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The transverse magnetoresistance of a bismuth plate in which almost the entire current flow is concentrated 
at the surface is investigated experimentally. The magnetoresistance is found to depend strongly on the angle 
between the magnetic field and the plane of the plate, decreases with decreasing temperature when the 
temperature is lowered, and ha9 a nonmonotonic dependence on the temperature in an oblique magnetic field. 
Deviations from Ohm's law are observed at large currents through the sample. The resistance of a semimetal 
plate in a magnetic field inclined to the plane of the plate is determined phenomenologically with account 
taken of the effect of the surface. In relatively strong magnetic fields the experimental results agree well with 
the theory and can be used to determine a number of properties of the samples. In weaker fields, however, 
appreciable qualitative deviations of the experimental data from the theory are observed. 

PACS numbers: 73.25. + i 

In a strong magnetic field, where the average elec- 
tron-orbit radius is much less  than the mean free path, 
r<<  1 ,  the surface can affect the galvanomagnetic prop- 
er t ies  of a compensated metal strongly for two reasons. 
First ,  the electron mobility is much higher in a sur- 
face layer of thickness -r than in the interior, since the 
centers of the electron orbits are  more frequently 
shifted by collisions with the surface.' Second, in 
crossed electric and magnetic fields the drift of the 
ca r r i e r s  changes their density at the surface. The den- 
sity gradients cause diffusion of the electrons and of the 
holes. The high ca r r i e r  mobility and the diffusion flux- 
e s  near the surface make the conductivity of the surface 
layer much higher than that of the interior of the metal. 
The distribution of the direct current over the sample 
thickness becomes nonuniform-the current is concen- 
trated near the metal surface. 

ticeable deviations a r e  observed in stronger fields and 
a re  attributed by Hattori to  the dependence of the car- 
r i e r  surface recombination rate on the magnetic fields. 
The results  of Bogod et a ~ . , ' ~ ~  obtained in magnetic 
fields 1-16 m e ,  do not agree with the theory. 

Additional information on the surface conductivity o,,, 
of bismuth can be obtained by investigating the depend- 
ences of the conductivity on the temperature and on the 
angle cu between the magnetic field and the sample sur- 
face. According t o  the theory of Refs. 5 and 6, o,,, 
should increase with decreasing temperature, whereas 
the bulk conductivity o, decreases in a transverse mag- 
netic field. 

The angular dependence of o,,, is due to the increase 
of the diffusion length with increasing angle between the 
magnetic field and the surface, 

The effect of the surface on the magnetoresistance of L - [ i + ( ~ a ) ~ ] ' ~ ( T ~ , , / r ) ' "  - 
was considered a number of workers''-6 The (see below). Even at << 1 ,  the length L can greatly ex- 

case when the probabilities of the intervalley and intra- ceed the diffusion length Lo in a magnetic field parallel 
valley scattering in the interior coincide and the diffu- to the surface if ,,r/l (r/l<< 
sion Processes have no effect was investigated in Refs. - 
1-4. The surface current is  then concentrated in a We have investigated experimentally the transverse 
surface layer having a thickness of the order of r. magnetoresistance of bismuth plates in which almost 

In semimetals, the time of intervalley relaxation Tin, 
is much longer than the intravailey relaxation time 7. 

In this case, which is dealt with in Refs. 5 and 6, diffu- 
sion processes assume a major role. Surface scatter- 
ing influences the conductivity up to the distances, of 
the order of diffusion length L ,  over which the density 
gradients fall off and the current density becomes equal 
to  i ts  bulk value. In a magnetic field parallel to the 
surface, L = L o  - r ( ~ , , J r ) ~ ' ~ .  

the entire current flowing through the plates was con- 
centrated at the surface. The magnetoresistance was 
investigated a s  a function of the magnetic field, of the 
angle cu between the magnetic field and the surface, and 
the temperature: pp = p,(H, a, T). In addition, mani- 
festations of the nonlinear properties were observed on 
the current-voltage characteristics. The problem of 
the conductivity of a semimetal plate in a magnetic field 
inclined to  the surface was solved phenomenologically 
(only a magnetic field parallel to the surface was con- 

The effect of the surface on the galvanomagnetic prop- sidered in Refs. 5 and 6). 
e r t ies  of bismuth was the subject of a number of stud- 
i e ~ , ~ " "  in which the dependences of the resistivity on 
the magnetic field and on the sample thickness were in- 

