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The classical thwry of axial channeling of negative particles is developed. In the case of ultrarelativistic 
electrons it is applicable for energies above about 10 MeV. For the first time equations of the Fokker-Planck 
type are obtained which describe the passage of axially channeled negative particles through a thick single 
crystal. The calculation takes into account the diffusion in the transverse energy and angular momentum due 
to multiple scattering by electrons and thermal vibrations of nuclei. A distribution of particles in statistical 
equilibrium is considered for channeling, and also the redistribution of the flux of particles in the transverse 
plane. Diffusion coeficients and characteristic dechanneling lengths in Si and W are given, and also the 
dechanneling function obtained as the result of numerical solution of the kinetic equation. 
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1. INTRODUCTION functions were calculated. 

It i s  well known that the motion of a particle in a 
single crystal under conditions of channeling i s  un- 
stable. Multiple scattering due to inelastic scattering 
by electrons and thermal vibrations of the atoms even 
in an ideal crystal leads to an increase of the trans- 
verse energy of the particle and eventually to dechan- 
neling. This process has been discussed previously 
for positively charged nonrelativistic heavy particles 
(protons, (Y particles, ions) and the respective kinetic 
equations of the Fokker-Planck type were obtained on 
the basis of classical mechanics for axial channeling'" 
and planar channelinge3 A similar equation for planar 
channeling of heavy particles was obtained by the meth- 
ods of quantum and has been shown5 to 
agree with the equations previously obtained3 by the 
methods of classical mechanics. Since the quantum 
calculations require solution of the ~chrodinger  equa- 
tion, they were carried out only for model cases of 
rectangular4 and oscillator5 potential wells. At the 
present time many papers have been devoted to the 
dechanneling of heavy particles, on the basis of classi- 
cal mechanics and the kinetic equations (see the review 
by Gemme16). Recently, for example, a comparison 
was made of the experimental results  on axial dechan- 
neling of H+ and D* in Si and Ge with the numerical 
solution of the classical kinetic equation, and good 
agreement was demonstrated7 

The applicability of classical mechanics for descrip- 
tion of channeling of both heavy particles and light par- 
ticles (positrons and electrons) (in the latter case they 
must be ultrarelativistic) was justified by Lindhard."1° 
Comparisons were also made of theoretical calcula- 
tions of the yield of backscattered particles according 
to quantum mechanics and classical mechanics with the 
experimental data for positrons and and 
i t  was shown that the results of the classical theory 
agree with quantum mechanics and with experiment at 
energies 2 1 MeV for positrons and 2 10 MeV for elec- 
trons. The criterion for agreement used in those 
studies i s  the condition that the number of bound states 
in the potential well be much greater than unity. Mul- 
tiple scattering was not taken into account here, and 
only trajectories in the averaged potential or the wave 

Modeling of trajectories of electrons with energy 20 
MeV in MgO by the method of binary collisions with 
allowance for thermal vibrations of the nuclei also gave 
good agreement with experiment for the orientation 
dependence of the passage of electrons along a crystal- 
lographic axis. l5 

In this way i t  has been well established that quantum 
effects a r e  observed in experiments on backscat- 
teringll-l4 and t r a n s m i s s i ~ n ~ ~ * ~ ~  of electrons a t  ener- 
gies - 1-10 MeV. Accordingly, the development of the 
quantum theory of channeling has been essentially 
limited to this energy range, and the discussion re- 
duced to calculation of wave functions, energy levels, 
and the population of these levels in a thin crystal  (see 
for example Ref. 17) without taking into account dechan- 
neling, i.e., the redistribution of particles over the 
energy levels a s  the result of multiple scattering. 

