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The problem of the incidence of a monochromatic 
wave on a layer Lo c x s L of a medium whose dielectric 
constant i s  determined by the intensity of the wave field 
is of great interest, and i s  the subject of a large num- 
ber of investigations (for a bibliography see, e .g., Ref. 
2). In the simplest one-dimensional case (normal in- 
cidence of the wave on an inhomogeneous layered me- 
dium), which i s  the one considered in the present paper, 
the wave field in the layer i s  described by the nonlinear 
Helmholtz equation 

with conditions that the field and i ts  derivative be con- 
tinuous on the boundaries of the layer. If a wave Uo(x) 
= v e x & k ( ~  -x)} i s  incident on the layer, the solution 
of the problem can be represented in the form U(x) 
= vu(x), where u(x) satisfies the equation 

and the boundary conditions on the layer boundaries 

u'(L) =-ik[P-u (L)], u'(Lo) =-iku(L,) (u' ( x )  =du ( x )  /&). 

The coefficient of wave reflection from the layer is 
defined in this case as p =u(L) - 1. In the general 
case E is a complex quantity, i .e., 

where c, = E: and the quantity y describes the damping 
of the wave. 

In the absence of damping (i .e., y = 0 )  and in the ab - 
sence of inhomogeneities of the medium [i.e., E (x, J(x)) 
=E(J(x)], there exist for the problem (1) two  integral^^*^ 

dU' ( x )  dU(z9 
U(x) - -  U'(x)-  = const, 

dx dx 
(2) 

which a re  customarily used to obtain the structure of 
the field inside the layer (by subsequent integration213 
and using phase -plane analysis4). The possible types 
of solutions a re  then matched on the boundary of the 

layer and the incident wave. In a number of cases 
ambiguities arise,  since the same field inside the 
medium can correspond to several incident-wave inten- 
sities and hence to several reflection coefficients. 
This ambiguity can remain also in the presence of 
damping, when the integrals (2) a re  absent. It should 
also be noted that the solution of the problem (1) i s  
determined a s  a rule by the critical (bifurcation) val- 
ues of the parameters, assumption of which within the 
framework of the integrals (2) raises great difficulties. 

An approach based on a different principle was de- 
veloped for the solution of the problem in Ref. 1. Us - 
ing the "imbedding" method, the original boundary - 
value problem reduces to an initial-value problem 
relative to the Uimbedding" parameters, namely the 
position L of the right-hand layer boundary (on which 
the wave is incident) and the intensity w of the incident 
wave. The field a t  the boundary (or the reflection co- 
efficient) i s  then described by a closed nonlinear 
equation, while the field inside the layer of the medium 
satisfies already a linear equation. This approach, a s  
will be seen below, makes i t  possible to obtain, in the 
absence of damping, the dependence of the modulus of 
the reflection coefficient on the incident-wave intensity 
in the general case of arbitrary nonlinearity, and in 
the presence of damping, for concrete types of non- 
linearity, the obtained equations a re  convenient for 
numerical analysis. No difficulties a r e  raised when 
the problem parameters a re  equal to the birfurcation 
values. 

It was shown in Ref. 1 that when account i s  taken of 
the depende~~ce of the solution on L and w a s  parame- 
ters, the problem (1') is described equivalently by the 
system of equations 

where 
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uL(w)==u(L; L, w),  zL(w)=1uL(w) I Z (  
a(L, w) =ik+'l,ike (L, wZ,)u, (w), 

b(L, w) =a@, w) +am(L, w). 

The coefficient of reflection of the wave from the 
layer is determined by the equation p, (w) =uL(w) - 1, 
with luL(w) - 1 I2c 1. 

At w = 0, Eqs. (3) and (4) reduce to the corresponding 
relations of the linear problem, derived in Ref. 5 (see 
also Ref. 6). It i s  natural to assume that their solu- 
tions coincide with the limiting values of the solutions 
of Eqs. (3) and (4) as w - 0. 

