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A soliton-type solution is obtained for resonant ultrashort pulses (USP) whose propagation in a molecular gas 
medium is accompanied by a large number of multiphoton processes that lift the forbiddenness of vibrational- 
rotational transitions with IAjI > 1 (i is the rotational quantum number). An analytic solution is found for an 
arbitrary dependence of the susceptibility x(Mi2) of the substance (gis the radiation amplitude), i.e., for any 
number of mulitphoton processes of various orders occurring in the resonance transition. The solution 
describes the waveform of the stationary USP with account of both the quadratic Stark effect and phase 
modulation of the radiation. It is shown that the presence of a small dipole moment of the resonance 
transitions, due for example to collisions, may ensure the existence of stationary USP. For ordinary 
multiphoton processes of orders higher than the second this would be impossible. The pulse waveform is 
investigated for x = d ,, + x"'@I2 which describes simultaneously two processes, one involving a single 
photon and the other three photons in the elementary absorption act. 

PACS numbers: 33.80.Kn, 51.70. + f 

Coherent interaction of ultrashort light pulses (USP) 
with a medium in the case  of one-photon absorption 
(OPA), a s  well a s  in the ca se  of second-order reso-  
nances such a s  two-photon absorption (TPA) and st imu- 
lated Raman scattering (SW),  has been investigated 
quite fully."5 The possibilities of formation of s ta -  
tionary USP had been discussed, and analytic solutions 
were obtained for stationary amplitude profiles in the 
presence of one of the resonances, OPA o r  TPA (SW). 
A substantially different situation is possible, how- 
ever ,  when the USP propagates in a molecular medium, 
and its ca r r i e r  frequency l ies  in the IR band and i s  at  
resonance with any one of the frequencies of the vibra- 
tional-rotational transitions in the molecule. At such 
a resonance, absorption of intense radiation is due as 
a rule not only to one-photon but also to three-, five-, 
and even seven-photon processes in the elementary 
act of which one photon is absorbed (OPA of third, 
fifth, etc. order6"). 

These "hindrance lifting" processes take place effec- 
tively at  intensities 10-100 M W / C ~ ~ ,  thus indicating 
that they can influence strongly the propagation of USP 
in OPA. Such a situation i s  perfectly feasible if, for 
example, the USP a r e  nanosecond pulses from a C02 
laser .  In the investigation of coherent interaction of 
USP with molecular media, particularly when consider- 
ing the possibility of self-induced transparency o r  the 
wave forms of the stationary USP, it i s  therefore 
necessary to take simultaneous account of both the OPA 
and the various multiphoton processes. 

This cal ls  in fact for the solution of a problem more  
general than that considered in Refs. 4 and 5 ,  that of 
the existence of stationary pulses in a resonant medium 
with a susceptibility that is a more  complicated func- 
tion of the radiation amplitude than in the case  of TPA 
o r  S W .  We shall show below that this problem can be 
solved. Its solution yields the waveform of the s t a -  
tionary pulse when simultaneous account i s  taken of 
OPA and of multiphoton processes of the hindrance- 
lifting type, and, a s  a particular case,  the waveform of 
the stationary pulse in a l l  the heretofore investigated 

processes--OPA, TPA, and SRS. We note that on the 
basis  of the asymptotic solution for  the front of a 
stationary USP in three-photon absorption, and also 
with the aid of an analog of the a r e a  theorem and the 
Manley-Rowe relations, i t  was concluded ear l ie r  that 
stationary pulses cannot exist in ordinary multiphoton 
processes of order  higher than the The 
procedure proposed here makes possible an analytic 
solution of this problem. It will be shown that a distin- 
guishing feature of multiphoton processes of the hind- 
rance-lifting type is the possible existence of stationary 
pulses when OPA of higher o rde r s  play a decisive role,  
if the dipole moment that causes the one-photon ab- 
sorption of f i r s t  o rde r  is arbitrari ly sma l l  but differ- 
ent from zero .  