Recently a s  a result of the observation of the charac- 
terist ic spontaneous x rays of light charged particles 
predicted previously in Ref. 18, considerable interest 
has arisen in the question of the dechanneling of these 
particles, in particular at high energies (in the 1-GeV 
region), where the intensity of the radiation i s  extreme- 
ly high The quantum nature of the motion of channeled 
particles, i.e., the discrete structure of the energy 
spectrum, i s  important in the radiation, generally 
speaking, up to higher energies than in backscattering. 
Individual transitions in axial channeling of electrons 
have been observedlg a t  energies 1-3 MeV, and in 
planar channeling-at energies 56 MeV." At the same 
energy 56 MeV in the axial casez0 and a t  900 MeV in 
the planar casez1 individual transitions a r e  not resolved 

Thus, classical mechanics can be used in description 
of backscattering, transmission, and radiation of elec- 
trons in the axial case beginning at energies -10 MeV, 
and in the planar case a t  energies - 100 MeV (for posi- 
trons these limits a r e  substantially lower). The kinetic 
equation describing planar dechanneling of nonrela- 
tivistic heavy particles is easily generalized to the case 
of relativistic particles, both positive and negative.'' 
The equation for axial dechanneling i s  also easily gen- 
eralized to the case of relativistic positive particles. 
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The axial dechanneling of electrons, however, requires 
a new discussion in view of the two-dimensional nature 
of the bound transverse motion in the attractive field 
created by the average potential of an atomic string 
and the presence, in addition to the transverse energy, 
of an additional integral of the motion, namely the 
angular momentum. 

In the present work on the basis of classical mech- 
anics we obtain a kinetic equation of the Fokker-Planck 
type which describes the multiple scattering of axially 
channeled electrons (and also of other negative par- 
ticles). The equation takes into account diffusion both 
in the transverse energy and in the angular momentum. 
The diffusion coefficients a r e  expressed in terms of the 
r m s  angle for multiple scattering by electrons and ther- 
mal vibrations of the nuclei. Expressions a r e  obtained 
for the initial distribution function and the distribution 
of the flux of channeled electrons in the transverse 
plane. The two-dimensional Fokker-Planck equation 
derived and the expressions obtained for the diffusion 
coefficients, the initial distribution function, and the 
flux distribution in the transverse plane differ from 
those known previously for the one-dimensional Fokker- 
Planck The theory i s  formulated in a 
closed form which permits numerical integration of 
the resulting equation. In contrast to the method of 
binary collisions, i t  permits a more general discus- 
sion also for large crystal thicknesses. We give values 
of the diffusion coefficients, estimates of the charac- 
teristic dechanneling lengths for Si and W crystals, and 
a calculation of the dechanneling function by numerical 
solution of the equations obtained. 

The equation derived in the present work can be used 
for calculation of the real  spectrum of radiation of 
electrons in axial channeling of ultrarelativistic par- 
ticles. Up to the present time theoretical studies have 
not taken into account the influence of multiple scat- 
tering on the radiation spectrum of electrons in chan- 
neling. As was shown in the case of planar channeling 
of positrons,23 i t  substantially affects the radiation 
spectrum. Formulas for the radiation of particles 
moving along specified trajectories exist in a number 
of (see also the review a r t i ~ l e s ' ~ * ~ ~ ) .  In par- 
ticular, the general nondipole case of radiation in 
planar channelin$3*25'27*28 and axial ~ h a n n e l i n g ~ ~ * ~ '  has 
been considered. In a previous study7 formulas were 
obtained for the first  time in a classical discussion for 
the dependence of the frequency of the individual har- 
monics of the radiation on the angle of emission of the 
photon and on the energy of the particlein the nondipole 
case. The criticism of this work by Baier et aL3' i s  
incorrect. The formulas in the second article of Ref. 
27 for the planar case a r e  valid in the general case, 
and those for the axial case a r e  valid under certain 
conditions on the parameters of the problem: the tra- 
jectory of the particle must be  close to circular, or  for 
arbitrary eccentricities in the pre-dipole case (E,E)'/'/ 
mc2 5 1 (El i s  the energy of the transverse motion). 

