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The intensity of radiation multiply scattered in a fluid in the near-critical state is calculated. The extinction 
coefficient for mulitple scattering is computed, and the conditions under which the concept of scattering 
multiplicity loses its original meaning are obtained. The theoretical results are illustrated by a numerical 
computation of the extinction coefficient in the Omstein-Zernike approximation. The results of the present 
paper together with those of an earlier calculation of the depolarization coefficient in the critical region allow 
us to assert the effects of multiple scattering are important when qR, k 1 (R,  is the correlation length and q is 
the wave-vector transfer). This agrees with the results of a number of experimental investigations. 

PACS numbers: 42.20. - y 

We need to have a deep understanding of the character- 
istics of multiple light scattering in the critical region 
for  the following main reasons: 1) multiple light scat- 
tering furnishes specific information about the higher- 
order space-time correlation functions (CF) of different 
physical quantities; 2) allowance for the effects of 
multiple scattering is necessary for the correct inter- 
pretation of the results of the investigation of the phe- 
nomenon of critical opalescence in the single-scattering 
approximation, for  which there is a reliable theory.'" 

The f i rs t  theoretical calculations of double light 
scattering in a fluid near the critical point were pub- 
lished in 1974. These calculations were based on a con- 
sistent electrodynamic calculation of the scattered 
fields and the use of density-fluctuation correlation 
functions that a r e  right for the purpose of calculating 
the depolarization coefficienr and the integrated inten- 
sity4 of scattered radiation. Since then there has been 
accumulated a large amount of experimental and theo- 
retical data on the characteristics of the integrated and 
spectral intensities of higher-order scatterings (see, 
for example, Refs. 5-19). 

One of the central questions is the question of the 
relation between different orders of scattering in the 
critical region. This is the subject of the present 
paper, which continues the investigations started in our 
previous papers .4.12.1g 

Firs t  we shall derive recursion formulas for the inte- 
grated intensities (scattering coefficients) for different 
scattering orders and find a closed solution to the inte- 
gral  equation for  the total multiple-scattering coeffic- 
ient. Then we shall determine the extinction coefficient 
for multiple scattering, and discuss the question of the 
relation between the contributions of successive orders. 
And, finally, we shall carry  out specific calculations 
and numerical estimates of the extinction coefficient 
for multiple scattering in the Ornstein-Zernike (OZ) 
approximation. Here special attention will be given to 
the analysis of the condition for the convergence of the 
iteration ser ies  in the scattering order and the computa- 

tion of those values of the parameter qR, (R, is the 
correlation length and q is the wave-vector transfer) 
a t  which it becomes impossible to use the original 
concept of scattering order [in the sense of the Born 
(Rayleigh) expansion] in the solution of the electrody- 
namic problem. 

1. Let us derive the recursion formula for the inten- 
sity of the i-tuple scattering: 

where n, is the unit vector specifying the direction of 
the i-tuple scattering and (. . . ) denotes statistical 
averaging over the local-equilibrium density-fluctua- 
tion distribution function in the isothermal case. 

The general formulas obtained for the scattered 
fields E, and H, in the wave-zone approximation have 
the following form: 

H, ( I )  =k2j e' ( r , )  ( r , )  Go ( r ,  r , )  [m in , lE j - ,  ( I , )  dri. (3) 
v 

Here c0 and &' a r e  the mean and fluctuational parts of 
the scalar permittivity; Go(r, r i )  is the Green function 
for the wave equation in the smooth-inhomogeneity ap- 
proximation4; and the vector 

determines the direction of the polarization of the i- 
tuply scattered wave. The expression (4) is a recursion 
relation between the polarizations of successive scat- 
tering orders. 

For the i-fold scattered radiation intensity (1) we ob- 
tain with allowance f o r  (2)-(4) the expression 

I ,  ( r )  = ( k ~ ' ) ~ j  j G o b ,  r i )Go'(r ,  r l J )  
%."  
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where J , - ,  is the unaveraged (i - 1)-fold scat tered 
radiation intensity, which is  a functional of E'. 