CONDUCTIVITY OF A SEMIMETAL PLATE I N  A 

vestigated in a field parallel to the surface. Shape ef- 
MAGNETIC FIELD INCLINED TO THE SURFACE 

fects were observed also in Refs. '7 and 8. The results We shall solve the problem phonomenologically, in 
of ~ a t t o r i ~  a re  in satisfactory agreement with the theo- the manner used to  solve the analogous problem for  a 
retical deductions in magnetic fields up to 1 kOe. No- magnetic field parallel t o  the surface5 and the problem 
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of anisotropic size effects without a magnetic field.' 
We present first the solution for the simple case of a 
compensated semimetal with one electron valley and one 
hole valley, and then discuss the changes that must be 
introduced into the solution to take the real Fermi sur- 
face of bismuth into account. 

Let the Fermi surface of the semimetal have in each 
of the valleys the form of an ellipsoid with one of its 
principal axes normal to the plate surface (the y axis), 
and the other parallel to the electric current (the x ax- 
is). The magnetic field vector H lies in the yz plane 
and makes a small angle a << 1 with the z axis. The 
electron and hole valleys are  far from each other in 
momentum space, so that the followihg condition i s  sat- 
isfied at low temperatures: 

Since the intravalley relaxation of the carriers is 
much faster than the intervalley relaxation, a separate 
conductivity tensor can be introduced for each valley. 
In our case, the electron and hole conductivity tensors 
in a strong magnetic field r<< 1 are given by 

(1 ) 

nec ell r 

H 1 '  

The indices e and h label respectively the electrons and 
holes, eh i s  independent of the magnetic field, n i s  the 
electron or hole density (n, =nh =n), e i s  the electron 
charge, and c i s  the speed of light. The electric cur- 
rent is connected with the electric field and with the 
density gradients: 

By virtue of the electroneutrality we have Vn,. =Vn, 
=On. The conductivity and diffusion tensors of each of 
the valleys are connected by the Einstein relation 

v,.,, are the state densities of the electrons and holes 
on the Fermi level. The current flows in the plate a- 
long the x axis. From (2) we obtain 

The influence of the surface i s  due to the presence of 
the second term in (3). To determine the plate resist- 
ivity we must find Vn as a function of y and of Ex.  Us- 
ing the condition j;  + j: = 0, the continuity equation in 
the following form at small deviations n' of the carrier 
density from its equilibrium value no (n' =n -no, n' 
<<no) 

and the equality (21, we obtain 

a R' 
-[-a,,E, +(j je+$h)oYn']= - e ;  
~JY  T i n t  

Linearizing the left-hand side of (41, we get 

a2n' n' 
(&+$do---;-=- e. 

8 ~ -  Tint 

The solution of this equation i s  n' =n, ~ X ~ ( - ~ / L )  +n2 
x exp(y/L), where 

The constants n, and n2 are obtained from the boundary 
conditions on the plate faces, which lie in the planes y 
= O  and y =d. These boundary conditions are of the 
form 

S i s  the rate of the carrier surface recombination and 
i s  given by 

Here v;,! are the velocities of the electron and holes 
having - the Fermi - energy and moving parallel to the y 
axis; d,-, and d,,,are the fractions of the intervalley 
surface scattering of the electrons and holes. If N, 
electrons are incident in a time At  on the surface, and 
NJ electrons go over inio the hole valley after colliding 
with the surface, then d,, =N;/N,. From the condition 
that the electrons and holes be in equilibrium if no cur- 
rent flows through the sample, it follows that 

Substituting the solution of Eq. (5) with boundary condi- 
tions (7) in Eq. (3) and integrating the current density 
over the entire plate thickness from 0 to d, we obtain 
the connection between the total current through the 
sample and the electric field Ex.  The current in a sam- 
ple of thickness d >> L is 

on2e-' 
(oIp+o.*) d+~(~.+$~)--] E.. 

S+LITint 
(9) 

This result agrees with a microscopic calculation6 for 
a magnetic field parallel to the surface at a,-,, ah-,<< 1. 

We consider now the case when the surface conduct- 
ivity [the second term of (9)] i s  much larger than the 
bulk conductivity (a; + $)d. A plate of unity length and 
unity width has then a resistivity 

Figure 1 shows a plot of pp vs. a as given by Eq. (10). 