2. KINETIC EQUATION 
In channeling of relativistic particles the transverse 

motion i s  nonrelativistic, since the transverse energy 

takes on values of the order of magnitude of the av- 
eraged potential of the atomic string, which amounts 
to 100-1000 eV. The longitudinal motion with rela- 
tivistic velocity is felt only in the increase of the par- 
ticle mass and, naturally, in the Coulomb interaction 
cross section Since the characteristic dechanneling 
lengths a re  much less  than the stopping lengths, the 
channeled-particle flux can be described with sufficient 
accuracy by a distribution function only in the trans- 
verse motion variable, not taking into account changes 
in the energy of the channeled particles. 

Multiple scattering by electrons and thermal vibra- 
tions of the atoms leads to diffusion of the particles 
in their transverse momenta. Using the expressions 
for the integrals of the motion in a field U[r = (x2 + y2)'12]: 

EL-pLz12M+U ( r )  , M,==zp,-yp., 

where My is the angular momentum with respect to an 
axis z directed along an atomic string, M= E/c2 is the 
mass  of the relativistic electron, and pL = ip, + jp, is the 
transverse momentum, we can find the corresponding 
diffusion coefficients in the space of E, and M,. (For 
EL this i s  done in exactly the same way a s  in the dis- 
cussion of dechanneling of positive particles.' The 
difference is only in the use in the present case of a 
different formula for the binding energy and momentum 
of an ultrarelativistic particle: E=pc.) As the result 
of simple calculations and averaging over an ensemble 
of electrons and atoms of the crystal which a re  under- 
going thermal vibrations, we obtain the average and 
r m s  increments for an electron moving a t  distance r 
from the string: 

- - - 
BEL-'/&ABZ, AM,=O, 

- A E , I = E ( E , - u ( ~ ) ) ~ ,  (1) 
A M I I = ' / ~ ~ ' ~ ~ ~ ,  A E , A M ~ - ~ I ~ M . E X ,  

where AT i s  the mean square scattering angle. 

If the time of motion of the particle in a channel (the 
thickness of the crystal) i s  significantly greater than 
the characteristic period of i t s  oscillation, then the 
expressions (1) must be averaged over the trajectories 
of the motion, assuming a uniform distribution of the 
particles in phase or, in other words, a distribution 
in statistical equilibrium," which was first  introduced 
into channeling theory by L~ndhard .~  

Statistical equilibrium leads to the important phe- 
nomenon of redistribution of the channeled-particle 
flux over the transverse coordinates. The form of 
this distribution, which is established in a time of the 
order of the period of oscillation in the channel, i s  
well known for positive  particle^.^' In planar chan- 
neling of negative particles i t  does not change." 

We shall determine the form of this distribution for 
axially channeled negative particles, The equilibrium 
distribution i s  described by a function which depends 
only on the integrals of the motion. The probability 
of finding at a point (r ,  p) a particle which has given 
values of EL and M, i s  obviously determined by the 
following expression: 

= (2M)"'r-'[EL-U ( r )  - M , 2 / 2 M ~ - Z ] .  (2) 
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We see that it, naturally, does not depend on the angle 
cp. From Eq. (2) we find that the normalized distribu- 
tion over the distance to the atomic string r has the 
form 

where the normalization factor 

coincides with the period of motion of the particle. 

Thus, the statistical distribution (3) has the same 
form a s  for one-dimensional motion3 with use of an 
effective potential U(r) + M:/~M#. This result  i s  quite 
clear, since we a r e  dealing with periodic motion. For 
a uniform distribution in phase, the probability of 
finding a particle a t  a given point i s  proportional to the 
time, 

From this it follows also that averaging over the trans- 
verse coordinate Y with use of a statistical distribution 
i s  equivalent to averaging over the period of motion. 