To c a r r y  out the subsequent calculations, we need to 
uncouple the corre la tor  figuring in (5), and, generally 
speaking, directly connected with the unknown 2i-point 
density-fluctuation correlat ion function 

The use of the wave-zone condition in the electrody- 
namic calculation of the scat tered fields (2) and (3) 
allows us to employ for  this purpose the asymptotic 
formulas obtained in Refs. 20 and 21 f o r  the correla-  
tion functions, and corresponding to the elimination of 
the fluctuation pa i r s  a t  distances. 

As in the case  of double ~ c a t t e r i n g , ~  we can show that 
the contribution of the non-Gaussian part  (of the cor-  
relation deviation). 

to the intensity of the i-fold scat tering is negligibly 
smal l ,  and this virtually allows us to use the pre- 
viously-obtainee2 Gaussian-type local-equilibrium 
density-fluctuation distribution function to compute the 
corre la tor  in (5). In the diagrammatic l a n g ~ a g e ~ ~ . ~  this 
approximation for  the expression (5) corresponds to the 
transition from a diagram of the general type with a 
"correlation star ,"  representing the correlation func- 
tion g,,, to a diagram of the "ladder" type: 

In (7) a straight  line between two n~ighbor ing  vert ices 
represents  the propagator (VV +@)Go; the vert ices of 
the diagram correspond to the density fluctuation; a 
wavy line corresponds to the correlation interaction of 
a pair of fluctuations over  whose coordinates the inte- 
gration i s  performed. 

I t  i s  c l ea r  that the method used to uncouple the cor-  
relator  in (5) is  inapplicable if 

R,ko>l, (8) 

a condition which is  fulfilled when T <  (h/2nc&,)-' = 
where c&,= cm is  the correlation length a t  points f a r  
from the cri t ical  point. 

Taking (7) into account, we can reduce the expression 
(5) for  the intensity of the i-fold scattering in the 
volume V to the form 

where g2(&, rd) is the Fourier  transform of the pair 
correlation function f o r  a n  inhomogeneous mediumz2 
with respect  to the relative variable rk - r,'; q, is the 
wave vector t ransferred in the k-th scattering event; 
a M  V is the scat tering volume. 

Let  us, by analogy with the single-scattering coef- 
ficient,' introduce in (9) the coefficient of scattering of 
a rb i t ra ry  order:  

Then a f t e r  performing the integration over the relative 
distances between the successive scat tering points, we 
obtain the following recursion formula for  the scat ter-  
ing coefficients : 

&(a, ao) = L ~ J  R, (a, ot-JRc-, ( 0 0 ,  ai-l)da~-i, is2,  (11) 

The successive integration in (11) over the solid angles 
ok sums  the scat tered radiation of a l l  multiplicities k < i  
(which is the source  of the i-fold scat tered radiation, 
and is detected by the receiver)  in the interior of the 
medium over the directions. 

The quantity Lo, which has  the dimensionality of 
length (in the general  case  a function of the l inear di- 
mensions of the system),  depends on the geometry of 
the problem, and is a n  important parameter  of the 
"instrumental" theory of multiple scattering, which is 
adequate fo r  a specific experiment (see,  fo r  example, 
Refs. 6 and 15). In  particular, f o r  the investigation of 
scat tering in a volume having the shape of a sphere of 
radius R', we have Lo =R', whereas for  a cube with 
edge u uniformly illuminated through one of its faces,  
the quantity Lo i s  equal to u ~ 3 2 .  

In view of the increased interest  in the experimental 
 investigation^^^^'^^ of the dependence of double (multi- 
ple) scat tering on the characterist ic  linear dimensions 
of the scat tering volume, let  us note that, on the basis  
of the relations (10) and ( l l ) ,  Ri  - L A  ''. Hence f o r  the 
intensity of the i-fold scat tering we have I, - VL;-', 
which has been noted before." The result  I, - VL,, was 
theoretically in the solution of the electro- 
dynamic problem of multiple scattering, and the result  
I,/I,-, - Lo (i 2- 2) was obtained in Ref. 24 in an  investiga- 
tion of multiple scat tering by the radiation-transport- 
equation method. 