In the case c(x, J )zE(J )  one can go to the limit as Lo - -a, corresponding to incidence of a wave on a half- 
space x < L .  In this case Eqs. (3) and (4) take the 
form 

where now 
E=k (1;---x) >(I (k=k') , 

i 
a (w)=i+- -~(~I )u (w) ,  b(w)=a(w)+aa(w), Z(w)=lu(w)If. 2 

At w = 0, Eqs. (5) and (6) determine the initial values 

which correspond to the solution of the linear problem. 
All the equations written out above were derived in 
Ref. 1. We consider below in greater detail their 
structure and their corollaries. 

From (5) we obtain for the intensity J((, w ) =  
w )u(f ,w)  l 2  of the wave field inside the medium the 
equation 

with the initial condition J(O,w)=wZ(w), where Z(w) i s  
obtained from the solution of Eq. (6). 

A parametric representation of the solution of Eq. (8) 
can be easily obtained by the method of characteristics: 

Eliminating the parameter w, we ultimately obtain in 
explicit form the function J= J ( f ,  w). 

Thus, the solution of the problem reduces to finding 
the field u ( w )  on the boundary o r  finding the reflection 
coefficient p(w) =u(w) - 1. We assume E(J) = E~(J) 
+iy(J), where c, = c:, and the quantity y ( ~ )  describes 
the damping of the wave. Putting u(w ) = R(W ) + iS(w) 
and separating in (6) the real and imaginary parts, we 
obtain 

where Z(w) = R2 + S2 and b(w) = - [ y ( ~ I ) ~  + cl(wl)S]. We 
note that these equations lead to the equalities 

b (w)dwR/dw=2S-'lay (wZ)Z, b (w)dwZ/dw=4S. (11) 

From the condition I c 1 follow the restrictions 0 
c R c 2 and -1 S c 1, the equal signs being applicable 
only a t  y 10. In this latter case, when there is no 
damping, the system (10) takes the simpler form 

and relations (11) become 

Considering Eq. (12) to be  a system of ordinary dif- 
ferential equations (without allowance for the initial 
conditions), we see  that all the solutions of this system 
break up into solutions of two types. 

I. S(w) 50. The f i rs t  equation of (12) is then iden- 
tically satisfied, and the second leads to a transcenden- 
tal equation for R(w ): 

In this case b(w) =O, and the solution of (8) i s  

which corresponds to a plane wave propagating in a 
nonlinear medium. The wave field is determined from 
(5): 

This type of solution was analyzed in Ref. 2. 

11. S(w)+ 0. Assume that a t  w =w, we have R(w,) 
= R , and ~ ( w , )  =So. Then, dividing both sides of (12) 
and (13) by S, we obtain the system of equations 

and the equalities 

Integrating these last  relations, we obtain the equations 

which define Z(w) and R(w) a s  functions of w. The 
function ~ ( w )  is determined from the obvious relation 

S(w) =&[I(w)-R2(w) 1". (17) 

where the sign of the square root should be chosen to 
satisfy the initial condition, o r ,  if S(w,) = 0, the r e  - 
quirement that the field be bounded a t  f > 0. 

From (16) we obtain 

22 1 Sov. Phys. JETP 55(2), Feb. 1982 Klyatskin et aL 22 1 



i.e., we always have 2R0 >Io, the modulus of the r e -  
flection coefficient increases with increasing incident- 
wave intensity. Note that solutions of this type can 
exist only if the radicand in (17) is positive; a t  the 
points where I(w,) = R2(w1), an interchange of the solu- 
tion regimes can take place. 

For  the solutions of the type considered, b(w) # 0 s o  
that the equations that follow from (9) for the wave 
intensity inside the medium are  valid and, naturally, 
coincide with the earlier results (see, e.g., Refs. 2 
and 3) by directly integrating Eq. (1) a t  y 1 0  and E 

=e(wI) with the aid of two integrals.' In our case the 
corresponding equations yield an explicit dependence of 
all the quantities on the intensity of the incident wave 
[e.g., Eq. (18), which cannot be separated from the 
integrals in (2) in simple manner]. 

