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The dependence of the energy of interaction between charged particles forming a two-dimensional lattice on 
the type of lattice is investigated. It is shown that all but triangular lattices are unstable with respect to the 
shear mode. The characteristic energy changes connected with such motions are quite small ( -  10-2 of the 
energy of interaction between the nearest neighbors) even at lattice deformations - 100%. 

PACS numbers: 63.10. + a, 68.40. + e 

Two-dimensional systems of charged particles can, 
a s  is well known, form ordered structures at sufficient- 
ly low temperatures, namely a two-dimensional Wigner 
crystal."2 For the case of a system of electrons on the 
surface of liquid helium, an original method of investi- 
gating its properties was proposed3 and the correspond- 
ing phase transition was observed with its aid in experi- 
ment.4 

Charged particles o r  dipoles that interact with one an- 
other can exist also on surfaces of solids5, and although 
the possibility of formation of a Wigner crystal is 
greatly hindered in this case by the presence of the 
stronger quantum-chemical interaction, in individual 
situations one can nevertheless expect structures close 
to those of the Wigner type. For  example, one can 
speak of the presence of a partly filled zone of surface 
states (intrinsic o r  induced by adsorbed atoms) on the 
surfaces of solids, films, and other surface structures; 
other cases are  also possible. 

One might expect the characteristic energy (per par- 
ticle) of formation of a crystal to be of the order of qU, 
where U i s  the energy of the interaction between the 
nearest neighbors, and the numerical coefficient de- 
pends on the type of the lattice and on the concrete type 
of interaction. Numerical calculations and experi- 
mentsP 6-9 have shown, however, that the temperature 
of the phase transition on the surface of liquid helium is 
lower by two orders of magnitude than the indicated val- 
ue. In the present paper we wish to  note that this is a 
general phenomenon and the quantity qU i s  responsible 
only for the establishment of short-range order,  while 
the energy connected with the difference between the 
different lattices, which properly speaking is responsi- 
ble for their formation, i s  much lower. 

That part of the energy (per particle) which i s  of in- 
terest  to us can be obtained by expanding the potential 
in a Fourier ser ies  in the coordinates 
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where e is the absolute value of the electron charge, F 
= ( E ~  + s2)/2 i s  the average dielectric constant of the two 
media on both sides of the surface, S i s  the area  of the 
unit cell of the lattice, a ,  b, and cp are  the lengths of 
the vectors of the unit cell and the angle between them, 
9 is the potential, and the prime on the summation sign 
means that the term with n = m  = O  has been left out. 

The unit cell of the lattice i s  defined by two independ- 
ent parameters, a useful choice of which is (b/a)sincp 
= 5, and (b/a)cos cp = 5,. Investigation of the dependence 
of the energy on 5, leads to  a well known result: the 
lowest energy is possessed by lattices with a - b, and 
we shall not discuss it here. More interesting is the 
dependence on t2 at fixed a and 5,. Variation of this 
parameter corresponds to the gliding of one-dimension- 
a1 particle chains relative to one another with the dis- 
tance between the chains kept constant; this can be eas- 
ily verified by noting that 5, is the ratio of the distance 
between neighboring chains to the distance between the 
particles in the chain. In such motions the changes of 
the potential at an individual site a r e  connected only 
with the changes of the oscillating parts of the potentials 
of the chains. Since this part of the chain potential de- 
creases  exponentially with increasing distance from the 
chain, the changes of the particle energy in such lattice 
motions should contain an additional factor exp(ke), 
where k =2r/a i s  the modulus of the reciprocal-lattice 
vector of the chain and e = b sin cp is the distance be- 
tween the chains. This factor is small  enough (-10'~ at 
5, - 1 ), so  that allowance for the influence of the chains 
other than the nearest ones should not change the esti- 
mate. 

To prove this statement, we write down that part of 
the potential which is of interest to  us: 

where KO is a Macdonald function." This expression 
can be represented in a simpler form, using the asymp- 
totic representation for KO (Ref. 10): 

cos (unm) I. = f ($1" te-..---- 
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where 5 , , ,  a r e  determined by using 6 from (3). 

The simplest estimates of 5: with the aid of the for- 
mulas for the geometric progression show that 

&'=-A sin u, A>O 

at t l -  1, i.e., the sign of the derivative of with re- 
spect to  the considered parameter is determined by the 
nearest chains and the lowest harmonic. This phenom- 
enon i s  connected with the fact that the contributions 
made to the potential by the higher spatial harmonics 
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are exponentially small [see Eqs. (3) and (411. 

We have thus shown that at 5, - 1 and at fixed a the 
potential 3 decreases monotonically from a maximum 
to a minimum when 5, is varied from zero to $, and by 
the same token [see Eq. (2)] we have completely de- 
scribed the dependence of 3 on 5,. 

At fixed b we obtain similarly (a/b)cos rp =+ at the 
minimum. This leads to the known resultZG9 that the 
lowest energy i s  possessed by a regular triangular lat- 
tice. 

We emphasize once more that the dependence of the 
energy on 5* is monotonic and i s  of the order of small- 
ness exp(-2~5~)-  10" not only at small displacements 
of the particles, but also in the case of -100% lattice 
deformations. This character of the dependence of the 
energy on h offers evidence of instability of all but tri- 
angular lattices to the corresponding long-wave shear 
modes, while the fact that the dependence remains 
monotonic at deformations -100% is evidence that tran- 
sitions of one type of lattice to another encounter bar- 
riers that might lead to a possible coexistence of dif- 
ferent lattices. 

It follows also from the foregoing, obviously, that the 
Wigner-crystal production temperature cannot greatly 
exceed the amplitude of the considered energy oscilla- 
tions, and should consequently be less than qe2/~a.  
This can be verified also directly by using the known 

formula for the mean squared amplitude of the dis- 
placements of crystal particles (Ref. 11, 8137) as  a p  
plied to the shear mode. Such an estimate is given, 
e.g., in Ref. 12. 

In conclusion the author thanks I. E. ~z~a losh in sk i i ,  
Sh. M. Kogan, V. B. Shikin, and B. I. ~hklovskii for 
helpful discussions. 
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