At ( r /~)~<< a2 <<I the ratio L/T,,, is of the order of 
[a  ~v~(T/T, , , )"~.  The resistivity can be represented in 
the form = p o  + la I p l ,  where 

here 
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(11) 
At c t 2 c  (r/1)' the resistivity is the sum of a t e rm pb 

proportional to Hz, and a term proportional t o  H (see 
Fig. 1 ,  since 

We proceed now to  a discussion of the results  for 
more complicated Fermi surfaces. If the principal axes 
of the ellipsoids a r e  not parallel to  the axes x ,  y ,  e o r  
i f  the Fermi surfaces of each of the valleys a r e  not el- 
lipsoids, but there is only one electron and one hole 
valley a s  before, the conductivity tensors a r e  more 
complicated than the tensor (1). Equations (61, (lo), 
and (11) a re  valid in this case, although the co~nection 
between the surface recombination rate S and d,,, o r  
4, and the electron-hole equilibrium condition (7) a r e  
different. 

The Fermi surface of bismuth consists of three elec- 
tron ellipsoids and one hole ellipsoid. To solve the 
problem in this case it is necessary to  introduce for 
each of the electron and hole valleys a separate con- 
ductivity tensor, a continuity equation, and boundary 
conditions similar to  (7). Solutions of the problem in a 
number of cases corresponding t o  experimental condi- 
tions a re  given in the Appendix. 

The answers a re  more complicated than for the two- 
valley model. In particular, the angular dependences 
a r e  more complicated at ( r / ~ ) ~ < <  cu2 << 1. In limiting 
cases (see the ~ppend ix )  the functions p,(cu) reduce to 
the form p ,=po+pl~cu~ .  Then p o a ~ 2  and p i c ~ 2 ,  i.e., 
the results agree qualitatively with the results  for the 
two-valley model. 

SAMPLES AND PROCEDURE 

The experiments were performed on single-crystal 
bismuth plates. Rectangular plates and disks were used 
(see Fig. 2). The geometric dimensions of the samples 
and the orientation of the crystallographic axes C,, C2, 
and Cg a re  indicated in Table I. Samples 1-3 were cut 
from a single-crystal ingot grown by the Czochralski 
method with a filament moistened by nitric acid. The 
ratio of the ingot room and helium temperatures was 
840. The remaining samples were grown in a polished 
quartz mold. 

The surfaces of samples 1-3 were finished by two 
methods: 

FIG. 2 .  Wiring of samples. 

TABLE I .  

*Samples 5 ,  7.  8 ,  and 9 were disks. The number in the col- 
umn is  the diameter. 

1) Etching with 35% nitric acid, washing with distill- 
ed water, and storing 16 hours in distilled water, and 
storing 16 hours in distilled water. The surface was 
coated a s  a result by a thin oxide film and was brown- 
ish in color. 

2) ~ t c h i n g  with a 25% HNO3 +35% H3P04 + 35% H20 
solution. 

The surface of sample No. 4 was finished by the first  
method. The surfaces of the remaining samples were 
formed during the crystal  growth in the mold. 

The resistance was measured by the four-point meth- 
od. The current-carrying leads were secured with a 
conducting adhesive (shaded regions in Fig. 2). The po- 
tential leads were clamped to  the sample surfaces. The 
use of disks to  measure the transverse magnetoresist- 
ance is not accompanied by noticeable e r r o r s  due to the 
inhomogeneous distribution of the current along the x 
and z axes, provided that the distance between the po- 
tential contacts, which a r e  located at the center of the 
sample, is much shorter than the disk diameter, and 
the magnetic field is parallel o r  inclined at a small  
angle cu t o  the disk surface. The reason i s  that in a 
strong magnetic field (r<< I) the longitudinal conductivity 
of a compensated metal is much larger than the trans- 
verse one. The equipotential surfaces in the sample a re  
therefore parallel to  the magnetic field. The distribu- 
tion of the current density j and of the electric field 

FIG. 3.  Reciprocal resistivity p i '  of the plates vs. the thick- 
ness d for various surface finishes. Samples 1 ,  2 ,  and 3 differ 
in thickness. Each was treated by two methods: o) surface 
etched with HNC$ and oxidized; e) surfaces etched with mix- 
ture of HNO, and H3P0,; H =  1 kOe, @ =  0. 
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FIG. 4. Dependence of resistivity a, on the angle between the 
magnetic field and the plate surface'for sample Bi6: .*) T= 4.2 
K, O) T =  1.6 K; H =  1.46 kOe. 

along the axes x and z is almost uniform between two 
close equipotential surfaces that pass through the po- 
tential contacts. 