As indicated above, the approach developed in Ref. 1 
is based on the following principle. At low incident- 
wave intensities we have a linear problem. Further 
evolution of the field with increasing w is described by 
the nonlinear system (10) with specified initial condi- 
tions, and the intensity of the incident wave, naturally, 
changes adiabatically. It is natural to expect this 
evolution to single out from among the possible solu- 
tions those which can in fact be realized. We should 
then obtain automatically the type of solution (I or  11) 
which corresponds to the initial data, and the possible 
transition from one type to another. In the presence of 
damping i t  is impossible to solve Eqs. (10) analytical- 
ly. An analysis of the system (10) in the absence of 
damping makes i t  possible to establish the solution 
singular points in whose vicinities a numerical calcula- 
tion can be used a t  y # 0. 

We examine specifically several simplest types of 
nonlinearity in the absence of damping: 

a )  let El(t) = pt and p > 0. From (7) i t  follows that 
R(O) = 1 and S(0) = 0. Since the parameter B enters on- 
ly in the combination pw > 0, we can set  i t  equal to 
unity without loss of generality (we proceed similarly 
in all the examples that follow). The system (12) take 
the form 

(R2+Sz) w2SdR/dw=-S[2+ wR (R2+S2) 1, 

(R2+Sz) w2SdS/dw=2(R-I) +'12w (RL-S') .  

It is easy to show that in a certain vicinity of the origin 
we have S = 0 by virtue of the initial conditions, i.e., we 
have solutions of type I. The function ~ ( w )  is obtained 
from the algebraic equation 4(1 - R ) = w R ~ ,  which fol- 
lows from (12) and always has two real roots of oppo- 
site sign. The branch that satisfies the condition ~ ( 0 )  
= 1 is determined from the Fer ra r i  formulas 

R ( w )  =[2/zo(2y)'"-y/2]'"- (2y)'"/2, 

from which we obtain asymptotically 

R ( w ) - I -  w/4, p(w) - -w/4  (w'O), 

R ( w )  -2"w-'", p(w) --1+2"w-" ( w + ~ )  

The function ~ ( w )  decreases monotonically to zero with 
increasing w, and the reflection coefficient tends to -1. 
This solution corresponds to a plane wave in a non- 
linear medium, and the intensity of the wave field in- 
side the layer is described by Eq. (15). 

b) Let now ~ ( t )  = -p with j3 > 0. In this case the solu- 
tion of the corresponding system of equations (@= 1) 

waS (RVS' )  dRldw-S[2+wR (R2+S2) 1, 
w2S(R2+S2)dSldw=2(l-R) -'lrw (R'-S') 

belongs in a certain vicinity of the origin to type I, and 
now the function ~ ( w )  is determined from the algebraic 
equation 4(R - 1) = W R ~ ,  which has two real  roots a t  
0 a s w 0 =  (9. The branch that satisfies the condi- 
tion ~ ( 0 )  = 1 is confined to the region 1 c R c R, = $ 
and is again obtained from the Ferrar i  formula 

where now 

Asymptotically we have 

whence, in particular, i t  follows that dR/dw - .c a s  
w - w, - 0. Solutions of this type likewise correspond 
to a plane wave with wave-field intensity (15) inside the 
layer. At the critical point we have J([, w,) = $, and 
here 1 +&(J )=  t. 