The kinetic equation of the Fokker-Planck type will 
have the form 

where the quantities enclosed in the angle brackets a r e  
the coefficients of Eq. (1) averaged over the period of 
oscillation T of a particle with the given EL and M,: 

It i s  easy to show that they satisfy the relations 

i a AE, AM 

1 d AM, AEL 

By means of these relations, Eq. (5) i s  transformed to 
the more compact form 

A more rigorous proof of Eqs, (5)-(8) by means of the 
method developed in Refs. 1 and 3 is given in the Ap- 
pendix. 

3. INITIAL DISTRIBUTION 

When a particle crosses the crystal boundary, on 
passage of a time of the order of several periods of 
oscillation there i s  established a distribution in sta- 
tistical equilibrium, which must taken a s  the initial 
condition for the kinetic equation (8). If the incident 
beam has a distribution in transverse momentum aZN/  

ap,ap,, then the initial distribution F,(E,, M,) can be 
found by means of the integral 

For ideal collirnation of beam incident on the crystal a t  
an angle $,, to the string, we obtain 

where F, has been normalized to one particle and one 
atomic string, p, ,, =p$,, i s  the initial transverse mo- 
mentum, r,, is the initial point of incidence of the par- 
ticle with the condition that it acquire a given trans- 
verse  energy 

and n 4  i s  the area  per string. 

Using the expression for the averaged potential of an 
atomic string obtained by Lindhards by approximation 
of the Thomas-Fermi atomic potential (the so-called 
standard Lindhard potential), 

U ( r )  -Ze'd-i ln (1+3a21rt), (11) 

where a=0.45Z'1/3 A i s  the Thomas-Fermi screening 
constant, d i s  the period of the atomic string, and Z is 
the atomic number of the target, i t  is easy to express 
the initial distribution (10) in explicit form in terms of 
E, and M,: 

4. DIFFUSION COEFFICIENTS 

As can be  seen from Eq. (I), all of the coefficients 
a r e  expressed in terms of the increment of the trans- 
verse energy =,= ~ E S .  The increment of the trans- 
verse energy a s  the result of multiple scattering by 
electrons can be  expressed in terms of the ionization 
lossS: 

- - m AE 
AE,==a-- 

M E '  

where o! i s  the fraction of energy loss in close colli- 
sions, which i s  approximately equal to 1/2 a t  high ener- 
gies. The energy loss in close collisions can ap- 
proximately be considered proportional to the electron 
density: 

where n(r)  i s  the profile of the electron density in the 
channel, N i s  the density of atoms, v i s  the velocity of 
the particle, and L ,  is the Coulomb logarithm with in- 
clusion of relativistic  correction^.^^ For the standard 
Lindhard potential (11) we obtain the following electron 
density profile: 
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à he averaging over the period of oscillation (over the 
impact parameters), in accordance with Eq. (3), can 
easily be carried out analytically or numerically. 
Analytically this averaging can be carried out only for 
certain simple potentials, for example, l/r, l/@, or  
?. 

For multiple scattering by thermal vibrations the 
formulas a r e  more complicated. In addition, since 
negative particles travel in the immediate vicinity of 
the atomic string, the Lindhard approximat i~n,~ which 
uses an expansion in u, /r, where u, is the average 
amplitude of thermal vibrations, is generally speaking 
inapplicable. Recently Ohtsuki et ~ 1 . ~ ~  showed for  non- 
relativistic protons that a t  impact parameters r S u, 
the multiple scattering is determined by the same ex- 
pression a s  in an amorphous material with appropriate 
allowance for the density distribution of the atoms of 
the string over the transverse coordinates, which i s  
determined by the thermal vibrations. 