The samples were placed directly in liquid helium. 
The magnetic field was produced by a superconducting 
solenoid. The measurements were made in magnetic 
fields weaker than 3 kOe to exclude quantum effects that 
affect strongly the magnetoresistance in stronger field 
i f  H I1 C, o r  H I I  C,. 

As seen from Fig. 3, the magnetoresistance depends 
strongly on the method used to finish the surface. In 
our experiments, the sample thickness d exceeded the 
diffusion length L, so  that the reciprocal of the resist- 
ivity pii (p, is the resistivity referred to a unit length 
and width of the sample) can be divided into two terms,  
p," =o,d+u,,. The slope of the lines in Fig. 3 yields the 
value of the bulk conductivity o,, and the intercept with 
the ordinate axis the surface conductivity o,,,. The sur- 
face conductivity o,,, of the samples treated with HNO, 
and oxidized is much higher than the bulk conductivity 
Ob. 

The experimental results that follow were obtained 
with plates having us,, much larger than o,d. In the bet- 
t e r  samples, u,,/u,d- 100. 

EXPER [MENTAL RESULTS 

The results were qualitatively the same for all sam- 
ples with us,,>> o,d, regardless of the surface treatment 
and of the crystallographic orientation. 

In a magnetic field H of constant magnitude the mag- 
netoresistance increases when the magnetic field is tilt- 
ed away from the plane of the plate through a small  
angle or. The angular dependence for the sample Bi6, 
shown in Fig. 2,  can be represented in the form p,(a) 
=po + (a  lPi. For many samples, this formula de- 
scribes the results only at o! 2 lo. At lower a ,  the angu- 
lar  dependence becomes slower, and the resistivity p,(O) 
in a magnetic field parallel to  the surface exceeds the 
value po that can be determined by extrapolating the lin- 
e a r  sections of the angular dependence to  a =O. This 
behavior of pp(a) agrees qualitatively with the calcula- 
tion result (see Fig. 1). There is, however, another 
reason why rp(0) exceeds po, namely the surface rough- 
ness of the plate. Different sections of the rough sur- 

FIG. 5. Dependence of po/H on the magnetic field H :  e, A) T 
= 4.2 K ,  0 )  T= 1.6 K. 

face a re  inclined to  one another, so  that even if the sur- 
face is on the average parallel to the magnetic field (or 
=0), its individual sections are  not parallel to the field. 
This increases the resistivity p,(O). To exclude the ef- 
fect exerted on the surface by the surface relief, we in- 
vestigated the values of po and pi, which describe the 
resistivity in the region linear in or. 

Figure 5 shows plots of  pa/^ against H for samples 
with different surfaces. The experimental points a r e  
well fitted by straight lines, s o  that po for each sample 
can be represented in the form po =pzH + p 3 ~ 2 .  The 
value of p2 is determined by the intercept of the line 
P a / ~ = P z  +psH with the ordinate axis, and pS from the 
slope of the line. The lines corresponding to  one sam- 
ple at different temperatures a re  parallel (see Fig. 51, 
and the line for T =1.6 K l ies lower than the line for T 
=2.4 K. This means that p, is independent of tempera- 
ture ,  and that pa is smaller at 1.6 K than at 4.2 K. To 
obtain more detailed information on the temperature 
dependence of p,, measured the temperature depend- 
ences of p, in a magnetic field parallel t o  the surface 
of the plate. These dependences are  shown in Fig. 6 
for the samples Bi5 and Bi6. These samples had even 
surfaces, and in a magnetic field parallel to the sur- 
face they had p,= po. The dependence of p2 on T in a 
fixed magnetic field Ho can be obtained by subtracting 
from p,= po the quantity p&, which does not depend on 
temperature. In Fig. 6 the quantities p , ~ !  a re  shown by 
dashed lines. In a strong magnetic field, where the lin- 
ea r  t e rm p2H is small  compared with the quadratic p S ~ 2  
(H >> pdp,), and therefore pP 5: pox P,H' at a = 0, and p, 
is practically independent of temperature. This con- 

p,, , fa-vn 

FIG. 6 .  Temperature dependence of the resistivity pp in a mag- 
netic field parallel to the surface. Curve 1) sample Bi6, H 
= 260 Oe,  curve 2) Bi4, If= 195 Oe. 
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FIG. 7. Dependence of pl/H on the magnetic field H. Sample 
Bi4: 0 )  T= 4.2 K ,  0 )  T =  1.6 K .  Sample Bi5: A ) T =  4 2  K ,  
A) T= 1.6 K .  

firms the conclusion that p3 does not depend on T in the 
temperature interval 1.6-4.2 K. 