2.  Let  us consider the total multiple-scattering coef- 
ficient 

- R=C R,. (13) 
a = ,  

Taking (9)-(12) into account, we easily find that the 
expression (13) is an  iterative solution to the integral 
equation 

R(a, uo) =R, (u,ao) +L,S R, (a, o ' ) H  (a', a,)da'. (14) 

The analysis of the total multiple-scattering coeffic- 
ient R in the form of the iterative s e r i e s  (13) meetswith 
considerable difficulties. Of immediate interest is the 
obtaining of a closed solution to Eq. (14). Let  us rep- 
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resent the sought solution in the form of a ser ies  in (the indicatrix, the extinction coefficient, their tem- 
terms of the complete system of spherical functions: perature and field characteristics, the correlation 

- - properties of the dispersive medium) from the given 

2n+l (n-m)! '1 
ynm(o) = [(r)m ] pmtn (cos 6) erInv, 

where the P; (cos 9) a r e  the associated Legendre poly- 
nomials. Correspondingly, 

Let us note that, because the scattering coefficients 
R, and R a r e  red, the coefficients 

A,,=j R(a,  a,) YnzL' (a)da, (174 

B m n = j  R, (a, ao) Ynm' (a)  do, (17b) 

cm,,,~,~ - ~ J R ,  (a, a ')  Y.~ . (U)  Y..~' (a f )da  do' ( 1 7 ~ )  

of the expansions (15) and (16) satisfy the relations 

Using (14)-(16) and the orthogonality condition for the 
spherical functions 

we obtain for the determination of the expansion coef- 
ficients A, the following system of algebraic equations: 

I t  follows from (17b) and (17c) that the form of the 
coefficients B, and C,,,tnt, and, consequently, of the 
A,,, depends essentially on the structure of the Fourier 
transform of the correlation function g, [see (12)]. At 
the same time, using (12) and (17b), we can show that 
only the coefficients B,,, and 4, a r e  nonzero. This 
selection rule for the coefficients of the expansion (16a) 
follows directly after the integration over the azimuthal 
direction in (17b), and is not connected with the specif- 
ic structure of the pair correlation function. Taking 
account of (4), (12), and (19), we obtain for the coef- 
ficients C,,,,,, from (17c) in an entirely similar fash- 
ion the relation 

Taking the above-noted properties of the coefficients 
B,,, and C,,, , , , ,  into account, we easily obtain from 
(20) the solution for the coefficients A,: 

Then, using the condition (l8), we can rewrite the ex- 
pansion (15) for the scattering coefficient R in the form 

R(a,  oo) = {[2B,,Yn0(o) +Bz.(YnZ(o) + Y , - 2 ( o ) )  1/2(1-L,B,,,,')}. (22) 
n>o 

The formula (22) is convenient in that i t  enables us to 
find the various characteristics of multiple scattering 
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correlation function g,. 

Let us note that, according to (17b), the coefficient 
B, is the extinction coefficient k, of the single-scatter- 
ing approximation (k, = B,). From the formula (22) we 
directly obtain the criterion for  the applicability of the 
iterative procedure used above in the derivation of Eq. 
(14), namely, 

(for specific numerical estimates for this criterion, 
see  Sec. 3). 

The extinction coefficient K for multiple scattering is 
given by the expression 

which, after the use of (19) and (22), turns out to be 
equal to 

The expression (25) can also be obtained from the 
series (13). Indeed, using the recursion formula ( l l ) ,  
and performing the integration over the solid angle, we 
find in accordance with the definition (24) that 

The summation of the ser ies  (26) with allowance for the 
criterion (23) leads to the formula (25). 

From (26) we obtain the following important relation 
between the contributions of the successive scattering 
orders to the multiple-scattering extinction coefficient: 

which is given in our last  paper,lg where we discuss, in 
particular, the thermodynamic conditions under which 
the corrections for multiple scattering a re  important. 

When the strong inequality k, Lo<< 1 is fulfilled, the 
experimentally determinable quantity i s ,  a s  follows 
from (25), the single-scattering extinction coefficient 
k,. But in the general case what is determined in ex- 
periment is not a t  all the quantity k,, but the multiple- 
scattering extinction coefficient K. Solving (25) for k,, 

and substituting into the relation (27), we obtain 

The formula (29) enables us to find the relative contri- 
butions of the successive scattering orders in terms of 
the experimentally determinable quantity K, the extinc- 
tion coefficient. 

