) and (8). The 
analysis of (2) and (8), while retaining the main feature 
of the analysis of the initial equations (1) and (7), turns 
out to be much simpler, since i t  admits not only of a 
simple qualitative but also of a sufficiently accurate 
approximate analysis. To analyze Eqs. (2) and (8) i t  
i s  convenient to change to a dimensionless velocity 

w nu/uo and a dimensionless temperature 7 = T / E .  
These equations take then the form 

where e' Ev/uoTo. It is obvious from the forms of 
(9) and (10) that the character of the sought "nonre- 
normalized" C(r0) dependence is determined by the val- 
ue of the only dimensionless parameter 6, which has 
the meaning of the slope of the straightline (9). 

A substantial role i s  played in the analysis by the 
quantity [* = 4/e2, which i s  equal to the slope of the 
tangent to the plot of exp(- 1/7) a t  i t s  inflection point 
(Fig. 4). It i s  obvious that i f  [ a t * ,  the sought G(ro) 
i s  single -valued for all 7,. If, however, 5, < 5 < t*, 
where So = l / e  = e [*/4 is the slope of the line drawn 
from the origin and tangent to the plot of exp(-1/7) 
(see Fig. 4), the G(7,) plot assumes a characteristic 
s -shape (see Fig. 3). In this case, if 7, < T,, o r  7, 

> T,, the function G(r0) is still single valued. If, how- 
ever,  T,, < ro < 7,: then each value of r0 corresponds 
to three values of w, only the largest and the smallest 
of which a r e  stable, a s  will be shown in the next sec- 
tion. The corresponding relations, which make it 
possible to find the values of the critical temperatures 
T,, and T, for a given 5 from the interval (to, [*I can 
be obtained by noting that they a re  connected in simple 
fashion with the coordinates of the tangency points of 
the curves (9) and (101, designated hereafter T, (c 
=r,2). At these points not only expression (9) and (101, 
but also their derivatives a re  equal, from which we 
easily obtain a relation between 7, and 7, in the form 

r,z-r,f r,o=O. (11) 

The quantity 7, is determined in turn from the equation 

11.' exp (-q.) =6, (12) 

where 77,' 7;'. 

The character of the solutions of the transcendental 

FIG. 4. 

313 Sov. Phys. JETP 55(2), Feb. 1982 



FIG. 5. 

equation (12) can be easily represented by plotting i ts  
right and left-hand sides (Fig. 5). If cp(r])mg2exp(-r]), 
then i t  is easy to show that (~(7)) has a maximum at  r] = 2, 
with cp(2) = (*. Therefore a t  5 > [* Eq. (12) has no 
solution, in accord with the already noted single-valued 
character of the function ~ ( 7 , )  a t  5 > e*. On the other 
hand if 5 c (*, Eq. (12) has two solutions, designated 
hereafter r], and 7,. We note now that only those solu- 
tions of (12) for which q '- 1 have physical meaning, 
since i t  i s  for them only that roc'- 0 [see Eq. (11)]. 
Since q, 3 1  only if 5 > to, the function Z(r,) a t  5, < [ 
< t *  has indeed the aforementioned s -shape [see curve 
3 of Fig. 6, where the successive evolution of the plots 
of W(rO) can be traced as the parameter f is gradually 
decreased]. If 5 = to, then r], = 1 and 7, = 0 [See Eq. 
( l l ) ] ,  i.e. the "left-hand" interval where 6 ( r o )  is single 
valued vanishes completely (curve 4 of Fig. 6). Final- 
ly, if 0 < [ < e,, the plot of z%(r,) has a discontinuity a t  
the origin (curves 5 and 6 of Fig. 6) and is single- 
valued only a t  7, > 7,. 

An essential feature of the considered non-single - 
valued &(r,) dependences is their "hysteresis" with 
respect to T,. Namely, if the representative point i s  
initially on the lower branch and continues to remain 
on i t  a s  rO increases up to T,, the quantity ii, must go 
over "jumpwise" (the dynamics of this transition is not 
considered in the present paper) a t  7, > 7, to the upper 
branch of the &(r,) curve. In analogy, if the repre- 
sentative point was initially on the upper branch, then 
a 'drop" to the lower branch, i.e., a jumpwise de- 
crease of the P T  front velocity, must occur a t  7 <To,. 