1. BASIC EQUATIONS 

We consider the propagation of pulsed laser  radia- 
tion 

E ( z ,  t ) - z 8 j ( z ,  t ) exp[ i (o j t -k j t )  ] 
i 

in a molecular absorbing medium. If the field E has a 
frequency wl =wzl that i s  at  resonance with a certain 
transition 1-2, the resonance conditions for a multi- 
photon process of the hindrance-lifting typeb7 a r e  of 
the form 

etc.  The conditions (1) mean that in a 1-2 transition 
there can take place, besides f irst-order OPA, also 
OPA of third, fifth, etc.  order .6  

Fo r  ordinary multiphoton resonance we have 

C n , w j = ~ ~ i ,  (2) 
i 

where n j  a r e  positive integers that indicate the multi- 
plicity of the degeneracy of the resonance with respect 
to the frequency wj, and the sum z j n j  =q yields the o r -  
der  of the resonance. 

Assume that the stationary amplitude profiles g j ( z , t )  
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= g j ( r  = t  - z/v), propagating with velocity v < u j  (uj is 
the speed of light in the given medium) a r e  established 
a t  a certain distance in a one-dimensional absorbing 
medium. The equations that describe the stationary 
USP, neglecting relaxation processes and the Stark 
effect (the role of the Stark effect i s  considered in Sec. 
4) take the following form. For  a multiphoton process 
of the hindrance-lifting type (1) 

d g / d ~ - i ~ : ~ ' ~ ( l e P l ) ~ , r ,  (3) 
dolJdr--iyax( 18 I ) q,W, (4) 

dt~ tJd~==ys~( IeP I  ) Im ( 0 1 8 ' ) .  (5) 

Here ER is the field a t  the resonance frequency w = wzl, 
and q12 =ul, -uz2 is the difference between the popula- 
tions of the working levels; oil and oz2 a r e  the diagonal 
elements and ol2 is the off-diagonal element of the den- 
s i ty  matrix; 

No is the particle-number density, and vl = 1 /v - 1/24, is 
the velocity mismatch. Since resonances of third, fifth, 
etc. o rde r s  take place in the process (1) under consid- 
eration besides one-photon absorption, we have 

X ( ~ ~ ~ ) = d , . + x  x ( a m + l ) ~ ~ ~ z = ,  
(I-I 

where d12 is the dipole moment and x'~"'+" a r e  polari- 
zabilities of o rde r  q = 2m + 1. 

From (3) and (5) follows the f i r s t  integral, which es- 
tablishes the connection between the stationary ampli- 
tude and the population difference. Regardless of the 
o rde r  of the resonance we have 

7 Tl12(181)-q,,a -2- I 8 l Z ,  
27:) (6) 

where q& is the initial population difference. In addi- 
tion, i f  we introduce the quantity 

i t  follows from Eqs. (4) and (5), in the absence of phase 
modulation, that q, =q& cos S. Taking this into ac - 
count, it is easy to find from (6) that the increment of 
S during the t ime of the pulse is 2nn. Thus,  i f  a s ta -  
tionary pulse is produced in the process under con- 
sideration, the quantity s(-) i s  finite and i s  a multiple 
of 2n, regardless of the order  of the resonance. 

The change of variable 

reduces the system (3)-(5) to a single second-order 
equation for  the field 53': 

where q12( 1 $ / ) is the known function (6). This equation 
will be investigated below, and at  present we shall show 
that stationary USP a r e  described by an equation s imi lar  
to (7) also for the usual q-photon nondegenerate reso- 
nance (2). 

The system of equations for the q-photon resonance 
(2) is of the form 

where ][I,= gig2.. . f?,. It is easy to show that the q 
equations for the amplitudes $, in this sys tem can be 
replaced by a single equation for  the quantity ][I,, 
which coincides in form with Eq. (3) for  the multiphoton 
resonance (1) of the hindrance-lifting type. Indeed, i t  
follows from (8) that the amplitude product n, satisf ies 
the equation 

The Manley-Rowe relations for  Eqs.  (8) yield the con- 
nection between the stationary amplitude profiles 1 $, l 2  
= ( y ~ k ) / y ~ j ) ) \  gj 1'. Therefore any amplitude 1 gjI can be 
expressed in t e rms  of the modulus of the product ] ][I,/ : 

18,12= (7:') 17,) l I IqIzJq, (12) 

where y,  =[y~1)y:2'- - .y~ ' ) ] l lu .  Substituting (12) in (11) 
we obtain for ]II, an equation s imi lar  to (3): 

where 

X ( l n q l ) = q ~ ( q ) l n q l  "'-"" 