In small-angle scattering, which we a r e  considering, 
according to the relativistic effects reduce to 
only an increase of the particle mass. This i s  clear 
also from the general postulate of channeling theory 
regarding the influence of relativity, which was dis- 
cussed above. Thus, the nonrelativistic formulas for 
multiple scattering by nuclei a r e  easily generalized. 
In the Ohtsuki approximationSS we therefore have 

- 1 - 
AE, 1 A&' A 21' - = - E - P ( r ) ,  -=- 
At 2  At At E2L.d ' 

P ( r )  = (r2/uL2)  exp (-9 /u I2 )  , 

where S R / ~ t  i s  the increment in the mean square 
angle of multiple scattering by nuclei in an amorphous 
material (E is in MeV) and L,,, is the radiation length; 
P ( r )  i s  the distribution of atoms in the transverse plane 
in the presence of thermal vibrations. 

5. MOTION OF UNBOUND ELECTRONS 

Following the terminology proposed by Chadderton3= 
for positive particles, we shall call unbound super- 
barr ier  electrons quasichanneled. This division is 
necessary a s  a result of the different nature of the 
motion of bound and unbound particles. Quasichanneled 
electrons moving in the field of many strings have only 
one integral of motion El. This situation is analogous 
to the axial channeling of positive particles,' The 
kinetic equation in this case has the form 

In statistical equilibrium, the positive particles a re  
distributed uniformly in the transverse plane within the 
region of motion available U(r) 4 EL. For negative 
quasichanneled particles the entire transverse plane i s  
available, and their distribution i s  uniform in this 
plane; accordingly, averaging over the impact param- 
e ters  r in calculation of the diffusion coefficient i s  
carried out over all impact parameters: 

For the same reason the a rea  of the available region 
S ( E , )  does not enter into Eq. (15), since i t  i s  constant 
and equal to the entire a rea  nr: per string. 

It is clear from 4 s .  (16) and (14) that Eq. (15) co- 
incides with the diffusion equation for an amorphous 
medium if the transverse energy i s  measured from the 
minimum value of the potential of the atomic string with 
allowance for the thermal spread in the location of the 
nuclei (with accuracy to the electronic contribution to 
2 at  small r). 

Initially only a small part of the beam i s  quasichan- 
neled. For incidence of the beam parallel to an atomic 
string (JI, ,  = 0) this obviously is determined by the part 
of the transverse plane where the potential i s  produced 
not just by one atomic string, and amounts to 20-30%, 
depending on the crystallographic direction and type of 
lattice. Then, with increase of the penetration depth, 
there is an increase of the transverse energy and a 
transition of particles from the channeled part to the 
quasichanneled part, Accordingly, in solution of Eqs. 
(8) and (15) in the negative and positive regions of El 
i t  is necessary to match the particle fluxes across the 
boundary El = 0. 

6. REDISTRIBUTION OF THE FLUX OF AXIALLY 
CHANNELED ELECTRONS 

As was mentioned above, the flux of quasichanneled 
electrons i s  distributed uniformly in the transverse 
plane, a s  in the case of an amorphous medium (we 
neglect here the small variation AU of the potential in 
the region between strings, since a s  the result of the 
diffusion in the transverse energy or  of the initial 
spread of the beam momentum the contribution of the 
region AE, = AU amounts to  a small fraction - AU/ 
I U,,,I ). However, the channeled electrons a re  focused 
onto the atomic strings, and a s  a result the flux of par- 
ticles in an electron beam is concentrated near the 
strings. This phenomenon i s  known as the flux-peaking 
effect or the redistribution of the flux of channeled par- 
ticles in impact parameter. It i s  the consequence of a 
distribution in statistical eq~i l ibr ium.~ '  

Since in our case the distribution function of the 
channeled electrons i s  two-dimensional, we shall give 
an expression for the channeled-particle distribution 
flux in the transverse plane. 

