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It is shown that a continuous transformation group analogous to the Lorentz group is connected with 
integrable lattice systems. The generators of the Lorentz transformations (boosts) lead to transformation of 
an infmite series of pairwise commuting integrals of motion, which include the Hamiltonian of the system. In 
the continuum limit the lattice group breaks up into a Lorentz group and a group of transformations of higher 
integrals. An infinite-parametric expansion of the Lorentz lattice group, where an infinite set of boost 
generators corresponds to an infinite set of integrals of motion, is considered for a system of free fermions on 
the lattice. 

PACS numbers: 05.50. -+ q 

8 1. INTRODUCTION 

Factorized scattering theories and a number of mod- 
e ls  of quantum field theories and of statistical physics 
a re  completely integrable systems. Their characteris- 
tic feature is the presence of an infinite ser ies  of inde- 
pendent conservation laws, so  that an exact solution can 
be obtained. 

We define ~ ' ~ ( 9 )  as an operator acting in the tensor 
product of the first and second spaces, so  that the ma- 
trix elements of ~ " ( 8 )  define a two-particle completely 
elastic scattering matrix of particles of species il ,2 and 
jl d ; i l  + i2 - jl + j2, while 9 is the difference of the rapid- 
ities of the scattered particles: 

For  statistical-physics models, Sife(8) is interpreted 
a s  the Boltzmann weight ascribed to the vertex of a 
two-dimensional lattice; i and j a re  fluctuating vari-  
ables corresponding to the edges of the vertex, and 8 
is an anisotropy parameter associated with the angle 
at the vertex (see Fig. 1). 

The conditions for full integrability a re  the Yang-Bax- 
t e r  relations. They a re  of the form 

S 2 3 , ~ 1 3 , ~ 1 2  act a s  unit operators in the spaces 1 ,2  and 
3, respectively. A particular case of relations (2) was 
first considered by ~ n s a g e r . '  Equations (2), formula- 
ted by Yang a s  conditions for the factorization of the 
multiparticle S matrix in scattering theory ,2 were used 
by Baxter as a basis for the solution of the eight-vertex 
model of statistical physics? 

The transfer matrix T(8) acts in the tensor product 
of N spaces: 

If the S matrices in (3) satisfy the Yang-Baxter rela- 
tions (2), then transfer matrices with different param- 
e ters  8 and 8' will ~ o m m u t e . ~  This circumstance 
makes it possible to diagonalize the entire family of 
transfer matrices with the aid of the quantum method 
of the inverse problem, developed by Sklyanin, Takh- 
tadzhyan, and ~addeev. '  

We shall show that the Yang-Baxter relations lead to 
a certain group of transformations of a family of trans- 
fer matrices, which is the lattice analog of the Lorentz 
group. 

~ a x t e r  ,6 Zamolodchikov and ~troganov'  proposed 
independently unitarity relations for a transfer matrix, 
and used this relation to find the partition function for 
a number of models. In Sec. 3, with the Heisenberg 
XYZ model a s  the example, we demonstrate a method 
of constructing an excitation spectrum based on a solu- 
tion of the unitarity condition. 

52. THE LORENTZ LATTICE GROUP 

For the solutions of Eq. (2) at 8 = 0  we use the usual 
initial condition: Snm(0) =Pnm is  the permutation opera- 
tor  of the states of the nth and mth spaces and has the 
following properties 

Denoting differentiation with respect to 9 by a dot, we 
introduce the operator flm, which acts nontrivially in 
the n and m spaces : 

Differentiating Eq. (2) with respect to 8, and putting 8, 
=0 ,  we obtain a differential equation for the S matrix: 

The S matrices a re  multiplied as matrices in null 
space, andSp,, denotes a trace in null space (see Fig. 
2). The product of transfer matrices is understood in 
the following sense: 

iz 

(4) FIG. 1. 
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FIG. 2. 