Jus t  a s  in the preceding case,  the change of variable 

reduces the system (13), (9), and (10) to a single s e c -  
ond-order equation for n,: 

- "  ,. . . . 
where q12(1 n,l)=q:, -(y,/2y,)l n , l z I u  is the f irst  inte- 
g ra l  of the sys tem (8)-(10). We note that in the case  of 
q-photon resonance the quantity 

m 

S ( - )  = 2 ~ ( q ' A - ~  S In,ldr 
-- 

should also be a multiple of 271 for stationary pulses. 

Equation (7) for the field, in the case  of a resonance 
of the hindrance-lifting type ( I ) ,  and Eq. (14) for the 
product of the fields in q-photon resonance (2), a r e  of 
the s ame  type and a r e  solved by the s ame  method. 

In the absence of phase modulation, when the initial 
conditions $(T ---), and ulz(r --a) = O  a r e  satisfied, 
the solution takes the form 

where 

for  the resonance of the hindrance-lifting type (1); 

F=I Iq,  0 ( F )  = [ X ( ~ ) / X ( & )  ]q,?(n,), 7:" . . . r ! q ' ] " q  

for  ordinary q-photon resonance (2). The solution (15) 
describes pulses of symmetrical  shape with a vertex a t  
T=0  and with a maximum value F = F , .  The plus sign 
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corresponds to the rising part of the pulse (7 < 0) and 
the minus sign to the decreasing part  ( T >  0). Let us 
now investigate the pulses (15) in specific cases .  

2. STATIONARY PULSES IN 4-PHOTON RESONANCE 

Integration in (15) yields the waveforms of the s t a -  
tionary pulses in implicit form. Fo r  resonances of odd 
order  q = 2 m  -1 ,m=1,2 , .  . . we have 

[ 1 - s ; 2 / & ~ ~ ~ ] ' ~ ' ~ - ~  (2m-1)  (2m-3 ) .  . . (2m-2k-1) L=F{ 
7, 2m-1 *= L 2'(m-i )  ( m - 2 ) .  . . (m-k )  

X 
1 (2m-3)  ! 1  1 + [ 1 - l ~ / 8 j 0 2 ] ' "  

(&, /a , , )  z""-*, + - In 
2"(m-1 ) !  I - [ I - ~ , z / ~ , ~ ~ ] ' ~  (16) 

for  resonances of even o rde r  q = 2m, m = 1 , 2 , .  . . 

where 

Equations (16) and (17) correspond in the particular 
cases  of OPA and TPA to stationary amplitude profiles 
of USP in self-induced transparencyi4:  

~ , = - % ' , o / ~ ~ ( T / T L ) ,  q=1, (18) 
8,. ? = 8 i o .  2 0 / [ f f  T ' / T ~ ~ ] ' ~ ,  q S 2 .  ( l 9 )  

We note that the solution (17) describes also station- 
a ry  pulses in the case  of SRS in an  absorbing medium 
with anomalous d i ~ p e r s i o n . ~  By the parameter  :", 
which corresponds to a Stokes pulse, is meant in this 
case  i t s  modulus l y  1'' 1 . The stationary amplitude pro- 
f i les  of the pump and of the Stokes component of the 
SRS a r e  given by (19). 

Fo r  q-photon resonance of o rde r  higher than q = 2 ,  
the expressions (16) and (17) contain t e rms  -l/gq-'. As 
T -f m the amplitudes gj - 0 ,  and these t e rms  become 
dominant. The attenuation of the pulse fronts in ac-  
cordance with the law 8, - 1 / ~ ~ ' ( ~ - ~ )  i s  too slow to en- 
su re  a finite energy. The divergence of the energy in- 
dicates that in principle no stationary USP a r e  possible 
in q-photon resonance if q > 2. This conclusion agrees  
with the results  of investigations of the asymptotic be- 
havior of the USP (Refs. 8 and 9). 

