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We consider the vibrational excitation of a diatomic molecule from which a slow electron is scattered. A 
quasiclassical expression is proposed for the cross section of the process, in the form of the first term of the 
asymptotic expansion in the parameter (2M)'12 (M is the reduced mass of the nuclei, and ti = rn = e = 1). 
The calculated cross sections for scattering by molecular nitrogen and carbon monoxide are presented. The 
agreement between the quasiclassical calculation and the available numerical quantum calculations is 
satisfactory. 

PACS numbers: 34.80.G~ 

The development of methods for  calculating the cross  Proper choice of the model parameters led in Refs. 4 
sections for vibrational excitation of diatomic mole- and 5 to very good agreement with the experimental 
cules by slow electrons i s  a vital problem in collision data. 
theory. Substantial progress in this direction resulted 
from the work by Herzenberg,lv2 B a r d ~ l e y , ~  and 
0the1-s.~'~ They proposed to calculate the cross  sec- 
tions for resonant vibrational excitation of the mole- 
cules by the following method. The molecule goes over 
to the final state via an intermediate stage in which the 
incident electron i s  captured for some time by the elec- 
tron shell of the molecule. The nuclear motion in the 
intermediate molecular ion can be considered on the 
basis of the notion of an adiabatic term of the system, 
W(R), which i s  complex because this ion i s  unstable: 

W ( R )  =UI(R) -ir(R) 12, r (R)  20. 
(1) 

The behavior of the nuclear subsystem i s  described 
by a wave function [(R) that satisfies, after separation 
of the angle variables, the following (in 
atomic units): 

1 6  
[----+w(R)-E] 2W dR' &(R)=-I.(R)v(R). (2) 

Here M i s  the reduced mass of the nuclei, E the total 
energy of the system, R the distance between the nu- 
clei, S o @ )  the vibrational wave function of the mole- 
cule initial state, and V(R) the amplitude for the pro- 
duction of a molecular ion in the bound-nuclei approxi- 
mation: 

and U(R) i s  the potential energy of the molecule. 

Knowing the function ((R) we can obtain the cross  sec- 
tions for the vibrational transition no -n: 

~ ~ + ~ = ~ ~ l  v, 8nJ j ~ ( R ) V ( R ) ~ ~ ( R ) ~ R ~ ' ,  (3) 

where &(R) i s  the vibrational wave function of the mole- 
cule in the final state; v,, and v, a re  respectively the 
velocities of the incident and outgoing electrons. 

Equation (2) was solved in Refs. 2, 4, and 5 numeri- 
cally, and the terms U(R) and U,(R) were approximated 
by Morse potentials. The width r @ )  of the.ion term 
was determined by the penetrability of the centrifugal 
ba r r i e r  to the electron with the smallest orbital mo- 
mentum compatible with the symmetry of the resonance. 

The analytically solvable models of the problem (2) 
and (3) were also considered. In Refs. 6 and 7 the 
terms U(R) and U,@) were taken to be potentials of os- 
cillators having equal frequencies and shifted minima. 
The width r ( R )  of the ion term was assumed to depend 
linearly on the distance between the nuclei. In Ref. 8 
the terms U(R) and UI(R) were approximated by Morse 
potentials, and the width r(R) was assumed to be al- 
most constant (the dependence of the width on the dis- 
tance between nuclei was taken into account by per- 
turbation theory). Comparison of the results  of Refs. 
6-8 with those of Ref. 4 shows that the analytically 
solvable models lead to good qualitative agreement 
with the results  of the exact calculation. 

In a preceding paperg we proposed to find the c ross  
sections, within the framework of the considered 
scheme, by a quasiclassical approach that yielded 
satisfactory quantitative results  for transitions from 
the ground state in the N, molecule. In the present 
paper we use the quasiclassical method to investigate 
transitions between excited vibrational states in the 
molecules N, and CO. 

Following Ref. 9, we introduce the Green's function of 
Eq. (2), expressing i t  in terms of the homogeneous- 
equation solutions x,(R) and x2(R), which a r e  regular 
a t  zero  and infinity, respectively. We have for the no 
- n  transition cross  section 

The integrals encountered a r e  calculated by using 
quasiclassical representations of the functions X,, X,, 
L,,, and 5, (see Ref. 9). The main contribution to the 
integrals a r e  made by the vicinities of the (complex) 
transition points z,, and z,, which a r e  the saddle points 
for the corresponding integral, and satisfy the general- 
ized Franck-Condon principle: 

258 Sov. Phys. JETP 55(2), Feb. 1982 0038-5646/82/020258-05$04.00 O 1982 American Institute of Physics 258 



E- w (21) = e t - U ( ~ t ) ,  t ano ,  n, (5) 

e, i s  the vibrational energy of the molecule in the cor- 
responding state. 