We now redesignate the spaces  in which the operators 
i n ( 7 ) a c t  i n t h e  followingmanner: 1 - 0 , 2 - n , 3 - n + l .  
Multiplying (7) from the left by the product ll SOm($) 
over  m <  n ,  and from the right by the s ame  product 
over m > n + 1, we obtain 

We multiply (8) by n and sum over n from -- to +-. 
We find then that the transfer  matrix sat isf ies the equa- 
tion 

We propose here  that the transfer  matrix i s  bounded on 
a space of physical s ta tes  for which the contribution of 
infinitely remote points i s  insignificant and the formal 
s e r i e s  in (9) converge. We note that Eq. (8) is invari- 
ant to changes of the normalization of the S matrix: 
Snm(9) -p(3)Snm(9), while Eq. (9) i s  not. The discarded 
boundary te rm violated this invariance. We normalize 
the transfer  matrix in such a way that a t  maximum 
eigenvalue i s  independent of 9. Then GI causes the 
corresponding ground state to vanish. This guarantees 
nondegeneracy of the ground s ta te  with respect to 3. 

By virtue of the initial condition for  the S matrix,  
the transfer  matrix a t  3 =0 i s  the operator of t rans-  
lation by one s tep  of the lattice: 

where P is the momentum operator .  The Hamiltonian 
H I  is defined a s  

H I - -  - 
It follows from (10) and (6) that 

If T(9) is taken to be  the transfer  matrix of the eight- 
vertex model, then, a s  shown by ~ a x t e r :  this yields 
the Hamiltonian of the Heisenberg quantum X YZ mod- 
el.'' It follows from (11) that the Hamiltonian com- 
mutes with the transfer  matrix. This is easily s een  
also from (8) if one s u m s  directly over n. 

The expansion of the t ransfer  matrix in powers of 9 
yields a se t  of commuting integrals I,: 

"-0 

Substituting (13) in (9) we obtain 

with n , m  =0 ,1 ,2 , .  . . . Here GI i s  the lattice analog of 
the generator of Lorentz transformations (boosts). It 
i s  s een  f rom (9) and (12) that GI is connected with the 
density of the Hamiltonian in analogy with the continu- 
um case.  The only difference is that in the continuum 
theory the system (14) was closed a t  the second step,  
but for  the lattice system Gl generates an  infinite chain 
of integrals. In the continuum limit Izn goes over into 
P, and I,,, into H, while the algebra (14) contracts to 
the usual one. 

The algebra of the higher integrals in the continuum 
limit is obtained by taking into account the next t e rms  
of the expansion in the lattice parameter. 

The presence of continuum symmetry for the inte- 
grable system on an  infinite lattice leads to degeneracy 
of the states.  If a certain s ta te  is characterized by a 
s e t  of excitation rapidities @,I, then the s ta te  with 
rapidities $3, +@} ( j  takes on the s ame  se t  of values 
for  both cases)  is obtained from the preceding one with 
the aid of the boost operator  exp(ipGl), which will be 
unitary if the density of the Hamiltonian (6) is Hermi- 
tian. The Lorentz lattice group, just a s  the ordinary 
one, leads to a fully defined parametrization of the 
energy and momentum of the excitations in rapidity. 
In contrast to the continuum case ,  where the param- 
etrization i s  expressed in single-period functions, the 
lattice group leads to a doubly periodic parametriza- 
tion. The imaginary period, just as for the continuum 
case ,  a s  connected with the compactness of the Eucli- 
dean Lorentz group. The r ea l  period is a consequence 
of the lattice s t ruc ture  of the space. Since the excita- 
tion momentum i s  bounded from above by the recipro- 
cal  lattice parameter  1/8,  i t  follows that there exist 
boosts that transform the momentum into an  equivalent 
point in a neighboring Brillouin zone. The Lorentz 
group leads to identities for the correlation functions 
on the lattice, and this  may facilitate the calculation. 

Out of the densities of the higher integrals we can 
make up higher boosts and thus obtain a wider algebra 
than (14) and (15). We construct now an  algebra with 
higher boosts for  f r ee  fermions on a lattice. 