We note, however, that for the 6(r0)  with the breaks 
(curves 5 and 6 of Fig. 6) motion along the upper 
branch is stable all the way to T,= 0, in contrast to the 
s -shaped plots (such as curve 3 of Fig. 6). In experi- 
ment this means that in an FMS with 6 < 5, i t  is pos- 
sible to excite a PT-front whose velocity remains finite 
even when the substrate is cooled to 7, = 0. 

Using ( l l ) ,  i t  i s  easy to calculate in terms of q, the 
relative renormalization of the PT-front temperature 

FIG. 6. Schematic plot of G(T~)  for a number of values of the 
parameter f .  1) 5-m;  2) 5=5*; 3) k o < f < f * ; 4 )  f  =to; 
596) 5 ' 5 0 .  

on account of the finite heat dissipation rate a t  the 
'breaksn points: 

6z. T O  1 X c i - H - -  -- (c-r, I ) .  
To. Toe q e - I  

(13) 

The analogous renormalization of the velocity is found 
to equal 

A curious feature of (13) is that X, - - as q , - 1 (cor - 
responding to 5- to), i.e., in this case the renormal- 
izations indicated can be arbitrarily large for the up- 
per branch. Expressions (13) and (14) a r e  of interest 
also because they give the upper and lower limits of 
the renormalizations in 'ordinary* (not critical) points 
for the lower and upper branches of the s -shape plot 
of &(ro), respectively. 

To conclude this section, we note that i f  5, < 5 < [* 
the roots of (12) can be obtained with sufficient accu- 
racy in explicit form if (~(7) is approximated near 9 = 2 
by i ts  Taylor expansion 

Then 

The accuracy of this approximation becomes worse a s  
5 decreases to 5,. Even a t  [= to ,  however, the e r r o r  
of qe i s  of the order of 10%. 

53. INVESTIGATION OF STABILITY OF 
STATIONARY STATES OF PT MOTION IN  FMS 

The study of the stationary motion, considered in 
Sec. 2 ,  of a plane P T  front in an FMS has been actual- 
ly reduced to an analysis of the self-consistent one- 
dimensional problem for the heat-conduction equation. 
Investigating i ts  simplest variant [ ~ q s .  (9) and (lo)] 
we have shown that in the case of relatively poor heat 
dissipation the function fi(r,) can turn out to be mutiply 
valued, and we have established a criterion for the 
onset of the corresponding thermal instability. 

The critical temperature T,, given by Eq. (121, a t  
which this instability se ts  in has a physical meaning 
only i f  no morphological instability, i.e., instability to 
small bendings of the plane P T  front, had set  in earlier 
a t  r, < 7,. It must be emphasized that in contrast to 
the similar investigations at small supercoolings ( A T  
<< T,) (which a r e  considered in detail in Langer's r e -  
view3), where the one -dimensional problem is usually 
stable because of the "negative feedback" mentioned in 
the Introduction, in the FMS case even the one-dimen- 
sional problem is generally speaking unstable. This 
distinguishes qualitatively the problem of thermal in - 
stability of a plane front of a P T  in the FMS from the 
problem for  the case of small supercooling. There- 
fore the question of the ratio of thresholds of the ther- 
mal instability in the one -dimensional problem to the 
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morphological instability @/ax+ 0) is of considerable 
interest. The possibility of an oscillatory loss of 
stability is also of interest. 

In the analysis that follows we shall not specify the 
form of the kinetic u(T) relation. Assume that at a 
stationary unperturbed velocity u the PT front displace- 
ment comoving with the front in a coordinate frame 
due to fluctuations (of the velocity o r  of the form) u in 
the z direction is 

z=6 (t)eip=6e-"efqx=p(r,  t ) ,  (17) 

where 6(t) is the amplitude of the pertu,rbation (6 -- 0) 
and q is the wave number. The system i s  stable rela- 
tive to such p perturbat ion i f  the hatter attenuates with 
time, i.e., 6 <O o r  in other words -52> 0 (or else, 
if complex frequencies a r e  possible near the stability 
loss points, Re 52 > 0). The P T  front velocity change 
due to the perturbation (17) i s  

On the other hand, bu, can be calculated with the aid of 
the kinetic equation (1) generalized to include the case 
of a curved interface in the form 

c~=s exp ( -EIT)  [ e s p  ( -AHIT,)  - e sp  (AII IT) ] ;  

where a! is the surface tension on the phase interface, 
w is the specific volume, and K is the curvature of 
the interface. Then 

where K, is the curvature of the perturbed surface 
z = cp(x,t), 

and the correction to the front temperature is 6T, 
= a q ,  where a i s  a still undetermined coefficient. 