At w > w,, the algebraic equation for R has no real 
roots, but this means that we must go over to solutions 
of type n, for which S(w)# 0. Assuming continuity of 
the transition from the solutions of one type to another, 
i.e., assuming ~ ( w , )  = $ and S(w,) = 0, we obtain from 
(16) and (17) a t  w >w, 

For the reflection coefficient we have lp(w) l 2  = 1 - 3/ 
8w and I p(w,) 1 2 = $ .  By quadratures, relations (9) 
can be rewritten in the form 

whence, eliminating G ,  we ultimately obtain the in- 
tensity of the field inside the medium 

1 1 l+q ( w )  exp ( ~ 1 1 )  
I ( : ,  W ) = - { I  2 +-[ 2 ( to)  exp ( p i f l j  - I  14. 

where 

Since E(J) = -J in our problem, Eq. (20) describes 
simultaneously the dielectric-constant distribution, 
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produced by the incident wave, as a function of w and 
5. We see that the change of the field from the plane - 
wave conditions to the more complicated conditions 
(20), comes into play before the quantity E(J) = 1 +& (J) 
vanishes. At w, <w cw, = 61/128 the value of E(J) dif - 
fers  from zero; a t  w 3 wl there always exists a point 

a t  which c(J) = 0. In the region 0 S 5 s 5, we then have 
i ( J )  S 0, and a t  w = w, we have 4, = 0, and a t  w >> w, we 
obtain ~ , ~ f i l n [ ~ + l ) / ( f i - 1 ) ] = 2 . 5 .  Intheremain-  
ing part of space, 5 > 5,, we have E(J) > 0, and i t  is 
precisely this which causes the field to penetrate deep 
into the medium with increasing intensity of the inci- 
dent wave [at 5 >> 1 we have J(5, w) - q] at critical 
point w,. 

We have studied above the case when the solution i s  
continuous but the derivatives of all the considered 
quantities become discontinuous. Whether this i s  in- 
deed the case can be determined by constructing the 
solution in the presence of finite (albeit arbitrarily 
small) damping. To this end, Eq. (10) at constant y 
> 0 was integrated numerically. The solutions obtained 
exhibited as y - 0 a distinct tendency to converge to- 
wards the described piecewise -analytic solution, con- 
tinuous in w but with a discontinuity of the first  de- 
rivative at the point1' w,. 

c )  We investigate now the more complicated case 
E l @ ) =  -6e-", /3:, 0, 6 > 1, which describes the penetra- 
tion of an electromagnetic field into an electron plasma 
and i s  considered in Ref. 3. From (7) we obtain ~ ( 0 )  
= 2/6, S(0) = -2(6 - 1)1/26. We note that z(O) = 1 + ~ ~ ( 0 )  
< 0, and that the corresponding linear problem (w = 0) 
describes total reflection of the wave from the layer 
( ( 0  1 = 1 .  The wave attenuates exponentially into the 
interior of the layer, and the depth of the skin layer i s  
1 - l l .  With increasing incident-wave intensity, 
E(J) also increases, and the depth of the skin layer in- 
creases until the medium begins to transmit. 

Since S(0) # 0, the solution that is continuous in the 
vicinity of the origin i s  of type 11. From (16) and (17) 
we obtain in this case 

( w )  I ,  S ( w ) = - ( R ( w )  [ ~ - R ( W ) ] } ' ~ .  

Such a solution exists s o  long as ~ ( w )  c 2. Thus, a 
singularity appears a t  the point w, determined by the 
transcendental equation 

4w0/b=1-e-'". (22) 

It follows from the integral (9) that the amplitude 
E([, w) = [J({, w)]'/' of the field inside the medium is 
described a t  0 c w c w, by the relation 

where E(w) = E(0 and w) = [wz(w)]"~. Expression (23) 
was obtained in Ref. 3 with the aid of the integrals (2) 

and was tabulated for the critical value w,, when E(w,) 
=2w;I2 is the zero of the radicand in the right-hand 
side of (23). 