The distribution of particles in coordinate space (two- 
dimensional) i s  determined by the integral of the dis- 
tribution function in phase space f (pi, Y,  1): 

Going over from the variables p,, P, to E, , M, and re-  
placing the function f (p,, r, t) by +(El, M,, r, t), and 
then using the relation between the distribution in phase 
space and the number of particles in the interval 
dE,dMa: 

@ ( E L ,  M,, r,  t )u ,T/2=F(El ,  M,, t ) ,  

we obtain (see also the Appendix) 

2F(E,, Mz, t )  dELdMz 
TIEI-U ( r )  -MZ2/2YF J", ' 
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In view of the axial symmetry of the potential of the 
atomic string, the distribution (17) does not depend on 
the azimuthal angle rp. Substituting into Eq. (17) the 
initial distribution (9) and changing the order of inte- 
gration, we obtain for ideal collimation of the incident 
beam a distribution of flux over r near the crystal sur-  
face after establishment of statistical equilibrium 

7. CONVERSION TO DIMENSIONLESS VARIABLES 
AND ESTIMATES OF THE DECHANNELING LENGTH 

Equation (5) i s  more conveniently written for purposes 
of analysis in dimensionless variables, choosing the 
following scaling units: for energy EL, = 2ea /d ,  for 
length a =  0 . 4 5 2 ' ~ ~ ~  (the screening constant), for 
time (more precisely, for the penetration depth) to 
= a y / ~ ,  (y  i s  the Lorentz factor), and also for the 
angular momentum 

where i s  the value of the string potential a t  a distance 
r=  a. Here Eq, (5) can be written a s  follows: 

where 
c=E,/E,,, p=M,IM.,, ~ = t / t , ,  

D,*=( ( E - U )  G / A T ) ,  D , , . = D ~ , , = ( ~ / ~ ~ G ~ A T ) ,  (19) 
D,=< (rZ/uaZ)   AT) ), ~ l A r = 2 $ , - ' h 8 2 / A t ,  

and $, = ( 4 ~ e ~ / p v d ) ' ~ ~  i s  the Lindhard critical angle. 

FIG. 2. Fraction of channeled electrons (with EL< 0) a s  a 
function of the depth of their penetration in Si at E= 1 GeV for 
two angles of incidence of the beam with respect to the (111) 
axis: 1-0.2#,, 2-0 .35Jli (#, is  the Lindhard critical angle). 

increment (respectively curves 1, 2, and 3) as obtained 
from the formulas of Sec. 4. Proceeding from these 
data and the coefficients (19) of Eq. (181, we can obtain 
a crude estimate of the dechanneling length x,,, in 
which a large fraction of the beam i s  dechanneled, if 
we take into account that particles moving along helical 
trajectories far from an atomic string for rl, re= 2a 
experience scattering mainly by electrons and in gen- 
e ra l  they determine the dechanneling length Esti- 
mating the corresponding values of p, and E,, we ob- 
tain 

XZ, . -E~/  ( E / A ~ ) ~ ,  

where (G/bt), is determined by scattering by elec- 
trons with averaging over all  r 3 r,. For the (100) 
channel of Si and W we have respectively xllz -20 and 
100 pm a t  E =  1 GeV. These approximate estimates 
a r e  confirmed in a numerical solution of the kinetic 
equation (see below). 

In Fig. 2 we have given the number of channeled par- 
ticles (which have El s 0) a s  a function of the depth (the 
dechanneling function), obtained by numerical solution 
of the kinetic equation (18) for various angles of inci- 
dence of the beam. 

In Fig. 1 we have shown the increments of the trans- 
verse energy a s  the result of multiple scattering by 
electrons and by thermal vibrations, and the combined 

As can be seen from the calculation, capture into 
bound states a t  small depths a s  the result of multiple 
scattering i s  characteristic of axial channeling of elec- 
trons. This is  due to the fact that on entry into the 
crystal the particles a r e  concentrated near El =0, i.e., 
near the potential barrier,  since the interstring region 
of the channel where U = 0 has a substantial area. As 
a result of diffusion, par t  of these particles fall into 
the region of bound motion. 