Perturbation of the boundary shape and of i t s  velocity 
614, leads to a corresponding change in the temperature 
field T, =T(z ,x,  t) ,  so  that 

T,=T (2 )  +6T,(z,  x ,  t ) ,  

where T(z) i s  the unperturbed field determined in the 
preceding section [ ~ q .  (5)]. The temperature field T, 
must be calculated self-consistently by starting from 
the complete heat-conduction equation (31, and must 
also satisfy relation (4) and the condition that the tem- 
peratures be equal on the true, i.e. , unperturbed, 
phase separation boundary z = q(x, t ) .  

Taking the smallness of 6T, into account, we seek 
the solutions of (3) in the form 

0 ( z ,  x, t )  =0 ( 2 )  + brp exp ( - k z )  (z>O), 

0' (2,  x, t )  =0 ' ( i )  +blrp exp (k';)  ( z<O) ,  

where the still undetermined coefficients b and b' will 
eventually be expressed in terms of the previously in- 
troduced coefficient a, while the expressions for k and 
k' are  

k= [ (if v2+ E ) " ' +  I ]  /21,,, k t=  [ ( i+v '  '+c')'"-1]/21,,'; (22) 

We now stipulate that 61 = 6' I ,. It is then easily 
shown that 

where y and y' are  given by Eqs. (5), and 0, is the 
unperturbed renormalization of the P T  front tempera- 
ture. 

Using now the balance equation (4) on the perturbed 
boundary z = cp, we get 

Substituting (23) in (24) and using (19), (20), and (24) 
we eliminate the quantity a and obtain finally 

Equation (24) i s  the starting point for the analysis of 
the stability of a plane P T  front to velocity perturba- 
tion of the type (17). 

We investigate this expression below only for the 
simplest case when the thermophysical properties of 
both phases a r e  equal. Thus, let A = A' and c = c'. 

We can then transform (25) into 

where we have introduced the dimensionless parame- 
t e r s  A and p defined by the relations 

Although this expression i s  convenient for the investi- 
gation of the instability of a plane front not only in the 
FMS region, we confine ourselves only to the latter, 
putting therefore u; > 0, i.e ., p > 0. Notwithstanding 
these simplifications, the investigation of (26) i s  still 
quite cumbersome. We confine ourselves therefore to 
analysis of the limiting cases of physical interest, 
namely the thermal instability of stationary states of 
the one dimensional problem considered in Sec. 2, 
and the morphological instability of an unstable plane 
P T  front in a quasistationary approximation (v - m). 

a )  We turn first  to a consistent analysis of the ther- 
mal instability of the one dimensional problem con- 
sidered in the preceding section. It i s  important that 
we a re  able to analyze here the possible appearance of 
the vibrational instability typical of the upper branch 
of the function ;(To). 
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In this case a/ax = 0, s o  that we put in (26) q = 0 and 
E = E,, . Assuming also Z = (A + E  ,)'I2, it is convenient 
to rewrite (26) in the form 

Z ~ - - Z ~ Z + ~ = O ,  (28) 

TABLE I. 

As already indicated in the beginning of this section, 
the motion of the P T  front is stable if 51 > 0 (or if Re $2 
> 0). But from the definitions of Z and E ,  i t  follows 
that &AT0= (A -Zf,,)/v2. Then, if we put O,,, =A -Zt , ,  
the subsequent analysis of the thermal instability r e -  
duces to a determination of those values of the parame- 
t e r s  g and A a t  which 9,,, > 0 if O is real, or  Re 9,,, 
> 0 i f  9 is complex. In the former case (a,,, > 0) we 
shall call the resultant regime statically stable, where- 
as in the latter case (Re@,,, > 0, Im9,,,# 0) i t  is vi- 
brationally stable. Whether @ i s  real  o r  complex is 
determined in turn by the sign of the discriminant of 
the quadratic trinomial (28) 

Where B (A - 4 ) G .  Regarding (30) as a quadratic 
trinomial in p and analyzing i ts  discriminant d 2 4(B2 
-A), i t  is easy to show that if A > 2 then D > 0 for  all 
p<O. B u t i f A < 2 w e h a v e D > O o n l y a t O < p < p 1 a n d  
p > p,, whereas a t  pI < p < p, we get D < 0. Here p, 
and p2 a re  given by 

It can also be shown that p, c p, always and that p, 
increases monotonically and & decreases monotonical- 
ly with increasing A (Fig. 7). 