3. STATIONARY PULSES IN A MULTIPHOTON 
PROCESS OF THE HINDRANCE-LIFTING TYPE 

We consider the resonant process (1) when, be- 
s ides  one-photon absorption resonances of third, fifth, 
etc. order  also take place in the transition 1-2, i.e., 

X(181)=d , z+  ~ x ' 2 m + " ~ ~ ~ 2 m .  
".=I 

We note immediately that if the dipole moment d12 =0 ,  
the multiphoton process under consideration is describ- 
ed  in the absence of phase modulation by the s ame  
equations (16) as the ordinary q-photon absorption (2). 

It has shown in the preceding section that t he re  a r e  
no stationary pulses at a resonance of o rde r  q > 2. We 
shall assume that d12 #O and investigate the role of di- 
pole absorption in the multiphoton process (1). We con- 
fine ourselves to OPA of third o rde r ,  i.e., we assume 

that 

~ ( I 1 1 ) = d , ~ + x ' ~ ' 1 8 I ~ .  

Integrating in (15) for  the indicated case ,  we obtain 

An investigation of (20) shows that $(T) i s  a station- 
a r y  pulse of symmetrical  shape with a peak a t  T = 0  and 
with a maximum value go = [%ii)~f2/y3]112. At g2 << g; 
the influence of the nonlinear absorption becomes van- 
ishingly sma l l  and the edges of the pulse fall off 
exponentially 1 ( ~ ) - e ' ~ ' / ~ ~ ,  ~ ~ = A / d ~ ~ g , , ,  thereby en- 
suring a finite pulse energy. 

Thus,  the presence of dipole absorption in the transi-  
tion 1-2 leads to formation of stationary USP, despite 
the presence of third-order OPA. 

At sma l l  nonlinearity, E =n'3'gi/d12 << 1, Eq. (20) 
leads to an  explicit expression for the wave form of the 
stationary pulse: 

Figure 1 shows the wave form of the pulse for d12 
= cgs esu ,  u ' ~ '  = cgs esu, go = 3 lo3 cgs esu. 
We note that in a molecular medium with a dipole mo- 
ment d,, = cgs esu,  which is typical of l a se r  t ran- 
si t ions,  satisfaction of the condition s ( ~ )  2 71 for an in- 
put pulse of picosecond duration, in ordinary one-photon 
resonance, ca l l s  for  a peak power -loi2 w/cm2.  The 
presence of third-order polarizability makes it possible 
to observe stationary pulses on l a s e r  transitions a t  a 
power sma l l e r  by four o rde r s  of magnitude. Est i-  
mates show that the power needed to form a stationary 
pulse with a duration -10'" s ec  on account of third- 
o rde r  OPA at  u ' ~ '  = lomz6 cgs e s u  becomes equal to the 
corresponding power for ordinary one-photon absorp- 
tion when d12 = 5.  10-lo cgs esu. 

It must be emphasized that a solution in the form of a 
sol i tary stationary pulse (15) was obtained at  ze ro  ini- 
tial conditions. If u12 = u,, # 0 a s  T -*a, then one cannot 
exclude the possibility of a periodic solution similar  to 
the soliton solutions in Ref. 5. Thus, in the case  of 
hindrance lifting we have from (15) T =*n(h, cp, k ) ,  where 
n(h , cp , k) i s  an elliptic integral of the third kind, 

FIG. 1. Waveform of stationary pulse i n  third-order OPA, r, 
=8.10-'~ sec. 
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In part icular ,  if h = k ,  then the amplitude $(T) is deter- 
mined from the relation 

in which sn(z)  is an elliptic function. A more  detailed 
investigation of the properties of the solution, such  a s  
determination of the period etc.,  cal ls  for  numerical 
calculations. 

4. ALLOWANCE FOR THE STARK EFFECT 

Stationary pulses in multiphoton interactions were  
considered in the preceding section without allowance 
for  the Stark effect. In strong fields, and in the pres-  
ence of linear polarizabilities of the resonance equa- 
tions, it i s  necessary to take into account the additional 
nonlinearity due to the Stark  shift of the levels. The 
problem of finding the waveform of the stationary pulse 
in this case  is much more  complicated, but the non- 
l inear equations can be analytically solved with the aid 
of the Hamilton-Jacobi method." 