FIG. 1. Increment of transverse energy a s  a function of im- 
pact parameter for motion of an electron with energy 1 GeV 
in the (100) axial channel of silicon (solid lines) and tungsten 
(dashed lines) in dimensionless variables (the scaling unit of 
depth is  respectively to = 20 and 27 A): 1-scattering by elec- 
trons, 2-scattering by thermal vibrations, 3-sum. 

As can be  seen from the estimates, which were con- 
firmed by the numerical calculation, particles under- 
going comparatively stable channeling move along a 
helical trajectory a t  some distance from the string 
(rosette motion), a s  a result of which the multiple 
scattering of these particles occurs mainly by elec- 
trons, and not by nuclei. The number of such particles 
amounts to a significant fraction of the beam (-50%). 

We note that the characteristic length of scattering of 
the quasichanneled part of the beam i s  the same a s  in 
an amorphous medium (more precisely, a s  in a dis- 
oriented crystal), in contrast to the planar case, where 
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i t  i s  substantially smaller than in an amorphous medi- 
um, a s  a result of the fact that in the planar case the 
flux of quasichanneled electrons is concentrated be- 
tween the atomic planes. 

In conclusion the authors express their sincere grati- 
tude to E. P. Velikhov for a helpful discussion of this 
work and to V. A. Telegin and M. K h  Khokonov for 
performing the numerical calculations. 

APPENDIX 

The kinetic equation for the distribution function 
F(E, , M,, t) can be obtained, following the method de- 
veloped in Refs. 1 and 3, by averaging the well known 
Fokker-Planck equation for particles moving in an ex- 
ternal field and undergoing small-angle deflections in 
Coulomb collisions with the particles of the medium. 

The Fokker-Planck equation for the distribution func- 
tion in the phase space of the transverse motion 
f (p, , r, t) without allowance for the spread of the longi- 
tudinal momentum, which in the present case is negli- 
gible in comparison with the longitudinal momentum 
value, can be  written in the form (see for example 
Ref. 36) 

Here t is the time of the motion, which i s  proportional 
to  the depth of penetration of the particle into the chan- 
nel, and which must be small in comparison with the 
time of complete stopping (this enabled as to neglect 
the change in the longitudinal component of the momen- 
tum). Going over in Eq. (A.l) to the new variables 

EL= (p:+p,') / 2 Y + U  ( r )  , 

M.=rp,-yp., r= (x2+y2)  '", cp-arctg ( y / x )  

and averaging the resulting equation over q, we obtain 

(A.3) 
We divide Eq. (A. 3) by 

and replace the distribution function f by ch (EL, M,, r, t )  
in accordance with the definition 

s o  that represents the density of particles in the in- 
terval dE,dM,dr and % = f /v ,  Here Eq. (A.3) can be 
represented after simple manipulations in the form 

A uniform distribution of particles in the phase of OS- 

cillation means that +v,T/~ = F(EL, M,), where T i s  the 
period of oscillation in r and F =  J+dr  i s  the total num- 
ber  of particles in the interval dELdM,. This means 
that particles with a given EL,  M, a re  distributed over 

the radius Y with a probability 

dp- 
dr 

T[2M-' (EL-M:/2Mf-U (r )  ) 1"' ' (A. 5) 

dP=O, El-U ( r )  <M2/2Mr'.  

Integrating Eq. (A.4) over r with inclusion of these re- 
lations, we finally obtain 

~E,'/A~--Z(E,-U(~) ) M - ' A ~ A ~ =  ( E L - U ( r )  ) E A W A ~ ,  - 
AMY ~ t = ~ ' l - 2 h 8 ' / 2 ~ t = ? ~ / ~ t ,  (A. 6) 

A E , A M , / A ~  - M . M - ' ~ / A ~ = M , E ~ / ~ A ~ ,  

and averaging over r is carried out a s  follows: 

%ere equilibrium can be understood in the sense that, a s  fol- 
lows from Liouville's equation, any distribution Fo(EL, ME) 
which depends only on integrals of the motion i s  stationary. 
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