The values of h and p, obtained from a reduction of 
the field dependences a re  listed in Table I. The values 
of pz a re  close at T = 4.2 K for samples Bi4-Bi7, which 
have the same orientation, whereas the p3 of different 
samples differ strongly. 

The dependence of the resistivity p, on cu is deter- 
mined by the value of p,. Figures 7 and 8 show plots of 
p , / ~  vs. the magnetic field H for samples with different 
surfaces. The lines passing through the origin corre- 
spond to quadratic dependences of p, on H. It is seen from 
the figures that the experimentalp, a re  nearly quad- 
ratic in H, although deviations in weak fields a re  ob- 
served in some samples, e.g., Bi6 and Bi7 (see Fig. 
8). It can be noted that these deviations take place only 
in magnetic fields H < pz/p,. In samples Bi6 and Bi7, 
whose pJP3 a re  larger than those of others, the devia- 
tions from the relation p, start  in stronger fields. 
In sample Bi4, whose pz/p, is small, a noticeable de- 
viation from the straight line corresponding to pi = 'Hz i s  
observed only for one extreme-left point (light circle in 
Fig. 7) in a field 65 Oe. It is seen from Figs. 7 and 8 
that wherever pi ceases to  be quadratic in H a change 
takes place in the p,(T) temperature dependence. 

The dependence of p, on T was investigated in detail 
in the field range in which p , = ~ ' .  It turned out that in 
this case p, varies nonmonotonically with decreasing 
temperature in all samples. Examples of nonmonotonic 
dependences of p, on T a re  shown in Fig. 9. 

DISCUSSION 

In a strong magnetic field H>> p Jp3, where the linear 
terms in po can be neglected, the experimental results 

FIG. 8. Dependence of pi/H on the magnetic field H. Sample 
Bi6: 0 )  T =  4.2 K ,  0 )  T =  1.6 K .  Sample Bi7: A )  T =  4.2 K .  

FIG. 9. Dependence of pl on the temperature T: curve 1) sam- 
ple Bi6, H= 2.21 kOe, 2) Bi4, H= 2-15 kOe. 

agree well with the calculation. Namely, there a re  re- 
gions where p, is linear in 0 ,  po and pi = H', and PO does 
not depend on temperature. The nonmonotonic temper- 
ature dependence of p, is due to the nonmonotonic tem- 
perature dependences of the time ratio r / ~ ~ ~ ~ [ ~ ~  (T/ 
T,,~)"~, see ~ q .  (1111. 

Indeed, in bismuth at helium temperatures the fre- 
quency of intervalley transitions of ca r r i e r s  scattered 
by phonons decreases exponentially with decreasing 
temperature,I0 and the frequency of the intravalley scat- 
tering by phonons decreases more slowly, in accord 
with a power law. Therefore, so  long a s  the frequency 
of the intervalley transitions resulting from the elec- 
tron-phonon interaction exceeds the frequency of the 
intervalley transitions in scattering by impurities and 
crystal-lattice defects, the ratio T/T,,~ will decrease 
with decreasing temperature. Since, however, Tint 
changes more rapidly than T, it reaches more rapidly 
the temperature-independent level determined by the 
scattering of the electrons and holes by the impurities 
and defects. With further decrease in temperature, the 
behavior of the ratio r/Tint is determined by the tem- 
perature dependence of the time 7, which increases 
with decreasing temperature. Thus, r/Tint has a non- 
monotonic temperature dependence. 

In the field region H>> pz/p3 the experimental results 
can be reduced with the aid of Eqs. (10)-(12). It was 
assumed in the calculations that the hole spectrum i s  
quadratic, the electron spectra a re  not quadratic, but 
the Fermi surfaces in each of the valleys a re  ellip- 
soids. The following parameters of the bismuth energy 
spectrum were used: electron and hole density no = 3 
X 10" cm',, hole Fermi energy $$ = 11.7 meV, the hole 
velocity in the directions C, and C2 i s  v: =v! =2.5x 10' 
cm/sec, the hole velocity in the C3 direction is v t  
=0.77~10 '  cm/sec, and the electron velocity along C, 
is v i  = 7.5 x 10' cm/sec. The state density on the Fermi 
level in the hole valley is v, = 3no/2 I:. The electron 
state density was obtained by subtracting the hole state 
density v, from the total state density us + v, =6.2 x 10,' 
e rg - '*~m-~ ,  determined by measuring the electronic 
heat capacity of bismuth." The experimental value of 
the heat capacity obtained in Ref. 11 agrees with the 
calculation of Ref. 12. 