We introduce the fermion creation and annihilation 
operators in a given s i t e  of a one-dimensional lattice, 
a', and a,, which satisfy the anticommutation relation 

{a,, a,} = {an+, amL-) =0, {a,, am+) -6.m (16) 

(n and rn a r e  integers). We consider for simplicity the 
mass less  case.  The s e r i e s  of Hamiltonians is defined 
a s  follows: 

(I a r e  integers). The corresponding boosts a r e  

We note that 
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Calculating the commutators directly, we can verify 
that the following relations a r e  valid 

[H,, Hi.] =0, [G,, Hip] =il'(Hl+l~-Hl.-l), 

[GI, G,.] =i(  (l+ll)G~-1,- (1-lf)Gl+lV) (20) 

(I and I' a r e  integers). We define the t r ans fe r  matrix 
in t e rms  of the Hamiltonian H, s o  a s  to sat isfy Eqs. 
(9), ( lo) ,  and (11): - 

- i h ~ ( 6 ) = ~ + ~  f . ( 6 ) ~ , , .  
I-1  

(21) 

The  functions fn(9) sat isfy the equations 

f.(%)=i[(n-1)fm-,(6)-(n+l) j ,+,(6)1, n=l,  2, ... . (22) 

When account is taken of the initial conditions that 
follow from (10) and ( l l ) ,  the solution of (22) is 

i 
f" ( 6 )  = h (th f 6 )  *, 

from which it follows that 

(th i6)* 
- ~ I I I T ( ~ ? ) - P + C - H , .  n 

n-I 

The Jordan-Wigner transformation can be used to 
express  the fermion operators in t e rms  of the spin 
variables and to real ize the algebra (20) for  the spin 
chain. We take the transformation in the form 

a.* -~ / , ( f f )" (a=fb. . ) r~[ i )~(a~~*~.~)~ ama, 
m<n 

(25) 

where o:,oi and ut a r e  the ordinary Pauli matrices 
corresponding to the s i te  n. It is easy to verify that the 
Pauli-matrix algebra conforms to relations (16). In 
t e rms  of the spin variables, HI yields the Hamiltonian 
of the XX-model: 

H , - = ~ / ,  (a~aa:+l+a..O:+l). (26) 

It is nat i ra l  to assume that there exists  a n  extension 
of the Lorentz lattice algebra (14) to higher boosts for 
an  arbitrary integrable sys tem,  in analogy with a sys -  
tem of free fermions. 

53 CALCULATION OF THE SPECTRUM OF THE 
XYZ MODEL ON THE BASIS OF THE UNITARITY 
RELATION FOR THE T MATRIX 

A one-dimensional fully anisotropic spin chain (the 
Heisenberg model) has an infinite s e t  of conservation 
laws. The Hamiltonian of the model 

is the logarithmic derivative of the transfer  matrix of 
the eight-vertex Baxter model: J,,,, a r e  arb i t ra ry  con- 
stants ,  and ~,l '~*' a r e  the spin operators introduced in 
(25). Expressing (27) in t e rms  of the fermion var i -  
ables,  we obtain with the aid of (25) the Hamiltonian 
of the Thirr ing lattice model, which is known to be 
equivalent to the sine-Gordon model in the continuum 

The Baxter vertex matrix has the automorphism 
property for shifts of 8 by half-periods 5 and 5' (Ref. 
13): 

Here  2f is the r ea l  period and 2f'  imaginary, with 
n < 5 < Q). From the s t ruc ture  of the transfer  matrix 
(3) i t  follows that the periods of T(8) a r e  5 and 5'. 
The Baxter  matrix has a so-called crossing symmetry 
that yields a t  a certain normalization of the angle 

f and 5' correspond to the given normalization of 8. 
The crossing symmetry (29) yields for  the transfer  
matrix 