We consider a multiphoton process of the hindrance- 
lifting type ( I ) ,  in which 

and take into account the Stark level shift a (  1%' I ) 
=ao\ %'I2. The complex amplitude $(T) of the stationary 
pulse i s  described by the system of equations 

dePldz=iy,x( 18 1 )orz ,  (22) 
d ~ ~ ~ / d z - i Q ( ] e P ]  )alz--iyZx( 181 ) q l z (  1 8 1 ) X ,  

where 

The change of variable 

f - j  x ( l 8 l ) d r  
-- 

reduces the system (22) to a single equation for  the 
amplitude g': 

We separate the r ea l  and imaginary parts  of the com- 
plex amplitude $ = x  + iy . Then the system of equations 

d'z P dy dy  B d x  -+ -- =y,yzq,zx, - - -- = 
dS' x d E  dS2 x dS 

ylYzqlzYI 

obtained from (23) coincides formally with the system 
describing the motion of a particle with unity mass  and 
unity charge in an electr ic  field and a magnetic field 
which a r e  constant but nonuniform. Using this formal 
analogy, we solve the sys tem (24) by the Hamilton- 
Jacobi methodi0 developed for the solution of problems 
in classical  mechanics. This  method was applied to the 
propagation of nonlinear wave in Refs. 11 and 12. 

The Hamilton-Jacobi equation for the action function 
S takes in cylindrical coordinates of the form 

Separating the variables S =-xlf + x2cp + So(r) ,  we obtain 

SO ( r )  =* I [ 2L.-2V- ( 4 - A )  ] 'I' dr; l,.= const. (26) 

Using the fact that in the Hamilton-Jacobi method 

ds -=- 
as, as f+----I=C,=const, -= 

as 
ah, a h2  eonst, st, (27) a l l  ah, 

we obtain the solution in the form 

Equation (28) yields implicitly the dependence of the 
field amplitude r on the temporal variable 5 ,  while Eq. 
(29) establishes the connection between the phase cp and 
the amplitude Y. We change over in (28) to a running 
t ime T ,  using the fact that d l ; / d ~  =x(I $1 ): 

I Y I  

z - 0  j [ ~ L , - ~ v - ( $ - A  ) 2 ] ' h ] - 1  dr. 
11.1 

Here go is the maximum value of the amplitude r =(x2 
+y2)"2 = (%'I . If the dipole moment in the considered 
process is dl ,  2 0 ,  then the function A(Y =0)  = O .  The 
initial conditions $(T --m) = 0 and (712(~ --m) = 0  a r e  
satisfied if the constants x1=x2  = O .  We present the 
form of the solution for  the particular case  of the reso- 
nance (1) f o r  third-order OPA, i.e.,  f o r  X(r2)=d12 
+ u(3'y2: 

We investigate the influence of the Stark effect on the 
stationary wave form of the pulse in the case  of sma l l  
nonlinearity ~ ' ~ ' $ ~ / d ~ ,  << 1. In this ca se  i t  follows from 
(31) that Lhe Stark  shift of the levels decreases  the 
maximum amplitude of the stationary pulse: 

The pulse waveform remains the s a m e  and i s  de- 
scr ibed  by expression (21), which was obtained with 
the Stark effect neglected. It must be emphasized that 
the stationary pulse determined from (31) is meaning- 
ful only a t  dl, 20.  If dl, = 0, then just a s  in the absence 
of the Stark  effect, pulses of infinite energy a r e  obtain- 
ed. 

We note in conclusion that expressions (29) and (30) 
yield the wave form of a stationary USP for a rb i t ra ry  
multiphoton processes of the  hindrance-lifting type with 
allowance for  both Stark effect and phase modulation. 
A distinguishing feature of these processes is the de- 
pendence of the function x on 1 $1,. For  ordinary q - 
photon resonance we have x =X[(tf*)a'l]. In this case  
the procedure presented for solving equations with 
Stark nonlinearity i s  inapplicable. 

In molecular media, multiphoton processes of the in our case  
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hindrance-lifting type can be used to shape much short-  
er pulses than in ordinary one-photon absorption, by 
using resonance with vibrational-rotational transitions 
IAjl > I ,  j i s  the rotational quantum number. The pos- 

sible existence of stationary USP i s  ensured in this 
case  by the presence of smal l  dipole moment of the 
resonant transition, due, for example, to collisions. 
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