The surface recombination rates calculated from the 
measurements a re  listed in Table I. For  the Bi7 sam- 
ple, H<p2/p3 in the entire magnetic-field range in 
which the measurements were made. In this range, 
which will be discussed below, theory does not agree 
with experiment. Since, however, the formula po =p2H 
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+ p3H2 describes the results  for other samples both at 
H << pz/p3 and at H>> p ip , ,  and in a strong field (H 
>> we have po =p,H2, we likewise determined S for 
Bi7 by assuming that 

The surface-recombinaticn rate was used to  deter- 
mine the values of de-, and d,,,. They a r e  listed in 
Table I. 

The samples Bi8 and Big were measured with the 
crystallographic C, axis directed along z .  In this case 
(see the Appendix) Eq. (11) holds for p,. Recognizing 
that $<< oi and 4 =ne2rJm3, (m,, is the effective mass 
of the holes along the C3 axis), and knowing pi, we can 
determine T,.JT,. For Bi8 at T =4.2 K we have T,,JT, 
= 70, and for Big we have T ,,/T,= 110 and 50 at T = 1.6 
and 4.2 K, respectively. 

In magnetic fields mc/er << H H p i p ,  the experimental 
results differ markedly from the calculated ones. 
First, the experimental po(H) dependence is of the form 
P o = P 2 ~ + P 3 ~ 2 ,  whereas the theory predicts a depend- 
ence in the form poaHZ.  [We note that in Ref. 5, in 
which the measurements were made only at a = 0, the 
resistivity t e rm linear in H was associated with the 
linear term shown in Fig. 1. The procedure we used 
to reduce the experimental data yielded the value of 
po(H) directly and avoided the uncertainties in the in- 
terpretation of the derived relations.] Secondly, the 
theory calls  for p, Hz, whereas the experimental 
points deviate from this dependence in the magnetic- 
field region in question. 

The discrepancy between the experiment and the cal- 
culation in fields mc/er << H 2 pJp3 is possibly due t o  
the fact that the phenomenological approach i s  not jus- 
tified under these conditions. A shortcoming of the 
phenomenological solution is that the conductivity ten- 
so r s  introduced for the bulk metal a r e  not valid at dis- 
tances of the order of r from the surface. Babkin and 
~ravchenko'  solved the problem using a microscopic 
approach for the cases  of specular and diffuse intra- 
valley scattering in a magnetic field parallel to  the sur- 
face. Their results at &,, << 1 agree with ours for a 
=O. It is possible that a microscopic solution of the 
problem in a magnetic field inclined to  the surface o r  in 
the case when the scattering from the surface is more 
cdmplicated in character than just specular o r  diffuse 
will lead to a result that agrees better with experiment 
than those of the phenomenological approach. 

The region in which the phenomenological solution de- 
scribes the experimental results, and the region in 
which experiment and theory do not agree, have as their 
boundary the magnetic field H, =-pJp3. We note that in 
all our samples the distance rc/de-, negotiated by the 
electrons that hop over the surface in a magnetic field 
Hc (r, is the Larmor radius of the electrons in the field 
H,) a r e  of the order of 1 mm. The mean free path 1 
-rc/ze-, is of the same order. 

NONLINEAR PROPERTIES 

The described results a re  valid for weak electric 

FIG. 10. Dependence of the resistivity pp on the applied elec- 
tric field 1 Ex! at different polarities of Ex. Sample Bi2 was 
etched with H N 4  and oxidized, after which one side was etch- 
ed with H N 4  + HSP04. The electric current is  concentrated at 
the one remaining oxidized side; If= 2.89 kOe, T= 1.7 K .  The 
magnetic field is  inclined to the surface; curves 1, 1') (Y = 8"; 
2, 2') cu = 2.5'; points and o correspond to opposite polarities 
of Ex. 

fields and currents, when Ohm's law holds. At larger 
current flow through the sample, the resistance is high- 
e r  than in the ohmic region, and depends on the polar- 
ity of the current. The latter dependence may be due to  
the fact that the opposite faces of the plate are  not quite 
identical. T o  verify this, one face of sample Biz, 
which had initially a high surface conductivity, was 
etched to decrease the adjacent conductivity. The 
measurement results  for this sample a re  shown in 
Figs. 10 and 11. 