The behavior of the solution a t  above-critical values 
w > w, and at zero damping cannot be determined, since 
i t  becomes eventually discontinuous and there a re  no 
dynamic conditions that make i t  possible to determine 
the sizes of the discontinuities. In fact, a s  seen from 
(1'1, 1 p(w) 1 - 0 a s  w -- -, and consequently we should 
have asymptotically a solution of the f i rs t  type for (14) 

corresponding to the plane -wave regime. The theory 
does not tell us when and how the transition from the 
type 11 solution to the solution (24) takes place, at w 
=wo o r  via a sequence of jumps. It is clear, however, 
that the solutions will be subject to hysteresis. If we 
move from very large values towards a decrease of the 
parameter w, the solution (24) will exist all the way to 
the value w,=+ In6 <w, a t  which R ( w , ) = ~ .  With 
further decrease of w, a jump (or a number of jumps) 
to the solution (21) should take place. 

At a constant positive damping coefficient y, the 
problem is described by the complex equation (6) o r  by 
the system (10). As w - -, the solution of Eq. (6) 
takes the stationary form 

At sufficiently large w, we put u(w) =u, +G(w) and 
linearize (6) with respect to u(w), neglecting the quan- 
tity 6exp(-wl). As a result we obtain the equation 

-- dii ' w(u,+u;)  -=-2iii+yu,ii, 
2 dm 

whose solution a t  y << 1 has a rapidly oscillating struc- 
ture 

meaning apparently that i t  is unstable with respect to a 
change of w in the opposite direction. 

Equation (6) [or the system (lo)] can have singulari- 
ties a t  the points a t  which the coefficient b(w) vanishes. 
To establish the character of these singularities, we 
change over to new variables with the aid of the rela- 
tions 

2 
u ( w ) = -  J=wZ(w). 

I+Q(J)  ' (27) 

Since b(w)d/dw = 2i(u* -u)d/dJ by virtue of ( l l ) ,  Eq. (6) 
is rewritten in the form 

Putting + = U + iV and separating the real  and imaginary 
parts in the last  equation, we obtain 

and according to (27) we get 

223 Sov. Phys. JETP 55(2), Feb. 1982 Klyatskin etaL 223 



We note that the systems (10) and (28) a r e  equivalent 
if a one-to-one correspondence exists between w and J. 

The system (28) has singularities a t  those points a t  
which V vanishes. Taking into account, however, the 
first equation of (291, w e  see  that at y#O there a r e  no 
points at which the functions b(w) and V(J) vanish si- 
multaneously (U z 0 always). On this basis we can pro- 
pose the following calculation procedure. We solve f i rs t  
the system (10). On approaching the singular point, 
where b b )  vanishes, we calculated from the known 
quantities w, R,  and  S the values 

and change over to the second system of (281, which is 
integrated before passing through the value b = 0. 
Next, from the given values of J, U, and V we calculate 

and again solve the system (10) prior to the approach 
to the new singular point, if i t  exists, etc. 

The described algorithm was realized on the basis 
of a numerical Runge-Kutta-Felberg scheme of fifth- 
order accuracy with the aid of the subprogram RKF45 
given in Ref. 7. The program was tested, using a s  
the example the exact solutions of type 11, obtained at 
y = 0 and discussed above. Control integrations of the 
system (10) at y+ 0, carried out with w increased to a 
certain w* > 0 followed by a return to  the initial point of 
the final value (round trip) has demonstrated good com- 
putational stability of the scheme. 

The right-hand sides of the system (10) in the normal 
form at  the point w = 0 a r e  indeterminacies of the 0/0 
type. To overcome the corresponding difficulty we 
used a t  the s tar t  of the calculation asymptotic repre- 
sentations of the solution in the vicinity of the origin, 
in the form of power-law expansions up to terms w3 
inclusive, with the aid of which we calculated new ini- 
tial data a t  a certain point w > 0. 

FIG. 1. Behavior of the solution of the problem at 6= 2 and y 
= 0.18. Curve 1 corresponds to R ( w ) ,  curve 2 to 1 + S ( w ) ,  
curve 3 to J( W) , and curve 4 to I p(ru) 1 '. 