T ( j t j ~ . . . j ~ )  ( i ~ j ~ - ~ . . . h )  
(i t i :  ... iN)(@) = T(iN{~-p. . ta)  (%-*I. (30) 

We introduce an  inversion operator  Q such that (30) 
is rewritten in the form 

T ( 6 ) = Q T ( x - 6 ) Q .  (31) 

The inversion reverses  the sign of the momentum: 

e i p ~ , ~ e - ' ~ .  (32) 

Let  Ip) be the eigenvalue of the t ransfer  mat r ix  cor-  
responding to the momentum p :  

Equation (31) then leads t o  the relation 

In the limit of an  infinite lattice, the t ransfer  matrix 
sat isf ies the unitarity relation (see  § I ) ,  which takes 
the form 

The t ransfer  matrix i s  constructed he re  out of unitari- 
zed S matr ices ,  which sat isfy the unitarity condition 

This renormalization of the t ransfer  matrix co r r e -  
sponds to subtracting the energy of the ground s ta te  of 
the Hamiltonian. The relation (35) leads to a 2n perio- 
dicity of the transfer  matrix on an  infinite lattice. The 
r ea l  period of the transfer  matrix on a finite lattice, 
5 ,  is in the general ca se  not equal to 2s.  The change 
of the periods in the infinite-lattice limit is due to the 
change in the analytic properties of the eigenvalues of 
the transfer  matrix A(8) in this limit. 

We consider now s ta tes  with ze ro  momentum on a 
finite lattice. The eigenvalues ~ ~ ( 9 )  corresponding to 
such s ta tes  a r e  meromorphic functions whose singu- 
lari t ies  can be obtained a t  points that a r e  stationary 
under the crossing relation (34). Accurate to within 
the addition of periods, such points a r e  

In the limit of an infinite lattice, the singularities on 
the lines Re8  =a, condense and form cuts .  The uni- 
tarity (35) begins to be satisfied everywhere with the 
exception of the cuts. As a result  the eigenvalues of 
the transfer  matrix,  corresponding to s ta tes  with zero  
momentum, can have singularities that a r e  closest to 
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8 = 0 a t  the points and (48): 

The case  (38) is possible a t  n < 5 < 2n. Regarding the 
anisotropy constants in (27) a s  functions of the periods 
5  and 5' given by the Baxter parametrization, it can be 
seen  that this case  corresponds to attraction, while 
{ >  2n corresponds to repulsion. 

The solutions of the crossing conditions and the uni- 
tarity conditions will be sought in the c lass  of mero- 
morphic functions with periods 2 r  and 5 ' .  The func- 
tion 

dlnA(.e) 
f(e) - ,, 

sat isf ies the equations 

f(e)+f(n+a) =o, 
f(trj + j ( n  -6) =0, 

7 corresponds to a s ta te  with reversed  momentum. Let  
f(8) have 1 poles in the region 0 < Re 8 < n at  the points 
a,; cu = 1 ,2 , .  . . , l .  Since the excitation energy is posi- 
tive, -f(O) > 0,  we obtain the solution of (41) in the 
form 

Here f(9) i s  expressed in t e rms  of the elliptic s ine with 
modulus k,  defined by the equation 

K and K' a r e  complete elliptic interval of the f i r s t  kind 
with moduli k and k' respectively .I4 

The s ta te  with reversed momenta corresponds to the 
se t  of poles (6,). Equation (42) leads to a connection 
between these s e t s  

a,+ C,=n (mod t ' )  (45) 

for certain a and p .  It follows from (40) that 

0 

Stipulating crossing for  A(9) and using (41), we obtain 

The fact that the momentum is rea l  leads to the con- 
dition 

&=a, (mod g') (48) 

for certain p and y .  The bar  corresponds to complex 
conjugation. Equation (48) means also that the energy 
is real. 

We introduce new variables for the poles b,: 

b,=a,-n12-tf/2. (49) 

The values of b, satisfy equations that follow from (45) 

b.+6,=0, 6,-bp=O(mod f ' ) ,  

:*, p, 7=1, 2 , .  . . , 1. 