We consider now in succession the case of static 
instability. Besides the inequality D > 0, the region of 
permissible values of p and A is determined then by 
simultaneous satisfaction of also the conditions Z,,, 
> 0 and O,,, > 0. Omitting the straightforward but un- 
wieldy analysis of the compatability of these two in- 
equalities, we present only i t s  results in the form of 
Table I. An omission in the table means that the in- 
equality does not hold a t  any value of p, and C(, po, 
and ~ r ,  are  defined by the relations 

Finally, allowance for the limitations imposed by the 
inequality D > 0 restricts even more the permissible 

FIG. 7. 
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ranges ~f A and p  a able II). It is convenient to plot 
the results on the (p,A) plane (see Fig. 7). It shows 
plots of p,, p,, go, c, and pr VS. A, and the two sta- 
bility regions of the Ystatically stable" solutions a re  
horizontally and vertically hatched. The stable solu- 
tion is unique only for A <3/2 (O,>O) and for A > 2 (9, 
> 0). In the region 3/2 <A < 2 there a re  a t  p, < p < po 
two stable solutions corresponding physically to the s - 
shaped plot of u(T,) discussed in Sec. 2. 

It i s  curious to note that the equation g = p,(A) for the 
boundaries of the instability regions (outside the inter - 
val 3/2 < A < 2) coincides with the equation for the 
points of tangency of the u(T) curve and the plot of the 
heat-dissipation equation (7) written in the form 

We consider now the possibility of realizing vibra- 
tionally unstable regimes corresponding to Im 9 # 0. 
We note in passim that these results could not be ob- 
tained in terms of the analysis of the stationary re- 
gimes in Sec. 2. The necessary condition for the on- 
set  of vibrationally stable regimes is satisfaction of 
the requirement D < 0. This immediately subjects the 
admissible parameters to the inequalities 

An additional limitation is also the requirement 

It follows from i t  that, besides (341, i t  is necessary 
to satisfy the inequality p < p*, where 

It is easy to show that p*(A) is a monotonically de- 
creasing function of A in the interval 1 <A < 2 (see 
Fig. 7) and that p*(l)  = 2 +a. With these remarks 
considered, the region of vibrationally stable states 
is defined by the relations 

TABLE 11. 



and is obliquely hatched in Fig. 7. We note now that 
on the lines p = p*(A) we have Re 9 = 0. On the other 
hand, recognizing that 

i t  is easy to show that Im q p * )  - 1 a s  A -  1. Thus, for 
states with A -  1 and p - p *(A) a situation ar ises  
wherein Re 9 << Im 9, i.e., the velocity fluctuation at-  
tenuates with a very small decrement, and this should 
be a precursor of the presence of pulsating propagation 
of the phase-transition front. Similar regimes a re  
well known in combustion theory. * 

A more detailed analysis of these questions is beyond 
the scope of the considered instability of stationary 
propagation of a P T  front. 

b) We finally consider briefly the question of mor- 
phological instability in the quasistationary approxi- 
mation, i. e, neglecting the inertia of the heat dissipa- 
tion. In this approximation we must put E = E ,  in the 
general expression (16). It follows then from (26) 
that in the FMS the numerator is always positive, so  
that the stability condition reduces to the requirement 
that the denominator be positive 

The least stable a re  long-wave propagations of the 
front (q- 0) for which the condition (38) takes the form 
p < =fi (see Fig. 7). It i s  interesting to note that 
in the quasistationary approximation the surface ten- 
sion does not enter in the criterion of the morpho- 
logical stability (this correlates with the conclusion 
that the least stable a re  perturbations with q = O),  a s  
well a s  that the instability threshold at large A (v2 
>> 1) (the only case when the quasistationary treatment 
is valid) agrees, accurate to 1/A, with the threshold 
of the thermal instability considered in item a)  ( p ,  
= (1 +u-~);) .  All this can be apparently interpreted to 
mean that the morphological instability in the quasi- 
static limit (v - m) i s  indeed a manifestation of the 
thermal instability of the one-dimensional problem. 

To conclude this section we note that a complete 
analysis of the morphological instability of fast r e -  
gimes (v - 1; &, - z n  - 1) calls for a separate treatment, 
in view of the substantial role of the nonstationary ef- 
fects. 

$4. CONCLUSION 

We have presented a consistent theoretical analysis 
of the feasibility of stationary motion regimes of a 
plane phase-transition front in the FMS and investi- 
gated their stability. 