We consider next the vibrational excitation case  (no 
-n). The cross  sections for the superelastic transi- 
tions (no> n) can be obtained similarly, o r  determined 
with the aid of the detailed balancing principle. The 
resonant contribution to the elastic scattering (no = n) 
will be  considered separately. 

If the minimum of U,(R) i s  located to the right of the 
equilibrium position of the molecule we find, confining 
ourselves to transitions in the region of classically 
allowed nuclear motion, that z,, lies,& the left of z, 
(Fig. 1). In this case only the f i rs t  term of (4) i s  sig- 
nificant (cf. Ref. 9). 

We obtain ultimately the following representation for 
the cross  sections: 

v. (W)' lI~lalI~la 
a,,. = - - 9  

v, 8n' IQI 

(we have extended the integration to the entire axis, 
cf. Ref. 9). Calculation of the integrals in (7) by the 
saddle-point method yields 

( o l n )  "V (z,) ( 2 n l Y  (z,) 
I.. = 

2[e,-O(zno) ]"[E-W(za9)  ]"* 
'OS 

( o l n )  %V(Z,)  (2n /YnW (z.) ) '" 
I,, = 

2[e.-U(z,) ]"[E-W(z.)  1". 
(8) 

6- b 

Y.= 5 ( ~ M [ E -  w ( z r )  I)" dz'- 5 (2M[e , -U(z l )  ] ) '"dz t .  

 h he difference in the signs in front of n/4 i s  connected 
with the choice of the slope of the integration contour 
in the vicinity of the saddle point; this slope depends on 
the real  part of Q;'(z,), i = no, n.1 The Wronskian de- 
terminant Q can be calculated in the region of the clas- 
sically allowed motion of the nuclei 

FIG. 1. Molecule potential energy U and real part of the 
molecular-ion energy U1 vs. the distance between the nuclei. 
The positions of the transition points rno and z,, at  different 
values of the system energy E are shown arbitrarily (at r 
= 0). 

It must be  borne in mind that the region of applicability 
of the representation (8) is limited. First, the transi- 
tion points must be  located in the region of the clas- 
sically allowed motion of both systems far from the 
turning points; second, the distance between z, and zno 
must be  large enough If the f i rs t  condition is violated, 
the representations used for x,, x,, f,,, and f, must be 
valid in the classically forbidden region o r  near the 
turning points. When the second condition i s  violated, 
both t e rms  in (4) must be  taken into account. 

The investigation of the excluded cases, which fol- 
lows, shows that the representation (6) i s  valid over a 
wider range than (7) and (8). From the point of view of 
physical clarity, an important role i s  played by the fac- 
torization of the c ross  section (6), which makes i t  pos- 
sible to separate three stages in the vibrational excita- 
tion. Since the factor 1 I,,) ' depends only on the total 
energy of the system and on the initial state, it can be 
interpreted a s  the probability of formation of an inter- 
mediate state; the factor ) Inl ', which depends on n and 
E ,  has the meaning of the ion-decay probability. The 
denominator '(Q 1' describes the motion of the system 
in the nonstationary state from the instant of formation 
to  the instant of decay. 

It i s  of interest to trace the dependences of all the 
factors in (6) on the energy E. In the case of a small 
width, the factor ) Q ( -' has Breit-Wigner maxima con- 
nected with the long-lived resonant vibrational states 
of the molecular i o n  With increasing r, this factor 
becomes a smoother function of the energy (thus, in 
the case of the molecules N, and CO the oscillatory 
dependence of the cross  sections on E i s  determined 
mainly by the factors (I,,)' and 11,1'). In the vibrational 
excitation case discussed by us (no< n) the factor )I,,) ' 
depends on the energy more smoothly than ) I,)', SO that 
)In0)' i s  responsible for the envelope of the cross  sec- 
tion, and i ts  oscillator structure i s  determined by the 
factor )Znl'. 