We proceed now to discuss the results  of the numer- 
ical experiments, most of which were performed for 

= -bedt at  6 = 1.25, 2, and 5 with corresponding 
critical points w,= 0.12, 0.4, and 1.25 [see Eq. (22)]. 
The intermediate case 6 = 2 was analyzed in detail. 

At a sufficiently large value of the parameter y (;I  
> 0.18) all  the functions have a smooth dependence on 
w. For example, the function R reaches a maximum 
and then, oscillating in accord with (26), reaches i t s  
asymptotic value determined from (25). With decreas- 
ing y, the maximum of R(w) shifts towards the critical 
value w,= 0.4, and the curve itself begins to drop 
steeply after passing through the maxima. Finally, a t  
y = 0.18 all the curves, a s  functions of w, have a prac- 
tically vertical section at k0=0.  69, which i s  in e s -  
sence a discontinuity. This section of the curves was 
obtained by integrating the system (28), and a one-to- 
one correspondence between J and w took place in this 
case. The behavior of the solution of the problem for 
this case i s  shown in Fig. 1. After passing through 
the discontinuity, all the curves reach their asymptotic 
values via oscillations (26). For the critical value w,, 
the reflection coefficient vanishes with high accuracy, 
i.e., the wave i s  almost completely absorbed by the 

The change from the system (10) to the system (28) nonlinear medium. With further increase of w, the 
and back was effected in the following manner. If, modulus of the reflection coefficient increases. 
e.g., in the course of the numerical integration of (10) 
the coefficient b(w) assumed a t  the point G an absolute 
value smaller than a certain specified small number, 
a transition to the system (28) took place, and the lat- 
ter  solved then in the same direction of the change of 
the new variable J ,  which was fixed a t  the point w. 
The transition from (28) to (10) was made similarly 
when the coefficient V became small enough. Of 
course, if b(w) did not reverse sign, only the system 
(10) worked. This method constructed numerically 
continuous functions R(w ) and S(w ), but these could be - o o 1 o 2 o 3 o v 
come non-single -valued a t  sufficiently small y. 

It is of interest to note that a t  all realizations of the FIG. 2. Plots of the function I p(w)  1 '. Curve 1 corresponds to 
described the argument (phase) of the 'Om- the parameters 6= 2 and y= 0.1 (& ,tu/5), curve 2 corresponds 
plex reflection coefficient varied monotonically on to 6 =  1.25, y= 0.06 ("w 74, curve 3 to 6= 5, y= 0.15 (k =la/ 
moving along the curve in the (R, S )  plane. 10). The ordinates are the values of tu. 

224 Sov. Phys. JETP 55(2), Feb. 1982 Klyatskin eta/. 224 



FIG, 3.  Plot of the function R ( w )  at 6 = 2 and y= 0.05. 

The formation of discontinuity a t  a finite and rather 
large value of the parameter y means that i t  is phy - 
sically incorrect to introduce a constant damping in the 
nonlinear problem considered. The damping should be 
a nonlinear function of the field intensity in the me- 
dium, just a s  the real  part  of the dielectric constant. 
Recognizing, however, that we a r e  primarily inter - 
ested in the tendency of the behavior of the solution of 
the problem a s  y-  0, we can formally consider also 
discontinuous functions, in analogy with the procedure 
used, e.g., in the problem of formation of discontin- 
uities in a Riemann wave (shock wave). 