Simultaneous account of the exothermy of the FMS 
phase transition into a stable phase and of the finite 
rate of heat dissipation reveals the possibility of ther- 
mal instability of the "explosive" type for the velocity 
of the PT front. We calculated the critical parameters 
of this instability a s  functions of the intensity of the 
heat dissipation and of the parameters that determine 
the thermal stability of the FMS. The onset of such an 

instability can be qualitatively understood i f  i t  i s  
recognized that, generally speaking, a finite heat- 
dissipation rate still does not lead by itself to insta- 
bility of the PT front (even without allowance for the 
stabilizing influence of the surface tension on the 
phase separation boundary). Only sufficiently poor 
heat dissipation in conjunction with positive feedback 
that i s  peculiar just to FMS can lead to loss of sta- 
bility. The physical meaning of the stability criteria 
obtained by us (which is particularly lucid in the quasi- 
stationary approach) reduces therefore to the fact that 
i f  the change of the heat release on the PT front fol- 
lowing a small  change of the front temperature ex- 
ceeds the corresponding change of the heat-dissipation 
rate,  the stationary state in question (corresponding to 
equality of the heat release and heat dissipation) is un- 
stable, and vice versa. 

We now dwell briefly on the possibility of using the 
results of our study to interpret the experimental data 
on the thermal stability of FMS in the solid state. It 
must be b o r w  in mind here that this use is justified 
if the main contribution to the investigated effects i s  
made by the appreciable exothermy of the transition of 
the FMS into a stable phase, and the influence exerted 
on the P T  velocity by s t resses  that occur in the course 
of the transitions and not accounted for in this paper 
can be neglected for some reason or  another. This 
a re  primarily cases when the density of the medium 
changes little in the PT, a s  well as when the s t resses  
arising in the course of motion of the PT front have 
time to relax on account of plasticdeformation. One 
might think this relaxation to be effective both in the 
case of low velocities of the PT front, which i s  na- 
tural, and in the case when fast regimes a re  realized 
and the appreciable temperature rise on the PT front, 
considered in this paper, increases substantially the 
rate of this relaxation. 

The most direct use of the equations derived in this 
paper i s  for the interpretation of experiment on the 
propagation of the crystallization front in sufficiently 
long and narrow films of amorphous substances, when 
a fast crystallization regime is excited via local heat- 
ing of the film in one way or  another. This includes 
also the known experiments on Uexplosive* crystal- 
lization of amorphous films. 5 * 6  

We list now, finally those of our results which a re  
of greatest importance for experiments. 

1. The feasibility of fast motions of the PT front 
a s  a result of considerable self-heating of the front, 
a feature peculiar to FMS. 

2. The hysteresis in the dependence of the observed 
P T  front velocity u a s  a function of the substrate tem- 
perature. Under certain conditions breaks can appear 
on the u(T,) plot when the motion along the upper 
branch is stable even at To = 0. 

3 .  The existence of Ucritical" parameters (sub- 
strate temperature, film thickness, and others) that 
determine the limits of thermal stability. 

4. In some cases in the fast regime, the loss of 
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thermal stability can be oscillatory. 

The author i s  deeply grateful to I. M. Lifshitz and 
A. F. Andreev for interest in the work and for a dis- 
cussion of its basic results. 

'+herefore, in particular, the entropy of such states does not 
satisfy the Nernst theorem a t  T = 0 and remainsfinite. 

2 ) ~ e  note, however, that some of the results that follow 
(particularly in 8 3) a r e  valid also for a function u(T) of 
more general form than (1). 

ID. Turnbull, in: Solid State Physics, Vol. 3, I?. Seitz and D. 

318 SOV. Phys. JETP 55(2), Feb. 1982 

Turnbull, eds., N. Y. 1956, p. 2y80. 
2 ~ i z i k a  fononov bol'shikh Bnergii (Physics of High-Energy 

Phonons), collection of Russ. translations, Mir, 1976. 
S ~ .  S. Langer, Rev. Mod. Phys. 52, 1 (1980). 
4 ~ a .  B. Zel'dovich, G. I. Barenblatt, V. B. Librovich, and G. 

M. Makhviladze, Matematicheskaya teoriya goreniya i 
vzryva (Mathematical Theory of Combustion and Explosion), 
Nauka, 1980, p. 268. 

5 ~ .  Messier, T. Takamori, and R. Roy, Sol. St. Comm. 16. 
311 (1975). 

6 ~ .  E. Wickersham, G. Bajor, and J. E. Grune, ibid. 27. 17 
(1978). 

Translated by J. G. Adashko 