Numerical calculations in accord with Eqs. (6)-(8) 
(Fig. 2) show good agreement with the results of nu- 
merical  integration of Eq. (2) (Ref. 4) a t  intermediate 
energies. (We have used the same terms U and U, a s  
in Ref. 4.) Considerable discrepancies a r e  observed at 
low and high energies, i.e., a t  these energies the form- 
al quasiclassical approximation i s  found to be untenable. 
If the system energy i s  high enough, the point z,, re- 
maining in the region of the classically allowed motion 
of the nuclei, approaches the right-hand turning points, 
and this leads to an increase of the quasiclassical 
cross  section on account of the decrease of the velocity 
of the nuclei in the vicinity of the turning points. The 
rapid decrease of the cross  sections at high energies 
i s  due to the proximity of the transition points z, and 
z,,, s o  that the second term of (4) cannot be discarded. 
It i s  seen from Fig. 1 that with increasing energy the 
points z, and z,, do indeed come closer together, since 
the terms U(R) and U,(R) increase rapidly with de- 
creasing distance between the nuclei. In addition, the 
transition points come closer to the stopping points and 
the cross  section s tar ts  to grow. The corresponding 
section of the curve i s  not shown in Fig. 2. 
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FIG. 2. Dependences of the cross section o, ,,I for the v i b  
rational excitation of the nitrogen molecule on the energy of 
the incident electron. Transitions between excited states: a) 
1-01; b) 1-2; c) 2 - 3. Solid line-calculations by Eqs. (6)- 
(8) of the present paper; dotted curve--calculations using the 
standard-equation method with Eqs. (20) and (21); dashed 
line--results of Ref. 4. 

We proceed now to a generalization of Eq. (6). We 
consider to this end a standard problem, within the 
framework of which i t  i s  possible to investigate the 
case when the transition points and turning points a r e  
close enough The solution of the standard problem, 
in contrast to the true solution [(R) of Eq. (2), will be  
designated Z(R).  Assuming that the major contribution 
to the cross section is made by the vicinities of these 
points, we can confine ourselves to a linear approxima- 
tion for the potential curves, and use for the functions 
t,, and 5, their representations in terms of the Airy 
function. 

We have thus the following equation for the determina- 
tion of Z(R) 

where F-= - d ~ / / d R ,  a- i s  the left-hand turning point of 
the ion, a,, is the left-hand turning point for the mole- 
cule in the state no. The function v satisfies the equa- 
tion 

where F = - d ~ / d R .  

We seek the solution of (9) in the form 

Z(R) = ~ ( a )  v (R-a) da. 

We then obtain for C the equation 

Near the left-hand turning points (which a r e  located in 
the lower half-plane, see Ref. 9), we have F>O, ReF-  
> 0, and Im F - <  0. It i s  obvious that in this approach 
the function v(R - a,) which imitates the function 5,N) 
must be  suitably normalized. From a comparison of 
the asymptotic forms of these functions i t  follows that 

i.e., v(R - a) i s  proportional to the Airy function ~ i ( q )  
of argument q = (~MF)" 3(a - R) and satisfies the rela- 
tion 

This normalization allows us to establish a corre- 
spondence between the discrete spectrum of the mole- 
cule and the continuous spectrum of the standard prob- 
lem, since i t  takes the molecule level density into ac- 
count. 

T o  calculate the c ross  sections of the vibrational tran- 
sition in accord with (3) i t  is necessary to integrate 
Z(R) with the final-state function 5,(R). Taking the 
normalization (14) into account, we obtain 

C(a) i s  thus directly connected with the cross  section. 

The solution (13) can be  expressed in terms of Airy 
functions that satisfy definite boundary conditions a s  a 
-f *: 

a,=min (a,., a ) ,  a,=max (a,, a ) .  (16) 

Since {R~[F'F/(F- - I . ' ) l ) I f  > 0, the expansion (11) i s  
meaningful only under the condition that C,(a) -0 a s  a 
-a; this defines uniquely the function C,: 

The boundary condition a s  a - - i s  l e s s  trivial. Let 
us  calculate the asymptotic value of Z(R) a s  R -03. 
Using (13) and (16), we write down the asymptotic 
representations of the functions v(R - a )  and C(a): 
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2 
+A- exp ( - i  [ T ( 2 ~ ~ ) ~ h ( a - - a ) '  

4 

By S a r e  meant all the factors in (16), with the ex- 
ception of C,(a). 

We obtain the integral (11) by the saddle-point method. 
Omitting an inessential factor, we get 

2 
+A. exp (r [--(ZMF-)VR-~-)% 3 +l . 

4 I)} 
In the spirit of the standard problem, this asymptotic 
relation should be compared with the quasiclassical 
representation of the true wave function ((R), which i s  
valid within the well a t  a sufficiently large distance 
from both the left- and right- hand turning points a- and 
b-. When setting up such a representation we must im- 
pose the condition that [ ( R )  decrease a s  R - + -  i.e., 
take into account the reflection of the particle at the 
point b-. As a result of this comparison, we find that 

By the same token, the solution C,(a) in (16) i s  uniquely 
defined. 