Calculating the integrals (see Ref. 14) and taking (49) 
into account, we obtain after  simple transformations 

The state energy in t e rms  of b, is of the form 

Assume that there is one pole, I = 1. It follows from 
(50) that 

We introduce the rapidity p =Im b. Thus, the excita- 
tion spectrum is 

To change over to the continuum limit i t  i s  necessary 
to separate from p and EP the lattice parameter  a :  p 
-pa,EP-%'a. A s a - 0 ,  degeneracy k=rna+o(a )  s e t s  in. 
In the limit, (55) leads to the ordinary spectrum 

p=m sh a, 8 - m  ch a, m = lim (kla)  . 
0-0 

(56) 

The spectrum of the two-particle excitation is  deter- 
mined by two poles b, and b2. Besides solutions of type 
(54), in the case  of attraction there a r e  also others: 

At p = 0 the momentum p = 0,  and consequently b is 
determined by the condition (38) 

x f-n e' b = - - s - -  2 ,  s=i ,2  ,..., s-. (59) 

In the continuum limit we obtain an excitation spec- 
trum of the type (56) with rapidity p and with mass  

The spectrum of the s ta tes  with arb i t ra ry  number of 
poles is constructed similarly. The spectrum of the 
low-lying excitations obtained in this manner coincides 
with the results  of Ref. 15. 

$4. CONCLUSION 

We note that the spectrum of the transfer  matrix 
has a universal character  (if the unitarity and crossing 
relations a r e  valid). The parameters of the spectrum 
a r e  determined by the periods of the initial parametri- 
zation for  the transfer  matrix. This circumstance i s  
connected with the presence of a continuous symmetry 
group for integrable sys tems on an infinite lattice. 
As a result ,  the problem of constructing integrable 
sys tems can be formulated a s  the problem of construc- 
ting the representation of the lattice Lorentz group. 
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It is natural to assume that an analogous generaliza- 
tion of the Lorentz group exists for integrable systems 
in a space with more than two dimensions. 
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chikov for a number of valuable remarks. I take 
pleasure also in thanking D. E. Burlankov, V.  N. Duty - 
shev, and A .  M. Satanin for helpful discussions. 

'L. *sager, Phys. Rev. 65, 117 (1949). 
'c. N. Yang, Phys. Rev. 168, 1920 (1968). 
'R. J. Baxter. Ann. Phys. (N.Y.) 70, 193 (1972). 
'A. B. Zamolodchikov, Sov. Scient. Rev. Sec. A, 2. 1 (1980). 
5 ~ .  K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, 

LOMI (Leningrad Branch, Math. Inat. Acad. Sci.) Preprint 

310 SOV. Phys. JETP 55(2), Feb. 1982 

R-1-79, Leningrad, 1979. 
6 ~ .  J. Baxter, J. Phys. A 13, 61 (1980). 
?A. B. Zamolodchikov. Comm. M ~ t h .  Phys. 69. 165 (1979). 
'YU. R. Stroganov, Preprint IFVE 79-65, Serpukhov, 1979. 
9 ~ .  J. Baxter, Ann. Phys. (N.Y.), 70 ,  323 (1972). 
'OW. Heisenberg. Z. Physik 49. 619 (1928). 
"s. Coleman, Phys. Rev. D11, 2088 (1975). 
"5. Mandelstam, Phys. Rev. D11, 3026 (1975). 
"A. A. Belavin, Pis'ma Zh. Eksp. Teor. Fiz. 32, 182 (1980) 

[JETP Lett. 32, 169 (1980)l. 
"I. S. Gradshtein and I. S. Ryzhik, Tables of Integrals, Sums, 

Series, and Products, Academic. 1965. 
1 5 ~ .  D. Johnson, S. Krinsky, and B. M. McCoy, Phys. Rev. 

A8. 2526 (1973). 

Translated by J. G. Adashko 

M. G. Tetel'man 31 0 