Let us briefly discuss the possibility of an experi- 
mental determination of the extinction coefficient K. 
The traditional approach is based on the application of 
the Bouguer-Lambert law 

I ( Z )  = I ~  exp (-kr1) (30) 

for  the intensity Z(1 )  of a light beam that has traversed 
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a distance 1 in the medium and the identification of the 
reciprocal attenuation distance k' with extinction coef- 
ficient. I t  is natural that, in the case in which funda- 
mental absorption of the electromagnetic waves does not 
occur in the medium, the decrease of the intensity is 
entirely due to the scattering. 

The basis for the use of the expression (30) is the well- 
known optical theorem (see, for  example, Ref. 25), the 
region of applicability of which is limited by the single- 
scattering approximation (kt = k,). If this approximation 
ceases to be applicable, then it becomes necessary to 
relate the reciprocal attenuation distance k' already in- 
troduced formally in (30) with the multiple-scattering 
extinction coefficient K. 

For a light-diffusing medium, we have, when the sur-  
face effects a r e  neglected, the following balance equa- 
tion: 

where u* is the cross-section area  of the incident 
(transmitted) light beam. Approximating the intensity 
of the transmitted beam by the formula (30), we obtain 
the sought relation between the reciprocal attenuation 
distance k' and the multiple-scattering extinction coef- 
ficient K: 

kr-Z-l h ( i -  VKIo'). (32) 

Let us note that i t  does not a t  all  follow from the 
smallness of the experimentally determinable-with the 
aid of the formula (30)-quantity k'l that k' is the single- 
scattering extinction coefficient k,. Indeed, in the case 
k'l<< 1 we find from (32) that 

Hence when the condition o*l/V= 1 is fulfilled, the 
experimentally determinable reciprocal attenuation dis- 
tance k' coincides with the multiple-scattering extinc- 
tion coefficient K. This result can be regarded a s  a 
generalization of the optical theorem to the case of mul- 
tiple scattering. In the general case, in which o*l/v 
+ 1, the simultaneous use of the formulas (29) and (33) 
allows us to estimate the ratio of the intensities of suc- 
cessive scattering orders from the experimentally mea- 
surable quantity k' and the known geometry factors l, 
u*, V, and Lo. 

In the case in which the extinction coefficient K found 
from (33) satisfies the condition KLo<< 1, we find on the 
basis of (28) that k, =K, i.e., that the dominant contri- 
bution to k' is made by single scattering (in the single- 
scattering approximation the condition u*l= V is ful- 
filled automatically). It is in this, and only in this, 
case that the optical theorem is valid and the recipro- 
cal attenuation distance k' in the Bouguer-Lambert 
law (30) is the single-scattering extinction coefficient k,. 

For the elucidation of the presence of the contributions 
of the higher-scattering orders in terms of the experi- 
mentally measured value of the reciprocal attenuation 
distance kt and the known geometry factors 1, u*, V, 
and Lo, we can use the following method. We should, 
by varying the distance I traversed by the light beam in 

the medium, determine the linear segment in the plot 
of ln[l,/l(l)] against 1. The slope of this graph gives 
the single-scattering extinction coefficient k,. The 
deviation from linearity indicates the presence of higher 
scattering orders. The reciprocal attenuation distance 
determined on the basis of (30) and (31) becomes a func- 
tion of not only the thermodynamic variables, but also 
the geometry factors, which indicates that kt cannot be 
identified with the single-scattering extinction coef- 
ficient k,. 

3. For the performance of specific calculations of 
the multiple-scattering extinction coefficient K, we shall 
use below the correlation function gz(q, #) of the Orn- 
stein-Zernike approximation for a spatially inhomogen- 
eous fluid near the critical point in a gravitational 
f ieldzZ : 

~ B T  1 
gz(9, z)=- Vbp, R.-'(z, T) +qZ ' 

In this case for the single-scattering coefficient (12) we 
have 

R,(o. oo) =2xa(z, r) 
I- (n,m0)' 

I+  6 (z, T) (I-n,%) ' 

3~ (2, T) - ~ T ( z ,  T)/hl( 6 (2, T) =qZR:(z, T) [ 4 ] ,  g=2 (2e)"n/h, 
(35) 

where q is the wave vector transferred in a scattering 
through an angle 3 =n/2. 

The expansion coefficients B,, and 4, entering into 
the expression (22) a r e  given by the following formulas: 

(36) 

n52, 

where the Q,(x) a r e  generalized Legendre polynomials. 