It i s  seen from Fig. 10 that the resistivity p, does not 
depend on the magnitude and polarity of the electric 
field Ex in the plate. At a fixed field Ex, reversal  of 
the magnetic-field direction produces the same resist- 
ivity change a s  reversal  of the polarity of E,: 

In the nonlinear region, the resistivity p, can be rep- 
resented a s  a sum of three terms,  p, =Ro +AR1 + a 2 ,  
where R o  i s  the resistance at small  Ex, 

is a linear resistivity increment nonlinear in E, and 

is  an increment even in Ex. Figure 11 shows plots of 

FIG. 11. Dependence of the nonlinear resistance increment 
odd in E, on the electric field Er. The pointso were obtained 
by subtracting curves 1 and 1'. and by subtracting curves 
2 and 2' of Fig. 10. A) points for the same sample Bi2 with 
faces having the same finish (oxidized under the same condi- 
tion as when the light circles were obtained. 
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AR, vs. Ex, obtained by subtracting curve 1 from the large resistance increments AR2 that are even in 
1' and 2 from 2' of Fig. 10. It is seen now that the in- Ex, but do not explain the experimentally observed odd 
itial sections of these plots are linear, AR,m Ex. The increment AR,. 
value of ARi in our experiments did not exceed 0.1 Ro. 
If the increments AR, and AR2 are due to  the same non- 
linearity mechanism, then AR2 should apparently be 
smaller than AR,, since the expansion of AR2 in powers 
of Ex begins with terms proportional to E: or with 
terms of higher even power, while AR, Ex. In our ex- 
periments, in electric fields Ex= 0.2-0.4 ~ / c m ,  con- 
versely, AR2>AR, (see Fig. 10). This means that the 
resistance increments that are even and odd in Ex are 
due to different nonlinearity mechanisms. 

As seen from Fig. 11, the ratio AR,/Ro for the Bi2 
sample with different faces i s  larger and of opposite 
sign than the sample whose faces have like finishes. 
This confirms the assumption that the resistance in- 
crement odd in Ex i s  due to the nonequivalence of the 
plate faces. 

The nonlinear properties were investigated in a mag- 
netic field H>> pJp3, where the phenomenological solu- 
tion for weak electric fields and currents describes the 
experimental results well. We shall therefore discuss 
the results of the measurements of the resistance in 
strong electric fields within the framework of the phen- 
omenological approach. 

1. The change in sample resistance can be the result 
of heating of the electron system at the surface by the 
electric field,l3 since heating changes the times T and 
T,,,. Heating can lead to  a resistance increment that i s  
even in Ex. 

2. The electric field changes the electron and hole 
density at the surface by an amount n'. The electron 
and hole Fermi levels are  therefore shifted relative to 
each other by an amount A I  =nl(l/v, + l/vh). 

Since the momentum-space distance between the elec- 
tron and hole valleys in bismuth i s  large, the phonons 
emitted in intervalley transitions at helium tempera- 
tures have an energy Rw >> kT (k i s  the Boltzmann con- 
stant). If the electrons go over from states with energy 
g,, where 8,- kT, into free states in another 

valley, with energy 5, where gF2- g2>>kT, and emit 
a phonon of energy Rw = $, - g2, then the probability of 
such a process i s  proportional to the number of elec- 
trons of energy g,, multiplied by the number of free 
sites with energy gZ: 

If IF, > gF2, the probability of transitions from the 
first valley to the second increases with increasing 
A I  , and the probability of transitions from the second 
to the first decreases. The relaxation time is 

Since A I  increases with increasing electric field Ex, 
the intervalley relaxation time Tint decreases with in- 
creasing I E, I . This leads to the a resistance incre- 
ment AR2 that is even in E,. 

The resistance-change causes 1 and 2 above explain 

3. As already noted, the Fermi energies of the car- 
r iers  are changed at the surface, since the electric 
field changes the density of the electrons and holes. 
The energy change leads to changes in the Fermi vel- 
ocities, the state densities, and the wavelengths of the 
electrons and holes, and hence also to a change in the 
scattering. The electron-hole recombination time Tint 
in the volume, at distances from the surface on the 
order of the diffusion length, and the rate S of the sur- 
face recombination, will therefore change when the 
electric field Ex is increased. Depending on the polarity 
of Ex,  the Fermi velocities, the state densities, and the 
reciprocal wavelengths will increase or  decrease; the 
increments of S and Tint will therefore be linear in Ex. 
At the opposite faces of the plate the increments to S 
and Ti,, a re  of opposite sign, in view of the opposite 
signs of n'. If, however, S i s  different on the different 
faces in weak electric fields, an odd resistance incre- 
ment AR, appears, with ARi/R0-nl/no or  less. 