The investigation of the standard problem leads to the 
conclusion, already stated by us, that Eq. (6) remains 
valid in this case, too, but with different expressions 
for Zno and I,. Using (15)-(19) we have 

with a; standing for the turning point closest to a, and 
corresponding to a positive slope of F; ~'(77) and u~-(9) 
a r e  the Airy-equation solutions that increase and de- 
crease at Req < 0 and have asymptotic values 

Obviously, a t  large values of the argument qr ,  the fac- 
to r s  Zno and I, go over asymptotically to the correspon- 
ding quasiclassical expressions (8). We note in this 
condition the possibility of a transition from the quasi- 
classical representation to a representation in terms 
of an Airy function, independently for the factors Zno 
and I,. This enables us to investigate, for example, the 
case when the intermediate system i s  produced close to 
the turning point, and decays in the quasiclassical re- 
gion, o r  vice versa. 

The vicinities of the right-hand turning points (the 
case of small  E )  can be considered quite similarly. 
The standard problem can be  formulated in exactly the 
same manner. The difference between the signs of F 
and ReF' in this and in the following cases i s  inessen- 
tial, since 

The final result, which i s  valid a t  small E ,  i s  

-- I = (  a )' '(&) Ai(q,,), 
F--F (2MF) 'I* 

(21) 

qi=(b:-b-) (2MF)'", i=no, n; 

b; is the turning point closest to b, and corresponding to 
a linear slope in the well of the molecule. 

We consider finally the resonant contribution to elas- 
tic scattering. It must b e  borne in mind that in addition 
to  the resonance mechanism, when a long-lived inter- 
mediate state is produced in the course of the process, 
elastic scattering can take place also potentially a t  
relatively large impact parameters of the electron. 
The elastic cross  section will contain therefore, be- 
sides the oscillating term, also a slowly varying one. 
From the point of view of the method used in this paper, 
a feature of elastic resonant scattering i s  the coinci- 
dence of the transition points zno and 2,. All the results 
obtained on the basis of the standard-problem method 
remain valid in this case, whereas the quasiclassical 
equations must be  reviewed. In fact, in this case the 
two terms in (4) a r e  equally important. To calculate 
the integrals i t  suffices nonetheless to use the quad- 
ratic representation of the phases of the wave functions 
P,, x,, and X, in the vicinity of the transition point 2,. 

FIG. 3. Dependence of the cross  sections for vibrational 
excitation of the ground state of carbon monoxide on the in- 
cident-electron energy. Dashed line-results of Ref. 5; solid 
line-calculations by Eqs. (6)-(8) of the present paper (an 
expression obtained in Ref. 9 was used for the factor I. in the 
regions of deviation from the dashed line); dotted line-exper- 
irnent." 
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FIG. 4. Cross sections o,, , * of vibrational excitations of 
carbon monoxide vs. the incident-electron energy. Transitions 
between excited states: a) 1 -- 2; b) 2 - 3. Solid curve-cal- 
culated from Eqs. (6)-of the present paper; dotted curve- 
calculations by the standard equation method using Eqs. (20) 
and (21). 

The resultant integrals can be easily calculated, so that 
the final results a re  completely described by Eqs. 
(6)-(8). 

The results of the numerical calculation within the 
framework of the present paper and the comparison 
with the exact calculations of Ref. 4 for the N, mole- 
cule a r e  shown in Fig. 2. The agreement can be re- 
garded a s  good both qualitatively and quantitatively. 
Attention must be called to the role of the regions in 
which the standard-problem method must be used. A 
shortcoming of this method is the somewhat arbitrary 
choice of the point at  which the average slope of the 
term of the molecule is  calculated. In addition, the 
cross section is influenced by the choice of the point 
a t  which the transition amplitude V i s  calculated (the 
transition point z, was chosen in the present paper). 

Figures 3 and 4 show the results of our calculations of 
the vibrational excitation of the CO molecule with the 
terms proposed in Ref. 5, a s  compared with the results 
of that paper. We note that in Ref. 5 they calculated 

only the cross  sections for vibrational excitation for 
the ground state of the molecule, and the numerical 
values of the cross sections were determined by nor- 
malization to the principal maximum of the transition 
cross section a,, obtained from experimentlo The 
numerical values of the cross sections ow, in our case 
turned out to be twice a s  large a s  in Refs. 5 and 10; 
the cross sections were therefore c o m p ~ r e d  in Fig. 3 
in dimensionless units. (The normalization of the ex- 
perimental cross  section is discussed, e.g., in Ref. 11.) 

Within the framework of the model considered, the ab- 
solute values of the cross  sections a r e  closely con- 
nected with the term width and hence with the modula- 
tion of the cross  sections. An attempt to reconcile the 
absolute values of our calculated cross sections with 
the results of Refs. 5 and 10, by decreasing the width 
r, increase the depth of the cross-section modulation. 
In our opinion, calculation for the CO molecule by the 
procedure of Ref. 4 might clarify the situation. We 
point out that the mentioned connection between the 
modulation depth of the cross sections and their ab- 
solute values may be useful in investigations of vibra- 
tional excitation of molecules under conditions when the 
experimental data a r e  limited. 
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