From (36) we obtain for the single-scattering extinc- 
tion coefficient the well-known expression (see also 
Refs. 26-28) 

I t  follows from the formula (38) that, as the critical 
point is  approached, the extinction coefficient slowly 
increases, and diverges logarithmically a s  6 - m. This 
circumstance leads, generally speaking, to the violation 
of the criterion (23) for the convergence of the itera- 
tive procedure. 

Let us determine those values of the thermodynamic 
variables (or the parameter 6) and the geometry factor 
Lo for which the criterion (23) is still fulfilled. For 
this purpose we carried out a numerical computation of 
the quantity 

where s i s  a factor that was introduced earlierlg in the 
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computation of the depolarization coefficient A and f * is field is then determined by the number of the functional 
a parameter characterizing the nonlocalized nature of factors cl(rl) - ~ ~ ( r , )  in each term of the iteration 
the fluctuations.' The calculation was performed in the ser ies ,  while the order of the scattered-light intensity 
6-parameter range from 10" to 1.0 in steps of lo-' and is (when the non-Gaussian contributions a r e  neglected) 
in the range 1.0 96  S 11.0 in steps of loa. Some of the determined by the number of functional factorsg,(r,, r ( )  
computational data a r e  given in Table I. that correspond to the correlation interaction of the 

For  the realistic parameter s =O. 1 (Lo= 10" cm for 
Xe) the condition (23) is violated (k,Lo = 1) when 6 =4.15, 
which corresponds to qRc= 2 and a temperature devia- 
tion T = along the critical isochore. For  the same 
value of s the single-scattering approximation can be 
used for T 2 10-3*7 with acceptable accuracy when the 
ratio k,+,/kl of the contributions of successive scattering 
orders to the extinction coefficient does not exceed 10%. 
These results agree with the conclusion, drawn in a 
number of experimental  investigation^,'^^'^ that the 
higher-order scatterings in the critical region become 
important when qRc 2 1. 

The above-performed computation allows us to deter- 
mine more accurately the limits of applicability of the 
results of the computations, carried out in the double- 
scattering approximation, of the depolarization coef- 
ficient A. As has been shown,lg for s =0.1, the coef- 
ficient h assumes its maximum value when 6,,, = 7.8 
(7 = 10-5-1s), and then begins to decrease, which indi- 
cates the inexpediency of a further depolarization-coef- 
ficient calculation inthe double-scattering approximation 
and an increase in the role of the higher-scattering 
orders when 6> b,,,. 

The possibility of the summation of all  the scattering 
orders corresponding to the ladder diagrams of the 
type (7) furnishes a more exact limit of applicability 
of the scattering-order concept. In the model calcula- 
tion based on the use of the Ornstein-Zernike approxi- 
mation, this limit is characterized by the fulfillment 
of the inequality 

The inequality (40) can be secured by an appropriate 
choice of the geometry factor L, o r  of the thermody- 
namic variables T and Ap = (p - pc)/pc (7 and the dimen- 
sionless height z in an experiment with allowance for  
the gravitational effect). 

4. In conclusion, let  us note that the iterative pro- 
cedure used in the solution of the electrodynamic prob- 
lem corresponds to the well-known Born expansion in 
the quantum-mechanical theory of scattering (see, for 
example, Ref. 29). The order concept for the scattered 

TABLE I. 

density fluctuations a t  the symmetrical vertices on the 
lines of the diagrams. The summation of the series in 
the order for the intensity becomes possible as a result 
of the use of the wave-zone condition, which allows us 
to select the periodic solutions of the wave equation for 
each of the scattering centers. A class of ladder dia- 
grams in which the distances between neighboring ver- 
tices on each line staisfy the condition (6) then separates 
out from the entire diagram series.  The investigation, 
performed in this approximation, of the extinction coef- 
ficient K shows that the inequality (23) is violated a s  
the critical point is approached. The scattering-order 
concept itself thus loses its meaning. 

Further refinement of the description of the process 
of light scattering in the critical region requires a more 
consistent approach based on the technique of resumma- 
tion of the basic series for the fields and the intensity of 
the scattered radiation, a s  well a s  the use of functional 
methods to solve the electromagnetic problem in the 
case of non-Gaussian order-parameter-fluctuation 
statistics. 
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