4. The conductivity-tensor components and the values 
of also depend on the carrier density, so that the 
left-hand side of Eq. (4) i s  nonlinear. We have linear- 
ized this equation in order to determine the resistivity 
in weak electric fields. Nonlinear corrections propor- 
tional to nf/no appear if S i s  different on opposite faces 
of the plate. The ratio AR1/Ro can become of the order 
of nl/n o. 

We now compare the ratios AR1/Ro and nl/no in our 
experiments. The value of n' can be determined from 
Eq. (3). Integrating it over the plate thickness and dis- 
carding the small first term, we obtain I=U,@, +Ph)nl. 
Here I i s  the electric current per unit width of the plate. 
Account is taken of the fact that In' [ is much larger at 
one face than at the other. Knowing I ,  a,, and @,,h we 
can easily determine n' and nt/no. In a field E, =0.3 
~ / c m  we have nt/no= 0.12. The ratio AR,/Ro in the 
same electric field i s  ~0 .06  (see Fig. 111, meaning 
A R , / R ~ - ~ ' / ~ ~ ,  in accord with the mechanisms 3 and 4 
above. 

These mechanisms explain the resistance increments 
AR, that are odd in Ex, but make a small contribution 
to AR2. 

The nonlinear properties of the samples whose sur- 
face conductivity exceeds the bulk conductivity, in a 
field H>> pJp3, can be explained on the basis of the 
phenomenological approach. We note that the nonlin- 
earity mechanisms in such samples are  more diverse 
and the nonlinearity manifests itself more strongly 
than in samples whose bulk conductivity exceeds great- 
ly the surface conductivity, at the same power releas- 
ed in the crystal. 

The author i s  deeply grateful to V. T. Dolgopolov for 
constant interest in the work, helpful discussions, ad- 
vice, and help, to I. N. Zhilyaev for supplying the 
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employed samples were cut, and to V. F. Gantmakher 
for discussions. 
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APPENDIX po at HZ and pi a: fi2. 

1. The crystallographic axis C3 i s  directed along the 
normal to the plate (the y axis), while the axes C, and 
C, are directed along x and y, respectively. The re- 
sistance i s  

where 

2 ATh$DT.*[ (ATint -DT.)'+4BCTintT.]", K,<O, 
K,.? = 

2 (AD-BC) Tht T. 

Here u,,, ue2, and oh are the uyy components of the con- 
ductivity tensors of the electron and hole valleys. For 
two of the three electron valleys these components are  
equal to each other. The conductivities are 

where i=e i ,  e,, and h. The quantities i/3 do not de- 
pend on the magnetic field, d, - ~ i ( r / l ) ~ .  o, and 6,  con- 
tain the combined electron density and the electron- 
state density. We have next 

where See i s  the rate of the surface relaxation between 
two electron valleys 

~/T.=v~/(v .+v~)  Tint +3/T.., 

where Tee is the relaxation time between two electron 
valleys in the interior of the sample. 

At (r/l),<< a2<< 1 the values of Kt and K2 do not de- 
pend on the magnetic field, and [K, I ,  1 K, I - l/ [ ff [ . We 
introduce Ki and Kj such that Ki = K',/ I Q [ and Kz 
=K$// Q I; then 

In a number of limiting cases, when P/K,K, - ff , the 
resistivity can be represented in the form pp =PO 
+ 1 0  f p i  where, as  in the case of the two-valley model, 

2. The crystallographic axis Cg i s  directed along the 
z axis, and C, and C2 are directed along x or y each. 
In this case =4z =o$s. At (r/1I2 << Q'<< 1 we have 

1 1 K - - I - -  
1 

I - 1 
( A T ~ ~ ) Y ,  a - r - -  (DT.) 'L L. ' 

The boundary conditions are more complicated than in 
the preceding case, since the electrons from the dif- 
ferent valleys are  differently scattered by the surface. 
The resistance is .- p-- 

S.+LJT. Tin: 

here 

The constants S,, ,, Salk, SaZh describe the intervalley 
scattering of the carr iers  by the surface, v, is the com- 
bined state density of the electrons. If S, >> L,/T, or  S, 
<< L,/T,, then p, can be represented in the form pp =po 
+ la I p l ,  where po and piat Hz, and p, satisfies Eq. (11) 
in which u3 =oil + o$Z +0Bs3. 
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