With further decrease of the parameter y,  the one- 
to-one correspondence between J and w is already 
lost on finite sections of the w axis. It i s  formally 
possible to continue the integration of the systems (10) 
and (28) in accord with the algorithm indicated above, 
treating the appearance of such an ambiguity a s  the 
analog of the breaking of a nonlinear wave. Then each 
loop in the solution will yield the value of the discon- 
tinuity for monotonic change of the parameter w. 
Thus, Fig. 2 shows a plot (curve 1) of the square of 
the modulus of the reflection coefficient a t  y = 0.1. 
This plot has already two discontinuities, and the re -  
flection coefficient at the point of the first  discontin- 
uity no longer vanishes. The set  of figures 3-6 shows 
the behavior of the solution of the problem at  y = 0.05, 
with already seven discontinuities. The tendency of 
the behavior of the solution a s  y-  0 is clear from a 
comparison of Fig. 1 with Figs. 3-6. First ,  the re -  
gion where oscillatory solutions of the type (26) 
exists shifts towards the critical point w,. Secondly, 
each oscillation compresses in the direction towards 
the point w,, and this compression depends on the val- 
ue of the function itself, and i t  i s  this which leads to 
formation of the discontinuity ("breaking of the wave") 
in full analogy with the dispersion effect of nonlinear 
waves. Finally and thirdly, since the period of the 

FIG. 5. Plot of the function J ( w )  = w[R'+ s21 at 6 = 2 and y 
= 0.05. 

oscillations (26) increases with increasing w, the 
number of discontinuities is always finite for any a r -  
bitrarily small value of y. It appears that a s  y - 0 
the system of discontinuities will be grouped a t  suf- 
ficiently large w relative to the solution (24) corre- 
sponding to the plane -wave regime. 

The picture is similar for other values of the pa- 
rameter 6, a s  seen from Fig. 2, which shows also 
plots of 1 p 1 "  for 6 = 1.25 and 6 = 5, with two discon- 
tinuities each. 

We note in conclusion that the curves shown in Figs. 
2-6 show hysteresis, for when the discontinuities 
move in the opposite direction along w they should 
pass on the other sides of the loops. This type of 
hysteresis, however, i s  not physical, since a constant 
y i s  not physically tenable. When adequate account i s  
taken of the nonlinear damping the observed hysteresis 
will apparently give way to fronts of the discontinuities, 
but in this case another type of hysteresis will remain, 
connected with the accurate motion along the w axis 
in the region of large w, where the system has al- 
ready reached its  stationary value. 

I'We note that the results obtained above do not agree with 
those given in Ref. 4. 

'G .  I. Babkin and V. I. Klyatskin, Zh. Eksp. Teor. Fiz. 79. 
817 (1980) ISov. Phys. JETP 52, 416 (1980)l. 

'F. G.,Bass and Yu. G. Gurevich, Goryachie 61ektrony i si1'- 
nye elektromagnitnye volny v plazme poluprovodnikov i gaz- 
ovogo razryada (Hot Electrons and Strong Electromagnetic 

FIG. 4. Plot of the function S(w)  at 6 =  2 and y =  0.05. FIG.  6. Plot of the function I p ( w )  I' at 6 = 2, y = 0.05. 

225 Sov. Phys. JETP 55(2), Feb. 1982 Klyatskin eta/. 225 



Waves in the Plasma of Superconductors and of Gas Dis- 6 ~ .  I. Klyatskin, Stokhasticheskie uravneniya i volny v sluch- 
charge). Nauka, 1975. a'ino-neodnorodnykh sredakh (Stochastic Equations and Waves 

'v. P. Silin, Zh. Eksp. Teor. Fiz. 53, 1663 (1967) [Sov. Phys. in Randomly Inhomogeneous Media), Nauka. 1980. 
JETP 26, 955 (1968)l. 'G. E. Forsythe and C. Moler, Computer Methods for Mathe- 
'0. V. Bagdasaryan and V. A. Permyakov, Izv. vyssh. ucheb. matical Computations, Prentice-Hall, 1977. 

zaved. Radiofizika 21, 1352 (1978). 
6 ~ .  I. Babkin and V. I. Klyatskin, ibid.  34, 1185 (1980). Translated by J. G. Adashko 

Sov. Phys. JETP 55(2), Feb. 1982 Klyatskin era/. 226 


